用户名: 密码: 验证码:
大鼠牙髓干细胞在微弧氧化钛表面诱导分化成骨的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨大鼠牙髓干细胞(DPSCs)在微弧氧化(MAO)钛表面诱导分化成骨的能力,并通过与大鼠骨髓间充质细胞(BMSCs)成骨能力的比较,为DPSCs成为种植与组织工程联合应用的新型种子细胞提供理论依据。
     方法:
     1.大鼠DPSCs的分离,培养,鉴定及诱导分化:采用组织块酶消化法和有限稀释克隆化培养分离大鼠DPSCs,免疫荧光方法鉴定细胞表型。体外诱导DPSCs分别向成骨细胞和脂肪细胞分化。
     2. DPSCs在MAO钛表面的生物活性研究:分为DPSCs-MAO组,DPSCs成骨诱导组及DPSCs无诱导组。扫描电镜(SEM)观察细胞生长情况,生物化学检测和实时定量PCR检测DPSCs的分化能力。
     3.大鼠DPSCs与大鼠BMSCs在MAO钛表面的成骨能力比较:分为DPSCs-MAO组,BMSCs-MAO组及DPSCs-smooth组。SEM观察细胞生长形态,能谱分析仪(EDS)分析MAO钛表面元素变化,生物化学检测和实时定量PCR检测比较DPSCs与BMSCs的成骨分化能力差别。
     结果:
     1.大鼠DPSCs克隆化分离纯化培养后,细胞增殖较快,呈集落样生长,细胞形态为长梭型;免疫荧光结果显示大鼠DPSCs阳性表达CD44,STRO-1和Ⅰ型胶原,阴性表达CD34。大鼠DPSCs具有向成骨细胞和成脂肪细胞分化的能力。
     2.SEM结果显示MAO钛片表面粗糙多孔,均匀分布着5-12μm的微孔,大鼠DPSCs在MAO钛片表面生长良好,可见细胞突起向MAO钛片表面的微孔中生长。DPSCs-MAO组ALP活力各时间点都比DPSCs无诱导组明显增强(P<0.05),DPSCs-MAO组与DPSCs成骨诱导组各时间点ALP活力相接近(P>0.05)。细胞培养第21d, DPSCs-MAO组与DPSCs无诱导组,DPSCs成骨诱导组与DPSCs无诱导组相比,Runx2、Osterix、DSPP和DMP-1表达增强,差别具有统计学意义(P<0.05); DPSCs-MAO组与DPSCs成骨诱导组基因表达相接近,差别无显著意义(P>0.05)。DPSCs-MAO组与DPSCs成骨诱导组钙结节茜素红染色阳性,钙结节面积差别无统计学意义(P>0.05), DPSCs无诱导组茜素红染色阴性表达。
     3.MTT结果显示DPSCs-MAO组细胞活力比DPSCs-smooth组明显增强(P<0.05)。DPSCs-MAO组与BMSCs-MAO组细胞活力统计学分析差别无显著性意义(P>0.05)。细胞培养第7d, SEM显示,DPSCs-MAO与BMSCs-MAO细胞形态呈分化趋势,EDS结果显示,MAO钛表面钙离子含量升高,磷离子含量降低。DPSCs-MAO组各时间点ALP活力比DPSCs-smooth组明显增强,差别具有统计学意义(P<0.05), DPSCs-MAO组ALP活力与BMSCs-MAO组比较,除第5d及第13d有统计学意义外,其他时间点无显著性差异(P>0.05)。DPSCs-MAO组与BMSCs-MAO组钙结节茜素红染色阳性,钙结节面积差别无统计学意义(P>0.05)。DPSCs-MAO组与BMSCs-MAO组实时定量PCR检测Runx2, Osterix, DSPP和DMP-1基因表达趋势相接近,两组间差别不具有统计学意义(P>0.05)。
     结论:
     大鼠DPSCs在粗糙多孔,富含钙、磷元素的MAO钛表层有良好的生物相容性和生物活性,大鼠DPSCs的分化能力可能受到MAO钛的调节,大鼠DPSCs在MAO钛表面具有与大鼠BMSCs相似的成骨分化潜能。
Objectives:
     To explore the osteogenic differentiation potential of rat dental pulp stem cells (DPSCs) on micro-arc oxidation (MAO) titanium surface, and compare osteogenesis with rat bone marrow stromal cells (BMSCs), to provide the theory basis for DPSCs being the new seed cells in implant and tissue engineering combined application.
