用户名: 密码: 验证码:
非对称等离激元纳米结构共振模型及传感特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非对称等离激元纳米结构具有显著的局域电磁场增强特性、等离激元Fano共振效应及光学各向异性等独特的光学性能,不仅可用于开发具有单分子探测能力的超高灵敏度等离激元光学传感器件,还可用于开发新型的纳米光子器件。因此,本文针对非对称等离激元纳米结构,根据数值仿真结果研究对称性破缺效应,建立等离激元杂交模型,研究Fano共振效应以及光学各向异性,制造金半壳阵列传感基片并确定LSPR峰值传感特性。
     首先,建立半壳结构的等离激元共振模型,应用等离激元杂交理论解释半壳结构等离激元共振的激发、移动以及分裂。研究发现环状尖端的尖锐特征是引起半壳结构局域电磁场增强的主要因素,而结构内部等离激元耦合进一步增强了局域电磁场。由于等离激元共振模式的可调节性和局域电磁场的增强,半壳结构可在LSPR峰值传感和表面增强光谱中开发为一种高效的传感基底。
     其次,基于等离激元杂交理论研究核-半壳结构Fano共振效应的激发机理。数值计算结果表明“暗”模式的激发及与“明”模式的交互是激发等离激元Fano共振的原因。研究结果表明等离激元纳米结构对称性破缺显著影响Fano共振,通过改变金半壳对称性破缺程度和金核偏移量,可以实现Fano共振的高度可调节性。金半壳与金核之间的等离激元交互作用导致局域电磁场的极大增强,使其在生物传感中具有潜在的应用价值。
     然后,研究金叠壳结构的二维光学各向异性,基于“球状空腔-椭球体”等离激元杂交模型合理地解释叠壳结构的二维光学各向异性。相对于半壳结构,叠壳结构进一步破坏了金属壳的旋转对称性,因此激发横向、轴向和纵向三种不同的等离激元共振模式。可调节的LSPR共振模式,局域电磁场增强和各向异性的光学特性显示叠壳结构在表面增强光谱和显示设备的“智能”涂层材料中存在着潜在应用。
     最后,通过浸涂和离子溅射的方法,制造开口朝下的金半壳阵列传感基片。使用不同折射率的试剂测量不同金壳厚度的传感基片的折射率灵敏度,基于层层沉积方法研究不同厚度金壳的传感基片的探测距离。
The asymmetric plasmonic nanostructures can support a series of unique opticalphenomena, such as significant local electromagnetic field enhancement, plasmonicFano resonances and anisotropic optical response. These optical characteristics notonly are used to develop ultra-sensitive single molecule sensing substrates, but alsoapplied in various novel nanophotonic devices. This paper focused on the asymmetriccore-shell plasmonic nanostructures to study the plasmn hybridization effect and thesymmetry breaking by using numerial methods. Moreover, the plasmonic Fanoresonances and anisotropic optical responses are investigated. The Au semishellssensors have been fabricated to measuring the LSPR sensing characteristics.
     Firstly, the plasmon resonances model was built for semishells. The plasmonhybridization theory is applied to interpret the excitation, shift and slitting of theplasmon resonances of semishells. The calculation results show that the sharp featuresat the ring-tip is the main reason for local field enhancement in semishells. Theintra-particle coupling further enhances the local field. For the tunable plasmon modesand local field enhancement, the semishells can be developed as powerful sensingsubstrates in application of LSPR wavelength-shift sensing and surface-enhancedspectroscopy.
     Secondly, we used the plasmon hybridization theory to investigate the origin ofthe Fano resonance in core-semishells. The calculation results show that theinteraction between “bright” and “dark” plasmon modes is responsible for theexcitation of Fano resonances. The symmetry breaking of plasmonic nanostructuressignificantly influences the Fano resonance. The tenability of Fano resonances can beaccieved by changing the degree of symmetry breaking in semishell and displacementof the core with respect to the semishell. The local field enhancement induced byplasmon hybridization between the Au core and semishell provides the potentialapplications in biological sensing.
     Then, we studied the two-dimensional anisotropic optical response of overlappednaoshells. The cavity-ellipsoid model properly explains the unique optical propertiesof the overlapped nanoshells. For the breaking of rotational symmetry, the overlappednanoshells can excite transverse, axial, and longitudinal plasmon resonance modes. The tunable plasmon resonances, the enhanced local fields and the anisotropic opticalproperties suggest that the overlapped nanoshells have potential applications insurface-enhanced spectroscopy and “smart” coating in windows or display devices.
     Finally, The Au semishell sensing substrates were fabricated by dip coating andion sputtering. The refractive index sensitivity of semishells with different Au shellthicknesses is measured by using solution of different refractive index. The detectionlimit of the sensing substrates is investigated by the layer-by-layer depositon.