     Methods:
     1. The separation, culturing, identification and inducing differentiation of rat DPSCs. DPSCs were cultured by explants combined with enzyme digestion technique. Single cell line of DPSCs was isolated by limited dilution of cultured cells and identified by immunofluorescence. Inducing differentiation of DPSCs to osteoblast and adipocyte.
     2. The study of biological activity of DPSCs on MAO titanium surface. Groups are: group DPSCs- MAO, group DPSCs- bone condition induction and group DPSCs- no induction. At different time points during cells cultured, scanning electronic microscopy (SEM), biochemical tests and real-time PCR to observe differentiation potential of DPSCs.
     3. The osteogenic differentiation potential comparison between DPSCs and BMSCs on MAO titanium surface. Groups are:group DPSCs- MAO, group BMSCs- MAO and DPSCs- smooth. At different time points during cells cultured, SEM, energy dispersive spectroscope (EDS), biochemical tests and real-time PCR to observe the difference osteogenic differentiation potential between DPSCs and BMSCs.
     Results:
     1. DPSCs showed a high proliferation rate and arranged closely to form colony, besides the cells expanded as spindle-shape. Immunofluorescence analysis showed that DPSCs expressed CD44, STRO-1 and collagen I while CD34 was absent. DPSCs had the ability to differentiate into osteoblasts and adipocytes.
     2. SEM observation showed that the surface of MAO film was rough and porous, uniform distribution of 5-12μm microporous. And DPSCs were prone to grow toward micropore. ALP activity of DPSCs- MAO and DPSCs- bone condition induction were no significant difference (P>0.05), but there were significant difference with DPSCs-no induction (P<0.05). Cells cultured 21 days, the expression of Runx2, Osterix, DSPP and DMP-1 were increased between DPSCs- MAO and DPSCs- no induction, as the same between DPSCs- bone condition induction and DPSCs- no induction (P< 0.05); the expression of genes in DPSCs- MAO and DPSCs- bone condition induction were similar (P>0.05). Mineralization ability of DPSCs- MAO and DPSCs- bone condition induction, the calcium nodule area was no significant difference (P>0.05) and DPSCs- no induction was negative.
     3. MTT results showed that the cell viability of DPSCs- MAO was significantly enhanced compared to the DPSCs- smooth (P<0.05). The cell viability of DPSCs- MAO and BMSCs- MAO was no significance difference (P>0.05). Cells cultured 7 days, SEM showed both cells expressed the trend to differentiation on DPSCs- MAO and BMSCs-MAO. EDS showed that Ca was raised and P was declined because of cells cultured. The results showed higher ALP activity in DPSCs- MAO than in DPSCs- smooth (P< 0.05). Compared DPSCs- MAO and BMSCs- MAO, there was no significance difference except at the 5th and 13th day (P>0.05). The alizarin red positive mineralized area in DPSCs- MAO and BMSCs- MAO were no significant difference (P>0.05). The RT- PCR results showed that the expression levels of Runx-2, Osterix, DSPP and DMP-1 were similar. The expression levels of genes showed no significant difference between DPSCs- MAO and BMSCs- MAO (P>0.05).
     Conclusion:
     Rat DPSCs have good biocompatibility and biological activity on MAO titanium which was rough, porous and rich in calcium and phosphorus. The DPSCs differentiation may be regulated by MAO titanium surface. The osteogenesis potential of DPSCs on the MAO titanium like the BMSCs did.
引文
[1]Davies JE. Understanding peri-implant endosseous healing. J Dent Educ,2003,67 (8):932-49.
    [2]Langer B, Langer L, Sullivan RM. Vertical ridge augmentation procedure using guided bone regeneration, demineralized freeze-dried bone allograft, and miniscrews:4-to 13-year observations on loaded implants. Int J Periodontics Restorative Dent,2010,30 (3):227-35.
    [3]Chiapasco M, Casentini P, Zaniboni M. Bone augmentation procedures in implant dentistry. Int J Oral Maxillofac Implants,2009,24:237-59.
    [4]Rocchietta I, Fontana F, Simion M. Clinical outcomes of vertical bone augmentation to enable dental implant placement:a systematic review. J Clin Periodontol,2008,35 (8):203-15.
    [5]Edwards RG. Stem cells today:B1. Bone marrow stem cells. Reprod Biomed Online,2004,9 (5): 541-583.
    [6]Undale AH, Westendorf JJ, Yaszemski MJ, Khosla S. Mesenchymal Stem Cells for Bone Repair and Metabolic Bone Diseases. Mayo Clin Proc,2009,84 (10):893-902.
    [7]Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ. Expansion of Human Adult Stem Cells from Bone Marrow Stroma:Conditions that Maximize the Yields of Early Progenitors and Evaluate Their Quality. Stem Cells,2002,20 (6):530-41.
    [8]Giannoni P, Muraglia A, Giordano C, et al. Osteogenic differentiation of human mesenchymal stromal cells on surface-modified titanium alloys for orthopedic and dental implants. Int J Artif Organs, 2009,32 (11):811-20.
    [9]Yamada Y, Fujimoto A, Ito A, et al. Cluster analysis and gene expression profiles:a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials,2006,27 (20): 3766-81.
    [10]Graziano A, d'Aquino R, Laino G, et al. Dental pulp stem cells:a promising tool for bone regeneration. Stem Cell Rev,2008,4 (1):21-6.
    [11]Pierdomenico L, Bonsi L, Calvitti M, et al. Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation,2005,80 (6): 836-42.
    [12]Koyama N, Okubo Y, Nakao K, et al. Evaluation of pluripotency in human dental pulp cells. J Oral Maxillofac Surg,2009,67 (3):501-6.
    [13]Sonoyama W, Liu Y, Yamaza T, et al. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth:a pilot study. J Endod,2008,34 (2):166-71.
    [14]Laino G, d'Aquino R, Graziano A, et al. A new population of human adult dental pulp stem cells:a useful source of living autologous fibrous bone tissue (LAB). J Bone Miner Res,2005,20 (8):1394-402
    [15]Ryan G, Pandit A, Apatsidis DP. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials,2006,27 (13):2651-70.
    [16]Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005,26 (27):5474-91.
    [17]Kim DY, Kim M, Kim HE, Koh YH, Kim HW, Jang JH. Formation of hydroxyapatite within porous TiO2 layer by micro-arc oxidation coupled with electrophoretic deposition. Acta Biomater,2009, 5 (6):2196-205.
    [18]Du C, Schneider GB, Zaharias R, Abbott C, Seabold D, Stanford C et al. Apatite/amelogenin coating on titanium promotes osteogenic gene expression. J Dent Res,2005,84 (11):1070-4.
    [19]Isa ZM, Schneider GB, Zaharias R, Seabold D, Stanford CM. Effects of fluoride-modified titanium surfaces on osteoblast proliferation and gene expression. Int J Oral Maxillofac Implants,2006,21 (2): 203-11.
    [20]Shibli JA, Feres M, de Figueiredo LC, Iezzi G, Piattelli A. Histological comparison of bone to implant contact in two types of dental implant surfaces:a single case study. J Contemp Dent Pract,2007, 8 (3):29-36.
    [21]Zhao Z, Chen X, Chen A,et al. Synthesis of bioactive ceramic on the titanium substrate by micro-arc oxidation. J Biomed Mater Res A,2009,90 (2):438-445
    [22]孟丽娥.微弧氧化生物活性钛瓷膜的基础研究:硕十学位论文。华中科技大学图书馆,2007.
    [23]杨成,孟丽娥,黄韬,等.微弧氧化钛基种植材料对成骨细胞早期黏附的影响[J].中国口腔 颌面外科杂志,2006,4(5):376-380.
    [24]黄怡,李源莹,杨成,等.骨髓间充质干细胞与不同表面处理钛片的生物相容性研究.华中科技大学学报(医学版),2010,39(5):658-662.