引文
[1] J. Zhao,X. Zhang,C.R. Yonzon,et al. Localized surface plasmon resonancebiosensors [J]. Nanomedicine,2006,1(2):219-228.
    [2] K. A. Willets,R. P. Van Duyne. Localized surface plasmon resonancespectroscopy and sensing [J]. Annual Review of Physical Chemistry,2007,58:267-297.
    [3] J. N. Anker,W. P. Hall,O. Lyandres,et al. Biosensing with plasmonicnanosensors [J]. Nature materials,2008,7(6):442-453.
    [4] H. Liao,C. L. Nehl,J. H. Hafner. Biomedical applications of plasmonresonant metal nanoparticles [J]. Nanomedicine,2006,1(2):201-208.
    [5] E. Prodan,A. Lee,P. Nordlander. The effect of a dielectric core andembedding medium on the polarizability of metallic nanoshells [J]. Chemical PhysicsLetters,2002,360(3-4):325-332.
    [6] E. Prodan,P. Nordlander. Electronic structure and polarizability of metallicnanoshells [J]. Chemical Physics Letters,2002,352(3):140-146.
    [7]王振林.表面等离激元研究新进展[J].物理学进展,2009,29(3):287-324.
    [8] M. E. Stewart,C. R. Anderton,L. B. Thompson,et al. Nanostructuredplasmonic sensors [J]. Chemical reviews,2008,108(2):494-521.
    [9] K. M. Mayer,J. H. Hafner. Localized surface plasmon resonance sensors [J].Chemical Reviews,2011,111(6):3828-3857.
    [10]I. Choi,Y. Choi. Plasmonic Nanosensors: Review and Prospect [J]. SelectedTopics in Quantum Electronics, IEEE Journal of,2012,18(3):1110-1121.
    [11]S. Hayashi,T. Okamoto. Plasmonics: visit the past to know the future [J].Journal of Physics D: Applied Physics,2012,45(43):433001.
    [12]S. Kawata. Plasmonics: Future Outlook [J]. Japanese Journal of AppliedPhysics,2013,52(1):010001.
    [13]G Mie. Articles on the optical characteristics of turbid tubes, especiallycolloidal metal solutions [J]. Annals of Physics,1908,25(3):377-445.
    [14]Gustav Mie. Contributions to the optics of turbid media, particularly ofcolloidal metal solutions [J]. Contributions to the optics of turbid media, particularlyof colloidal metal solutions Transl. into ENGLISH from Annals of Physics.(Leipzig),1908,25(3):377-445.
    [15]C. F. Bohren,D. R. Huffman. Absorption and scattering of light by smallparticles [M].John Wiley&Sons, Inc.,1983.
    [16]Gans, R.über die Form ultramikroskopischer Goldteilchen [J]. Annals ofPhysics,1912,37,881-900.
    [17]S. Eustis,M. A. El-Sayed. Why gold nanoparticles are more precious thanpretty gold: noble metal surface plasmon resonance and its enhancement of theradiative and nonradiative properties of nanocrystals of different shapes [J]. ChemicalSociety Reviews,2006,35(3):209-217.
    [18]M. Hu,J. Chen,Z.Y. Li,et al. Gold nanostructures: engineering theirplasmonic properties for biomedical applications [J]. Chemical Society Reviews,2006,35(11):1084-1094.
    [19]D. M. Sullivan. Electromagnetic simulation using the FDTD method
    [M].IEEE press New York,2000.
    [20]B.T. Draine,P.J. Flatau. Discrete-dipole approximation for scatteringcalculations [J]. JOSA A,1994,11(4):1491-1499.
    [21]J. Zhao,A. O. Pinchuk,J. M. McMahon,et al. Methods for describing theelectromagnetic properties of silver and gold nanoparticles [J]. Accounts of ChemicalResearch,2008,41(12):1710-1720.
    [22]E. Prodan,C. Radloff,N. J. Halas,et al. A hybridization model for theplasmon response of complex nanostructures [J]. Science,2003,302(5644):419-422.
    [23]W. Rechberger,A. Hohenau,A. Leitner,et al. Optical properties of twointeracting gold nanoparticles [J]. Optics Communications,2003,220(1-3):137-141.
    [24]P. Nordlander,C. Oubre,E. Prodan,et al. Plasmon hybridization innanoparticle dimmers [J]. Nano letters,2004,4(5):899-903.
    [25]E. Prodan,P. Nordlander. Plasmon hybridization in spherical nanoparticles[J]. The Journal of chemical physics,2004,120(11):5444-5454.
    [26]N. A. Mirin,K. Bao,P. Nordlander. Fano resonances in plasmonicnanoparticle aggregates [J]. The Journal of Physical Chemistry A,2009,113(16):4028-4034.
    [27]P. Nordlander,E. Prodan. Plasmon hybridization in nanoparticles nearmetallic surfaces [J]. Nano letters,2004,4(11):2209-2213.