    [1]王凤明,胡涛,周学东.Ⅰ型胶原酶消化组织块法体外培养人牙髓细胞[J].四川大学学报(医学版),2005,36(6):877-879.
    [2]Bernardo ME, Cometa AM, Pagliara D, et al. Ex vivo expansion of mesenchymal stromal cells. Best Pract Res Clin Haematol,2011,24 (1):73-81.
    [3]Guo KT, SchAfer R, Paul A, et al. A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells,2006, 24 (10):2220-31.
    [4]Sloan A J, Waddington R J. Dental pulp stem cells:what, where, how? Int J Paediatr Dent,2009,19 (1):61-70.
    [5]D'Aquino R, Graziano A, Sampaolesi M, et al. Human postnatal dental pulp cells co-differentiate into osteoblasts and endotheliocytes:a pivotal synergy leading to adult bone tissue formation. Cell Death Differ,2007,14(6):1162-1171.
    [6]S. Gronthos, M. Mankani, J. Brahim, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A,2000,97 (25):13625-30.
    [7]贺慧霞,金岩,史俊南,等.人牙髓干细胞的体外分离、培养及鉴定[J].临床口腔医学杂志,2004,20(9):515-518.
    [8]Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering:limitations and recent advances. Ann Biomed Eng,2004,32 (1):160-5.
    [9]Yamada Y, Fujimoto A, Ito A, et al. Cluster analysis and gene expression profiles:a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials,2006,27 (20):3766-81.
    [10]Towler DA, Shao JS, Cheng SL, et al. Osteogenic regulation of vascular calcification. Ann N Y Acad Sci,2006,1068:327-33.
    [11]Grottkau BE, Purudappa PP, Lin YF. Multilineage differentiation of dental pulp stem cells from green fluorescent protein transgenic mice. Int J Oral Sci,2010,2 (1):21-7.
    [12]Diekman BO, Estes BT, Guilak F. The effects of BMP6 overexpression on adipose stem cell chondrogenesis:Interactions with dexamethasone and exogenous growth factors. J Biomed Mater Res A, 2010,93 (3):994-1003.
    [13]Tillmar L, Welsh N. Glucose-induced binding of the polypyrimidine tract-binding protein (PTB) to the 3'-untranslated region of the insulin mRNA (ins-PRS) is inhibited by rapamycin. Mol Cell Biochem, 2004,260 (1-2):85-90.
    [14]Trian T, Burgess JK, Niimi K, et al.β2- Agonist induced cAMP is decreased in asthmatic airway smooth muscle due to increased PDE4D. PLoS One,2011,6 (5):e20000.
    [1]Yang C, Meng L, Huang T, et al. The study of osteoblast adhesion on pure titanium implant surface modified by microarc oxidation:An in vitro Study. China J Oral Maxil Surg,2006,4 (5):376-380.
    [2]Stahlberg A, Kubista M, Aman P. Single-cell gene-expression profiling and its potential diagnostic applications. Expert Rev Mol Diagn,2011,11 (7):735-40.
    [3]Graham JE, Wantland NB, Campbell M, et al. Characterizing bacterial gene expression in nitrogen cycle metabolism with RT-qPCR. Methods Enzymol,2011,496:345-72.
    [4]Kim DY, Kim M, Kim HE, et al. Formation of hydroxyapatite within porous TiO(2) layer by micro-arc oxidation coupled with electrophoretic deposition. Acta Biomater,2009,5 (6):2196-205.
    [5]Liu F, Song Y, Wang F, et al. Formation characterization of hydroxyapatite on titanium by microarc oxidation and hydrothermal treatment. J Biosci Bioeng,2005,100 (1):100-4.
    [6]Yu S, Yang X, Yang L, et al. Novel technique for preparing Ca- and P-containing ceramic coating on Ti-6A1-4V by micro-arc oxidation. J Biomed Mater Res B Appl Biomater,2007,83 (2):623-7.
    [7]Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005,26 (27):5474-91.
    [8]熊志立,孟繁浩,李遇伯,等.成骨细胞的骨形成调控机制[J].生命的化学,2004,24(1):44-46.