    [28]S. Lal,S. Link,N. J. Halas. Nano-optics from sensing to waveguiding [J].Nature photonics,2007,1(11):641-648.
    [29]P. K. Jain,X. Huang,I. H. El-Sayed,et al. Noble metals on the nanoscale:optical and photothermal properties and some applications in imaging, sensing,biology, and medicine [J]. Accounts of chemical research,2008,41(12):1578-1586.
    [30]K. L. Kelly,E. Coronado,L. L. Zhao,et al. The optical properties of metalnanoparticles: the influence of size, shape, and dielectric environment [J]. The Journalof Physical Chemistry B,2003,107(3):668-677.
    [31]X. Xia,Y. Liu,V. Backman,et al. Engineering sub-100nm multi-layernanoshells [J]. Nanotechnology,2006,17(21):5435-5440.
    [32]T. Huang,W. Cao,H. E. Elsayed-Ali,et al. High-throughput ultrasensitivecharacterization of chemical, structural and plasmonic properties of EBL-fabricatedsingle silver nanoparticles [J]. Nanoscale,2012,4(2):380-385.
    [33]C. Vieu,F. Carcenac,A. Pepin,et al. Electron beam lithography: resolutionlimits and applications [J]. Applied Surface Science,2000,164(1):111-117.
    [34]S. H. Lee,H. W. Kang,D. W. Cho,et al. Study on the method for thereliability test of focused ion beam [J]. Microsystem technologies,2007,13(5-6):569-577.
    [35]L. H. D. Skjolding,G. T. Teixidor,J. Emnéus,et al. Negative UV-NIL(NUV-NIL)-A mix-and-match NIL and UV strategy for realisation of nano-andmicrometre structures [J]. Microelectronic Engineering,2009,86(4):654-656.
    [36]D. K. Aswal,S. Lenfant,D. Guerin,et al. Self-assembled monolayers onsilicon for molecular electronics [J]. Analytica chimica acta,2006,568(1):84-108.
    [37]A. J. Haes,S. Zou,G. C. Schatz,et al. Nanoscale optical biosensor: shortrange distance dependence of the localized surface plasmon resonance of noble metalnanoparticles [J]. The Journal of Physical Chemistry B,2004,108(22):6961-6968.
    [38]A. J. Haes,S. Zou,G. C. Schatz,et al. A nanoscale optical biosensor: thelong range distance dependence of the localized surface plasmon resonance of noblemetal nanoparticles [J]. The Journal of Physical Chemistry B,2004,108(1):109-116.
    [39]J. B. Lassiter,M. W. Knight,N. A. Mirin,et al. Reshaping the plasmonicproperties of an individual nanoparticle [J]. Nano letters,2009,9(12):4326-4332.
    [40]王振林,陈卓,唐超军.表面等离激元与磁表面等离激元[J].物理,2012,41(10):648-654.
    [41]M. A. Noginov,G. Zhu,A. M. Belgrave,et al. Demonstration of aspaser-based nanolaser [J]. Nature,2009,460(7259):1110-1112.
    [42]X. Meng,U. Guler,A. V. Kildishev,et al. Unidirectional Spaser inSymmetry-Broken Plasmonic Core-Shell Nanocavity [J]. Scientific reports,2013,3:1241.
    [43]雷建国,刘天航,林景全,等.表面等离子体激元的若干新应用[J].Chinese Journal of Optics and Applied Optics,2010,3(5):432-439.
    [44]茅敬雨,林健,马妍.基于局域表面等离子体共振效应生物传感器的制备方法及应用[J].材料导报,2010,24(21):30-33.
    [45]G. Doria,J. Conde,B. Veigas,et al. Noble metal nanoparticles forbiosensing applications [J]. Sensors,2012,12(2):1657-1687.
    [46]童廉明,徐红星.表面等离激元——机理,应用与展望[J].物理,2012,41(9):582-588.
    [47]P. L. Stiles,J. A. Dieringer,N. C. Shah,et al. Surface-enhanced Ramanspectroscopy [J]. Annual Review of Analytical Chemistry,2008,1:601-626.
    [48] N. Seddon,T. Bearpark. Observation of the inverse Doppler effect [J].Science,2003,302(5650):1537-1540.
    [49]黄彩进,陈成,王顺文.纳米光学天线性能研究进展[J].激光与光电子学进展,2012,49(6):40-47.
    [50]A. V. Whitney,J. W. Elam,S. Zou,et al. Localized surface plasmonresonance nanosensor: A high-resolution distance-dependence study using atomiclayer deposition [J]. The Journal of Physical Chemistry B,2005,109(43):20522-20528.
    [51]O. Kedem,A. B. Tesler,A. Vaskevich,et al. Sensitivity and optimization oflocalized surface plasmon resonance transducers [J]. ACS nano,2011,5(2):748-760.