    [9]Banfi G, Lombardi G, Colombini A, et al. Bone metabolism markers in sports medicine. Sports Med, 2010,40 (8):697-714.
    [10]Enomoto H, Furuichi T, Zanma A, et al. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci,2004,26 (Pt 3):417-25.
    [11]顾新丰,蒋壵RUNX2研究进展[J].医学分子生物学杂志,2006,3(1):52-54.
    [12]Unterbrink A, O'Sullivan M, Chen S, et al. TGF beta-1 downregulates DMP-1 and DSPP in odontoblasts. Connect Tissue Res,2002,43 (2-3):354-8.
    [13]Bilousova G, Jun du H, King KB, et al. Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells,2011,29 (2):206-16.
    [14]Dissanayaka WL, Zhan X, Zhang C, et al. Coculture of dental pulp stem cells with endothelial cells enhances osteo-/odontogenic and angiogenic potential in vitro. J Endod,2012,38 (4):454-63.
    [1]Chen BY, Wang X, Chen LW, et al. Molecular targeting regulation of proliferation and differentiation of the bone marrow-derived mesenchymal stem cells or mesenchymal stromal cells. Curr Drug Targets, 2012,13 (4):561-71.
    [2]Sarraf CE, Otto WR, Eastwood M. In vitro mesenchymal stem cell differentiation after mechanical stimulation. Cell Prolif,2011,44 (1):99-108.
    [3]林楚伟,周胜华,杜优优.全骨髓贴壁并差速传代分离纯化大鼠骨髓间充质干细胞:与密度梯度离心法的比较[J].中国组织工程研究与临床康复,2010,14(14):2508-2512.
    [4]Moscoso I, Rodriguez-Barbosa JI, Barallobre-Barreiro J, et al. Immortalization of bone marrow-derived porcine mesenchymal stem cells and their differentiation into cells expressing cardiac phenotypic markers. J Tissue Eng Regen Med,2011,9.
    [5]Gronthos S, Zannettino AC. A method to isolate and purify human bone marrow stromal stem cells. Methods Mol Biol,2008,449:45-57.
    [6]Modder Ul, Roforth MM, Nicks KM, et al. Characterization of mesenchymal progenitor cells isolated from human bone marrow by negative selection. Bone,2012,50 (3):804-10.
    [1]Yang C, Meng L, Huang T, et al. The study of osteoblast adhesion on pure titanium implant surface modified by microarc oxidation:An in vitro Study. China J Oral Maxil Surg,2006,4 (5):376-380.
    [2]Jung BA., Yildizhan F, Wehrbein H. Bone-to-implant contact of orthodontic implants in humans-a histomorphometric investigation. Eur J Orthod,2008,30 (6):552-557.
    [3]Yang C, Meng L, Tian Y, et al. Cytotoxicity study of a novel implant material modified by microarc oxidation. J Huazhong Univ Sci Technolog Med Sci,2006,26 (6):720-2.
    [4]Han CM, Kim HE, Kim YS, et al. Enhanced biocompatibility of Co-Cr implant material by Ti coating and micro-arc oxidation. J Biomed Mater Res B Appl Biomater,2009,90 (1):165-170.
    [5]Arcelli D, Palmieri A, Pezzetti F, et al. Genetic effects of a titanium surface on osteoblasts:a meta-analysis. J Oral Sci,2007,49 (4):299-309.
    [6]Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005,26 (27):5474-91.
    [7]Amor N, Geris L, Vander Sloten J, et al. Modelling the early phases of bone regeneration around an endosseous oral implant. Comput Methods Biomech Biomed Engin,2009,12 (4):459-468.
    [8]Zhao L, Wei Y, Li J, et al. Initial osteoblast functions on Ti-5Zr-3Sn-5Mo-15Nb titanium alloy surfaces modified by microarc oxidation. J Biomed Mater Res A,2010,92 (2):432-440.
    [9]Davies JE. Understanding peri-implant endosseous healing. J Dent Educ,2003,67 (8):932-49.