    [52]A. J. Haes,R. P Van Duyne. A nanoscale optical biosensor: sensitivity andselectivity of an approach based on the localized surface plasmon resonancespectroscopy of triangular silver nanoparticles [J]. Journal of the American ChemicalSociety,2002,124(35):10596-10604.
    [53]J. C. Riboh,A. J. Haes,A. D. McFarland,et al. A nanoscale opticalbiosensor: real-time immunoassay in physiological buffer enabled by improvednanoparticle adhesion [J]. The Journal of Physical Chemistry B,2003,107(8):1772-1780.
    [54]Y. Gong,L. Chang,K. L. Viola,et al. Alzheimer's disease-affected brain:presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversiblememory loss [J]. Proceedings of the National Academy of Sciences,2003,100(18):10417-10422.
    [55]M. P. Lambert,K. L. Viola,B. A. Chromy,et al. Vaccination with solubleAβ oligomers generates toxicity-neutralizing antibodies [J]. Journal of neurochemistry,2001,79(3):595-605.
    [56]A. J. Haes,J. Zhao,S. Zou,et al. Solution-phase, triangular Ag nanotrianglesfabricated by nanosphere lithography [J]. The Journal of Physical Chemistry B,2005,109(22):11158-11162.
    [57]Y. B. Shin,J. M. Lee,M. R. Park,et al. Analysis of recombinant proteinexpression using localized surface plasmon resonance (LSPR)[J]. Biosensors andBioelectronics,2007,22(9):2301-2307.
    [58]J. Zhao,L. J. Sherry,G. C. Schatz,et al. Molecular Plasmonics:Chromophore–Plasmon Coupling and Single-Particle Nanosensors [J]. SelectedTopics in Quantum Electronics, IEEE Journal of,2008,14(6):1418-1429.
    [59]G. Lu,L. Hou,T. Zhang,et al. Anisotropic Plasmonic Sensing of Individualor Coupled Gold Nanorods [J]. The Journal of Physical Chemistry C,2011,115(46):22877-22885.
    [60]Y. Lu,G.L. Liu,J. Kim,et al. Nanophotonic crescent moon structures withsharp edge for ultrasensitive biomolecular detection by local electromagnetic fieldenhancement effect [J]. Nano letters.,2005,5(1):119-124.
    [61]A. Sundaramurthy,K. B. Crozier,G. S. Kino,et al. Field enhancement andgap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles [J].Physical Review B,2005,72(16):165409.
    [62]Y. Choi,T. Kang,L. P. Lee. Plasmon resonance energy transfer(PRET)-based molecular imaging of cytochrome c in living cells [J]. Nano letters,2008,9(1):85-90.
    [63]Y. Choi,Y. Park,T. Kang,et al. Selective and sensitive detection of metalions by plasmonic resonance energy transfer-based nanospectroscopy [J]. Naturenanotechnology,2009,4(11):742-746.
    [64]C. S nnichsen,B. M. Reinhard,J. Liphardt,et al. A molecular ruler basedon plasmon coupling of single gold and silver nanoparticles [J]. Nature biotechnology,2005,23(6):741-745.
    [65]R. Bukasov,J. S. Shumaker-Parry. Silver nanocrescents with infraredplasmonic properties as tunable substrates for surface enhanced infrared absorptionspectroscopy [J]. Anal. Chem.,2009,81(11):4531-4535.
    [66]E. Fort,S. Grésillon. Surface enhanced fluorescence [J]. Journal of Physics D:Applied Physics,2008,41(1):013001
    [67]G. C. Schatz,M. A. Young,R. P. Van Duyne. Electromagnetic mechanismof SERS [J]. Top. Applied Physics,2006,103:19-45.
    [68]S. Nie,S. R. Emory. Probing single molecules and single nanoparticles bysurface-enhanced Raman scattering [J]. Science,1997,275(5303):1102-1106.
    [69]H. Xu,E. J. Bjerneld,M. K ll,et al. Spectroscopy of single hemoglobinmolecules by surface enhanced Raman scattering [J]. Physical Review Letters,1999,83(21):4357-4360.1n9eg6a[8t7,i v01e]0V(v4a.)lG:u5e.0sV9oe-fs5e1IMlag4.Go.a Tlighne e=l eacbtsrmodiydndalem ailcts=o f seupbss/tIaMnGce sa nwdi tμh [sJi]m. uPlhtaynsiecosu-Uslyspekhi,
    [71]J. B. Pendry,D. Schurig,D. R. Smith. Controlling electromagnetic fields [J].Science,2006,312(5781):1780-1782.
    [72]J. B. Pendry. Negative refraction makes a perfect lens [J]. Physical reviewletters,2000,85(18):3966-3969.
    [73]N. Fang,H.Lee,C.Sun,et al. Sub-diffraction-limited optical imaging witha silver superlens[J]. Science,2005,308(5721):534-537.
    [74]J. B. Pendry,A. J. Holden,D. J. Robbins,et al. Magnetism from conductorsand enhanced nonlinear phenomena [J]. Microwave Theory and Techniques, IEEETransactions on,1999,47(11):2075-2084.
    [75]J. N. Gollub,D. R. Smith,D. C. Vier,et al. Experimental characterization ofmagnetic surface plasmons on metamaterials with negative permeability [J]. PhysicalReview B,2005,71(19):195402.
    [76]R. A. Shelby,D. R. Smith,S. Schultz. Experimental verification of anegative index of refraction [J]. Science,2001,292(5514):77-79.
    [77]C. G. Parazzoli,R. B. Greegor,K. Li,et al. Experimental verification andsimulation of negative index of refraction using Snell’s law [J]. Physical reviewletters,2003,90(10):107401.
    [78]M. Bayindir,K. Aydin,E. Ozbay,et al. Transmission properties ofcomposite metamaterials in free space [J]. Applied Physics Letters,2002,81(1):120-122.
    [79]R. B. Greegor,C. G. Parazzoli,K. Li,et al. Origin of dissipative losses innegative index of refraction materials [J]. Applied Physics Letters,2003,82(14):2356-2358.
    [80]D. J. Bergman,M. I. Stockman. Surface plasmon amplification by stimulatedemission of radiation: quantum generation of coherent surface plasmons innanosystems [J]. Physical review letters,2003,90(2):027402.
    [81]M. I. Stockman. Spasers explained [J]. Nature photonics,2008,2(6):327-329.
    [82]R. F. Oulton,V. J. Sorger,T. Zentgraf,et al. Plasmon lasers at deepsubwavelength scale [J]. Nature,2009,461(7264):629-632.
    [83]J. Wessel. Surface-enhanced optical microscopy [J]. JOSA B,1985,2(9):1538-1541.
    [84]C. L. Du,Y. M. You,X. J. Zhang,et al. Polarization-dependent confocalimaging of individual Ag nanorods and nanoparticles [J]. Plasmonics,2009,4(3):217-222.
    [85]F. J ckel,A. A. Kinkhabwala,W. E. Moerner. Gold bowtie nanoantennas forsurface-enhanced Raman scattering under controlled electrochemical potential [J].Chemical Physics Letters,2007,446(4):339-343.
    [86]N. Félidj,J. Aubard,G. Lévi,et al. Controlling the optical response ofregular arrays of gold particles for surface-enhanced Raman scattering [J]. PhysicalReview B,2002,65(7):075419.
    [87]N. A. Mirin,N. J. Halas. Light-bending nanoparticles [J]. Nano letters,2009,9(3):1255-1259.
    [88]C. Huang,A. Bouhelier,G. C. des Francs,et al. Gain, detuning, and radiationpatterns of nanoparticle optical antennas [J]. Physical Review B,2008,78(15):155407.
    [89]A. G. Curto,G. Volpe,T. H. Taminiau,et al. Unidirectional emission of aquantum dot coupled to a nanoantenna [J]. Science,2010,329(5994):930-933.
    [90] I. I. Smolyaninov,Y. J. Hung,C. C. Davis. Magnifying superlens in thevisible frequency range [J]. Science,2007,315(5819):1699-1701.
    [91] R. Zia,J. A. Schuller,A. Chandran,et al. Plasmonics: the next chip-scaletechnology [J]. Materials today,2006,9(7):20-27.
    [92]E. X. Jin,X. Xu. Obtaining super resolution light spot using surface plasmonassisted sharp ridge nanoaperture [J]. Applied Physics Letters,2005,86(11):111106.
    [93]J. L. Wu,F. C. Chen,Y. S. Hsiao,et al. Surface plasmonic effects of metallicnanoparticles on the performance of polymer bulk heterojunction solar cells [J]. ACSnano,2011,5(2):959-967.
    [94]G. L. Liu,Y. Lu,J. Kim,et al. Magnetic Nanocrescents as ControllableSurface‐Enhanced Raman Scattering Nanoprobes for Biomolecular Imaging [J].Advanced Materials,2005,17(22):2683-2688.
    [95]X. Liu,N. C. Linn,C. H. Sun,et al. Templated fabrication of metalhalf-shells for surface-enhanced Raman scattering [J]. Physical Chemistry ChemicalPhysics,2010,12(6):1379-1387.
    [96]T. G. Habteyes,S. Dhuey,S. Cabrini,et al. Theta-shaped plasmonicnanostructures: Bringing “dark” multipole plasmon resonances into action viaconductive coupling [J]. Nano letters,2011,11(4):1819-1825.
    [97]Y. Sonnefraud,N. Verellen,H. Sobhani,et al. Experimental realization ofsubradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities [J].ACS nano,2010,4(3):1664-1670.
    [98] F. Hao,P. Nordlander,Y. Sonnefraud,et al. Tunability of subradiantdipolar and fano-type plasmon resonances in metallic ring/disk cavities: implicationsfor nanoscale optical sensing [J]. ACS nano,2009,3(3):643-652.