    [10]Banfi G, Lombardi G, Colombini A, et al. Bone metabolism markers in sports medicine. Sports Med, 2010,40 (8):697-714.
    [11]Dore RK. The RANKL pathway and denosumab. Rheum Dis Clin North Am,2011,37 (3):433-52.
    [12]Towler DA, Shao JS, Cheng SL, et al. Osteogenic regulation of vascular calcification. Ann N Y Acad Sci,2006,1068:327-33.
    [13]Zhang P, Wu Y, Jiang Z, et al. Osteogenic response of mesenchymal stem cells to continuous mechanical strain is dependent on ERK1/2-Runx2 signaling. Int J Mol Med,2012,8.
    [14]Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem,2006, 99(5):1233-9.
    [15]徐鹏程,王宝利,邱明才.成骨细胞特异性转录因子Osterix的研究进展.中国骨质疏松杂志,2008,14(4):294-297.
    [16]Long F. Building strong bones:molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol,2011,13(1):27-38.
    [1]Navarro M, Michiardi A, Castano O, et al. Biomaterials in orthopaedics. J R Soc Interface,2008,5 (27):1137-58.
    [2]Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Injury,2007,38:S33-7.
    [3]Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials,2010,31(7):1465-85.
    [4]AlGhamdi AS, Shibly O, Ciancio SG. Osseous grafting part I:autografts and allografts for periodontal regeneration--a literature review. J Int Acad Periodontol,2010,12 (2):34-8.
    [5]Choi SM, Yang WK, Yoo YW, et al. Effect of surface modification on the in vitro calcium phosphate growth on the surface of poly(methyl methacrylate) and bioactivity. Colloids Surf B Biointerfaces,2010, 76(1):326-33.
    [6]Kim S, Jung UW, Lee YK, et al. The effect of calcium phosphate bone substitute on defect resolution around a rough-surfaced dental implants in dogs. J Biomed Mater Res B Appl Biomater,2011,99 (1): 21-6.
    [7]Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling:the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol,2011,209 (2):139-51.
    [8]Zou W, Teitelbaum SL. Integrins, growth factors, and the osteoclast cytoskeleton. Ann N Y Acad Sci, 2010,1192:27-31.
    [9]Hidalgo-Bastida LA, Cartmell SH. Mesenchymal stem cells, osteoblasts and extracellular matrix proteins:enhancing cell adhesion and differentiation for bone tissue engineering. Tissue Eng Part B Rev, 2010,16 (4):405-12.
    [10]Bragdon B, Moseychuk O, Saldanha S, et al. Bone morphogenetic proteins:a critical review. Cell Signal,2011,23 (4):609-20.
    [11]McKee MD, Pedraza CE, Kaartinen MT. Osteopontin and wound healing in bone. Cells Tissues Organs,2011,194 (2-4):313-9
    [12]Bonjour JP. Calcium and phosphate:a duet of ions playing for bone health. J Am Coll Nutr,2011, 30 (5):438S-48S.
    [13]Palmer LC, Newcomb CJ, Kaltz SR, et al. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chem Rev,2008,108 (11):4754-83.
    [14]Margolis HC, Beniash E, Fowler CE. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res,2006,85 (9):775-93.
    [15]Zhu L, Tanimoto K, Le T, DenBesten PK, et al. Functional roles of prolines at amelogenin C terminal during tooth enamel formation. Cells Tissues Organs,2009,189 (1-4):203-6.
    [16]Elliott JC. Structure, crystal chemistry and density of enamel apatites. Ciba Found Symp,1997,205: 54-67.
    [17]Aoba T. The effect of fluoride on apatite structure and growth. Crit Rev Oral Biol Med,1997,8 (2): 136-53.
    [18]Urist MR. Bone:formation by autoinduction. Science,1965,150 (3698):893-9.
    [19]Urist MR, Lietze A, Dawson E. Beta-tricalcium phosphate delivery system for bone morphogenetic protein. Clin Orthop Relat Res,1984, (187):277-80.
    [20]Urist MR, Strates BS. The classic:Bone morphogenetic protein. Clin Orthop Relat Re,2009,467 (12):3051-62.
    [21]Urist MR. The classic:a morphogenetic matrix for differentiation of bone tissue. Clin Orthop Relat Res,2009,467 (12):3068-70.
    [22]Meijer GJ, de Bruijn JD, Koole R, et al. Cell based bone tissue engineering in jaw defects. Biomaterials,2008,29 (21):3053-61.
    [23]Zhang SM, Tian F, Jiang XQ, et al. Evidence for calcifying nanoparticles in gingival crevicular fluid and dental calculus in periodontitis. J Periodontol,2009,80 (9):1462-70.
    [24]Cozzolino M, Mazzaferro S, Pugliese F, et al. Vascular calcification and uremia:what do we know? Am J Nephrol,2008,28 (2):339-46.
    [25]Sage AP, Tintut Y, Demer LL. Regulatory mechanisms in vascular calcification. Nat Rev Cardiol, 2010,7 (9):528-36.
    [26]LeGeros RZ. Calcium phosphate materials in restorative dentistry:a review. Adv Dent Res,1988,2 (1):164-80.
    [27]Wagoner Johnson AJ, Herschler BA. A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater,2011,7 (1):16-30.
    [28]Ito T, Saito M, Uchino T, et al. Preparation of injectable auto-forming alginate gel containing simvastatin with amorphous calcium phosphate as a controlled release medium and their therapeutic effect in osteoporosis model rat. J Mater Sci Mater Med,2012.
    [29]Gupta R, Prakash V. CPP-ACP complex as a new adjunctive agent for remineralisation:a review. Oral Health Prev Dent,2011,9 (2):151-65.
    [30]Chai YC, Kerckhofs G, Roberts SJ, et al. Ectopic bone formation by 3D porous calcium phosphate-Ti6A14V hybrids produced by perfusion electrodeposition. Biomaterials,2012,33 (16): 4044-58.
    [31]LeGeros RZ, Lin S, Rohanizadeh R, et al. Biphasic calcium phosphate bioceramics:preparation, properties and applications. J Mater Sci Mater Med,2003,14 (3):201-9.
    [32]Citeau A, Guicheux J, Vinatier C, et al. In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials,2005,26 (2):157-65.
    [33]LeGeros RZ. Calcium phosphates in oral biology and medicine. Monogr Oral Sci,1991,15:1-201.
    [34]Otsuka M, Oshinbe A, Legeros RZ, et al. Efficacy of the injectable calcium phosphate ceramics suspensions containing magnesium, zinc and fluoride on the bone mineral deficiency in ovariectomized rats. J Pharm Sci,2008,97 (1):421-32.
    [35]Li X, Ito A, Sogo Y, et al. Solubility of Mg-containing beta-tricalcium phosphate at 25 degrees C. Acta Biomater,2009,5 (1):508-17.
    [36]Hannink G, Arts JJ. Bioresorbability, porosity and mechanical strength of bone substitutes:what is optimal for bone regeneration? Injury,2011,42 (2):S22-5.
    [37]Roy M, Bandyopadhyay A, Bose S. Induction Plasma Sprayed Nano Hydroxyapatite Coatings on Titanium for Orthopaedic and Dental Implants. Surf Coat Technol,2011,205 (8-9):2785-2792.
    [38]Nakada H, Sakae T, LeGeros RZ, et al. Early tissue response to modified implant surfaces using back scattered imaging. Implant Dent,2007,16 (3):281-9.
    [39]Harris CT, Cooper LF. Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis. J Biomed Mater Res A,2004,68 (4):747-55.
    [40]Damien E, Revell PA. Coralline hydroxyapatite bone graft substitute:A review of experimental studies and biomedical applications. J Appl Biomater Biomech,2004,2 (2):65-73.
    [41]Kim HM, Miyaji F, Kokubo T, et al. Preparation of bioactive Ti and its alloys via simple chemical surface treatment. J Biomed Mater Res,1996,32 (3):409-17.
    [42]Gu YW, Khor KA, Cheang P. In vitro studies of plasma-sprayed hydroxyapatite/Ti-6A1-4V composite coatings in simulated body fluid (SBF). Biomaterials,2003,24 (9):1603-11.