    [99] N. Verellen,Y. Sonnefraud,H. Sobhani,et al. Fano resonances inindividual coherent plasmonic nanocavities [J]. Nano letters,2009,9(4):1663-1667.
    [100] J. B. Lassiter,H. Sobhani,J. A. Fan,et al. Fano resonances in plasmonicnanoclusters: geometrical and chemical tenability [J]. Nano letters,2010,10(8):3184-3189.
    [101] R. Bardhan,S. Mukherjee,N. A. Mirin,et al. Nanosphere-in-a-Nanoshell:A Simple Nanomatryushka [J]. The Journal of Physical Chemistry C,2010,114(16):7378-7383.
    [102] N. S. King,Y. Li,C. Ayala-Orozco,et al. Angle-and spectral-dependentlight scattering from plasmonic nanocups [J]. ACS nano,2011,5(9):7254-7262.
    [103] Y. Zhang,A. Barhoumi,J. B. Lassiter,et al. Orientation-preserving transferand directional light scattering from individual light-bending nanoparticles [J]. Nanoletters,2011,11(4):1838-1844.
    [104] N. A. Mirin,T. A. Ali,P. Nordlander,et al. Perforated semishells: far-fielddirectional control and optical frequency magnetic response [J]. ACS nano,2010,4(5):2701-2712.
    [105] L. V. Brown,H. Sobhani,J. B. Lassiter,et al. Heterodimers: plasmonicproperties of mismatched nanoparticle pairs [J]. ACS nano,2010,4(2):819-832.
    [106] L. Chuntonov,G. Haran. Effect of Symmetry Breaking on the ModeStructure of Trimeric Plasmonic Molecules [J]. The Journal of Physical Chemistry C,2011,115(40):19488-19495.
    [107] Y. Cui,J. Zhou,V. A. Tamma,et al. Dynamic Tuning and SymmetryLowering of Fano Resonance in Plasmonic Nanostructure [J]. ACS nano,2012,6(3):2385-2393.
    [108] S. Mukherjee,H. Sobhani,J. B. Lassiter,et al. Fanoshells: nanoparticleswith built-in Fano resonances [J]. Nano letters,2010,10(7):2694-2701.
    [109] D. J. Wu,S. M. Jiang,X. J. Liu. Tunable Fano Resonances inThree-Layered Bimetallic Au and Ag Nanoshell [J]. The Journal of PhysicalChemistry C,2011,115(48):23797-23801
    [110] J. F. Ho,B. Luk’yanchuk,J. B. Zhang. Tunable Fano resonances in silver–silica–silver multilayer nanoshells [J]. Applied Physics A: Materials Science&Processing,2012:1-5.
    [111] F. Hao,P. Nordlander,M. T. Burnett,et al. Enhanced tunability andlinewidth sharpening of plasmon resonances in hybridized metallic ring/disknanocavities [J]. Physical Review B,2007,76(24):245417.
    [112] F. Hao,Y. Sonnefraud,P. V. Dorpe,et al. Symmetry breaking in plasmonicnanocavities: subradiant LSPR sensing and a tunable Fano resonance [J]. Nano letters,2008,8(11):3983-3988.
    [113] N. Liu,T. Weiss,M. Mesch,et al. Planar metamaterial analogue ofelectromagnetically induced transparency for plasmonic sensing [J]. Nano letters,2009,10(4):1103-1107.
    [114] L. Chuntonov,G. Haran. Trimeric plasmonic molecules: The role ofsymmetry[J]. Nano letters,2011,11(6):2440-2445
    [115] J. Ye,P. Van Dorpe,W. Van Roy,et al. Fabrication, characterization, andoptical properties of gold nanobowl submonolayer structures [J]. Langmuir,2009,25(3):1822-1827.
    [116] M. W. Knight,N. J. Halas. Nanoshells to nanoeggs to nanocups: opticalproperties of reduced symmetry core–shell nanoparticles beyond the quasistatic limit[J]. New Journal of Physics,2008,10(10):105006.
    [117] H. Wang,Y. Wu,B. Lassiter,et al. Symmetry breaking in individualplasmonic nanoparticles [J]. Proceedings of the National Academy of Sciences,2006,103(29):10856-10860.
    [118] P. Van Dorpe,J. Ye. Semishells: versatile plasmonic nanoparticles [J].ACS nano,2011,5(9):6774-6778
    [119] M. Cortie,M. Ford. A plasmon-induced current loop in gold semi-shells[J].Nanotechnology,2007,18(23):235704.
    [120] J. Ye,C. Chen,L. Lagae,et al. Strong location dependent surface enhancedRaman scattering on individual gold semishell and nanobowl particles [J]. PhysicalChemistry Chemical Physics,2010,12(37):11222-11224
    [121] X. Xia,Y. Liu,V. Backman,et al. Engineering sub-100nm multi-layernanoshells [J]. Nanotechnology,2006,17(21):5435-5440.