    [43]Leeuwenburgh SC, Wolke JG, Siebers MC, et al. In vitro and in vivo reactivity of porous, electrosprayed calcium phosphate coatings. Biomaterials,2006,27 (18):3368-78.
    [44]Julien M, Khairoun I, LeGeros RZ, et al. Physico-chemical-mechanical and in vitro biological properties of calcium phosphate cements with doped amorphous calcium phosphates. Biomaterials,2007, 28 (6):956-65.
    [45]Yamada Y, Ito A, Kojima H, et al. Inhibitory effect of Zn2+ in zinc-containing beta-tricalcium phosphate on resorbing activity of mature osteoclasts. J Biomed Mater Res A,2008,84 (2):344-52.
    [46]Otsuka M, Oshinbe A, Legeros RZ, et al. Efficacy of the injectable calcium phosphate ceramics suspensions containing magnesium, zinc and fluoride on the bone mineral deficiency in ovariectomized rats. J Pharm Sci,2008,97 (1):421-32.
    [47]Habibovic P, de Groot K. Osteoinductive biomaterials--properties and relevance in bone repair. J Tissue Eng Regen Med,2007,1 (1):25-32.
    [48]Franz S, Rammelt S, Scharnweber D, et al. Immune responses to implants - a review of the implications for the design of immunomodulatory biomaterials. Biomaterials,2011,32 (28):6692-709.
    [49]Zhu X, Chen J, Scheideler L, et al. Effects of topography and composition of titanium surface oxides on osteoblast responses. Biomaterials,2004,25 (18):4087-103.
    [50]Vestermark MT. Strontium in the bone-implant interface. Dan Med Bull,2011,58 (5):B4286.
    [51]Cho JH, Garino JP, Choo SK, et al. Seven-year results of a tapered, titanium, hydroxyapatite-coated cementless femoral stem in primary total hip arthroplasty. Clin Orthop Surg,2010,2 (4):214-20.
    [52]Fini M, Giavaresi G, Giardino R, et al. Histomorphometric and mechanical analysis of the hydroxyapatite-bone interface after electromagnetic stimulation:an experimental study in rabbits. J Bone Joint Surg Br,2006,88 (1):123-8.
    [53]Seo S, Na K. Mesenchymal stem cell-based tissue engineering for chondrogenesis. J Biomed Biotechnol,2011,2011:806891.
    [54]Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury,2011,42 (2):S77-81.
    [55]Enkel B, Dupas C, Armengol V, et al. Bioactive materials in endodontics. Expert Rev Med Devices, 2008,5 (4):475-94.
    [56]Crisan M, Yap S, Casteilla L, et al. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell,2008,3 (3):301-13.
    [57]Barradas AM, Yuan H, van Blitterswijk CA, et al. Osteoinductive biomaterials:current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater,2011,21:407-29
    [58]Kan L, Liu Y, McGuire TL, et al. Dysregulation of local stem/progenitor cells as a common cellular mechanism for heterotopic ossification. Stem Cells,2009,27 (1):150-6.
    [59]Yuan H, Van Den Doel M, Li S, et al. A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats. J Mater Sci Mater Med,2002,13 (12):1271-5.
    [60]Yuan H, van Blitterswijk CA, de Groot K, et al. Cross-species comparison of ectopic bone formation in biphasic calcium phosphate (BCP) and hydroxyapatite (HA) scaffolds. Tissue Eng,2006, 12(6):1607-15.
    [61]Reddi AH. Bone and cartilage differentiation. Curr Opin Genet Dev,1994,4 (5):737-44.
    [62]Ripamonti U, Klar RM, Renton LF, et al. Synergistic induction of bone formation by hOP-1, hTGF-beta3 and inhibition by zoledronate in macroporous coral-derived hydroxyapatites. Biomaterials, 2010,31 (25):6400-10.
    [63]Kato M, Namikawa T, Terai H, et al. Ectopic bone formation in mice associated with a lactic acid/dioxanone/ethylene glycol copolymer-tricalcium phosphate composite with added recombinant human bone morphogenetic protein-2. Biomaterials,2006,27 (21):3927-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700