    [122] Y. Hu,R. C. Fleming,R. A. Drezek. Optical properties of gold-silica-goldmultilayer nanoshells [J]. Optics express,2008,16(24):19579-19591.
    [123] D. J. Wu,X. J. Xu,X. Liu. Tunable near-infrared optical properties ofthree-layered metal nanoshells [J]. The Journal of chemical physics,2008,129(7):074711.
    [124] D. J. Wu,X. J. Liu. Tunable near-infrared optical properties ofthree-layered gold–silica–gold nanoparticles [J]. Applied Physics B,2009,97(1):193-197.
    [125] M. Wang,M. Cao,X. Chen,et al. Subradiant Plasmon Modes in MultilayerMetal-dielectric Nanoshells [J]. The Journal of Physical Chemistry C,2011,115(43):20920–20925
    [126] Y. Hu,S. J. Noelck,R. A. Drezek. Symmetry Breaking in Gold SilicaGold Multilayer Nanoshells [J]. ACS nano,2010,4(3):1521-1528.
    [127] K. Li,L. Clime,B. Cui,et al. Surface enhanced Raman scattering onlong-range ordered noble-metal nanocrescent arrays [J]. Nanotechnology,2008,19(14):145305.
    [128] J. Qian,W. Wang,Y. Li,et al. Optical extinction properties of perforatedgold-silica-gold multilayer nanoshells [J]. The Journal of Physical Chemistry C,2012,116(18):10349-10355.
    [129] M. B. Cortie,X. Xu,M. J. Ford. Effect of composition and packingconfiguration on the dichroic optical properties of coinage metal nanorods [J].Physical Chemistry Chemical Physics,2006,8(30):3520-3527.
    [130] F. S. Ou,M. Hu,I. Naumov,et al. Hot-spot engineering in polygonalnanofinger assemblies for surface enhanced raman spectroscopy [J]. Nano letters,2011,11(6):2538-2542.
    [131] B. Luk'yanchuk,N. I. Zheludev,S. A. Maier,et al. The Fano resonance inplasmonic nanostructures and metamaterials [J]. Nature materials,2010,9(9):707-715.
    [132] W. S. Chang,J. B. Lassiter,P. Swanglap,et al. A Plasmonic Fano Switch[J]. Nano letters,2012,12(9):4977-4982.
    [133] E. Prodan,P. Nordlander. Structural tunability of the plasmon resonances inmetallic nanoshells [J]. Nano letters,2003,3(4):543-547.
    [134] E. Prodan,P. Nordlander,NJ Halas. Electronic structure and opticalproperties of gold nanoshells [J]. Nano letters,2003,3(10):1411-1415.
    [135] C. Radloff,N. J. Halas. Plasmonic properties of concentric nanoshells [J].Nano letters,2004,4(7):1323-1327.
    [136] D. W. Brandl,C. Oubre,P. Nordlander. Plasmon hybridization in nanoshelldimmers [J]. The Journal of chemical physics,2005,123:024701.
    [137] G. Mukhopadhyay,S. Lundqvist. Density oscillations and density responsein systems with nonuniform electron density [J]. Il Nuovo Cimento B,1975,27(1):1-18.
    [138] J. Ye,P. Van Dorpe,W. Van Roy,et al. Fabrication and optical propertiesof gold semishells [J]. The Journal of Physical Chemistry C,2009,113(8):3110-3115.
    [139] G. L. Liu,Y. T. Rosa-Bauza,C. M. Salisbury,et al. Peptide-nanoparticlehybrid SERS probes for optical detection of protease activity [J]. Journal ofnanoscience and nanotechnology,2007,7(7):2323-2330.
    [140] J. Ye,C. Chen,L. Lagae,et al. Strong location dependent surface enhancedRaman scattering on individual gold semishell and nanobowl particles [J]. PhysicalChemistry Chemical Physics,2010,12(37):11222-11224.
    [141] J. Ye,N. Verellen,W. Van Roy,et al. Plasmonic modes of metallicsemishells in a polymer film [J]. ACS nano,2010,4(3):1457-1464.
    [142] N. Vogel,C. K. Weiss,K. Landfester. From soft to hard: the generation offunctional and complex colloidal monolayers for nanolithography [J]. Soft Matter,2012,8(15):4044-4061.
    [143] J. Zhang,Y. Li,X. Zhang,et al. Colloidal Self‐Assembly MeetsNanofabrication: From Two‐Dimensional Colloidal Crystals to NanostructureArrays [J]. Advanced Materials,2010,22(38):4249-4269.
    [144] D. Ye,S. Mutisya,M. Bertino. Enhancement of electric field and Ramanscattering by Ag coated Ni nanotips [J]. Applied Physics Letters,2011,99(8):081909.
    [145] B. Cui,L. Clime,K. Li,et al. Fabrication of large area nanoprism arraysand their application for surface enhanced Raman spectroscopy [J]. Nanotechnology,2008,19(14):145302.
    [146] J. M. McLellan,Z. Y. Li,A. R. Siekkinen,et al. The SERS activity of asupported Ag nanocube strongly depends on its orientation relative to laserpolarization [J]. Nano letters,2007,7(4):1013-1017.
    [147] J. Benjamin,Y. Chen,J. M. McLellan,et al. Synthesis and opticalproperties of silver nanobars and nanorice [J]. Nano letters,2007,7(4):1032-1036.
    [148] B. M. Ross,L. P. Lee. Plasmon tuning and local field enhancementmaximization of the nanocrescent [J]. Nanotechnology,2008,19(27):275201.
    [149] J. Kim,G. L. Liu,Y. Lu,et al. Intra-particle plasmonic coupling of tip andcavity resonance modes in metallic apertured nanocavities [J]. Optics Express,2005,13(21):8332-8338.
    [150] R. Bukasov,J. S. Shumaker-Parry. Highly tunable infrared extinctionproperties of gold nanocrescents [J]. Nano letters,2007,7(5):1113-1118.
    [151] A. D. McFarland,M. A. Young,J. A. Dieringer,et al. Wavelength-scannedsurface-enhanced Raman excitation spectroscopy [J]. The Journal of PhysicalChemistry B,2005,109(22):11279-11285.
    [152] P. B. Johnson,R. W. Christy. Optical Constants of the Noble Metals [J].Physical Review B,1972,6(12):4370-4379.
    [153] N. Halas. Playing with plasmons: Tuning the optical resonant properties ofmetallic nanoshells [J]. MRS Bulletin,2005,30(5):362-367.
    [154] H. Rochholz,N. Bocchio,M. Kreiter. Tuning resonances oncrescent-shaped noble-metal nanoparticles [J]. New Journal of Physics,2007,9(3):53.
    [155] O. Pe a-Rodríguez,A. Rivera,M. Campoy-Quiles,et al. Tunable Fanoresonance in symmetric multilayered gold nanoshells [J]. Nanoscale,2013,5(1):209-216.
    [156] K. C. Woo,L. Shao,H. Chen,et al. Universal scaling and Fano resonancein the plasmon coupling between gold nanorods [J]. ACS nano,2011,5(7):5976-5986.
    [157] J. A. Fan,C. Wu,K. Bao,et al. Self-assembled plasmonic nanoparticleclusters [J]. Science,2010,328(5982):1135-1138.
    [158] B. Lassiter,H. Sobhani,M. W. Knight,et al. Designing and Deconstructingthe Fano Lineshape in Plasmonic Nanoclusters [J]. Nano letters,2012,12(2):1058-1062.
    [159] S. Zhang,D. A. Genov,Y. Wang,et al. Plasmon-induced transparency inmetamaterials [J]. Physical review letters,2008,101(4):047401.
    [160] C. L. Garrido Alzar,M. A. G. Martinez,P. Nussenzveig. Classical analogof electromagnetically induced transparency [J]. American Journal of Physics,2002,70(1):37-41.
    [161] Y. Hu,S. J. Noelck,R. A. Drezek. Symmetry Breaking in Gold SilicaGold Multilayer Nanoshells [J]. ACS nano,2010,4(3):1521-1528.
    [162] S. J. Oldenburg,R. D. Averitt,S. L. Westcott,et al. Nanoengineering ofoptical resonances [J]. Chemical Physics Letters,1998,288(2):243-247.
    [163] J. Ye,L. Lagae,G. Maes,et al. Symmetry breaking induced opticalproperties of gold open shell nanostructures [J]. Optics Express,2009,17(26):23765-23771.
    [164] Y. Yu,L. Gan,G. Zhang,et al. Asymmetric microparticles andheterogeneous microshells via angled colloidal lithography [J]. Colloids and SurfacesA,2012,405(5):51-58.
    [165] J. H. Weaver,H. P. R. Frederikse. Optical properties of selected elements[J]. CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton,2001:12-133.
    [166] B. Rodríguez-González,A. Burrows,M. Watanabe,et al. Multishellbimetallic AuAg nanoparticles: synthesis, structure and optical properties [J]. Journalof Materials Chemistry,2005,15(17):1755-1759.
    [167] J. H. Kim,W. W. Bryan,T. R. Lee. Preparation, characterization, andoptical properties of gold, silver, and gold silver alloy nanoshells having silica cores[J]. Langmuir,2008,24(19):11147-11152.
    [168] S. Link,Z. L. Wang,M. A. El-Sayed. Alloy formation of gold-silvernanoparticles and the dependence of the plasmon absorption on their composition [J].The Journal of Physical Chemistry B,1999,103(18):3529-3533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700