用户名: 密码: 验证码:
基于CFD技术的心脏辅助装置优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:左心室辅助装置能有效缓解并治疗心力衰竭,但现有的心脏辅助装置结构复杂,植入手术难度高,存在很多问题。本文致力于开发一种新型迷你左心室辅助装置(left ventricular assisted device, LVAD)并运用流体计算力学技术(computational fluid dynamics, CFD)优化设计轴流血泵式左心室辅助装置,论证其可行性。
     方法:首先建立三种轴流血泵叶轮模型,分别使用CFD仿真技术,预测叶轮模型在人类心脏生理环境下的工作状态,分析模型各种流体参数,如:内部流速向量分布、叶轮表面压力分布、流场外壁压力分布个和叶轮表面剪切力分布,从而估算高速旋转的叶轮对血液的损伤。然后计算三款血泵在不同转速下的工作效率,并进行对比分析。根据以上CFD仿真结果,对轴流血泵中叶轮尺寸、叶片数量、叶片高度和曲面变化等参数进行优化修调整,得出最优的设计叶轮模型。
     结果:仿真结果表明,血泵模型够在100mmHg后负荷压力下,输出流量达到10L/min以上,且泵内血流平稳、泵内压力梯度均匀,能够有效的减少血液损伤,降低血栓形成的几率。
     结论:CFD仿真结果表明,最终设计的血泵模型产生的血液涡流和乱流情况最不明显,能够有效的减少溶血。这表明CFD仿真技术能够为LVAD设计提供正确的技术指引。
Background: A novel mini left ventricular assisted device (LVAD) has been proposed in our lab. This paper aimed to optimize the design of LVAD based on computational fluid dynamics (CFD) techniques.
     Methods: CFD analysis was taken to analyze the sets of parameters (blood speed flow distraction in the interior of the pump, the speed vectors, the impeller surface pressure, the wall surface pressure and the wall shear stress distributions) for each model under physiological conditions. The blood damage from the high-speed rotating blades was also estimated. The outlet flow, the actual pump head and torque calculated efficiency of the blood pump were compared among three models at different speeds. Optimal Design of the modified axial blood pump included impeller size, blades number and its parameters (e.g., surface changing in impeller).
     Results: CFD analysis showed regions of reverse flow at inlet and outlet for each model. The CFD simulation results indicated that the pump (put in the dimensional…) produced a flow rate 10 L/min at a pressure of 100 mmHg with stable blood flow and smooth surface pressure grades, which may mitigated the traumatic and thrombus effect on blood.
     Conclusions: The final design of the pump with least flow separation and recirculation was completed based on CFD simulation. This may reduce thrombosis. These detailed CFD-based analyses of blood pump provide guidance for further improvement of current pump or design of the new pumps.
引文
[1] Debakey Me. The Odyssey of the artificial heart. Artif Organs, 2000, 3(24):405-411.
    [2]郭静萱,李海燕.慢性心力衰竭的诊治进展.中国实用内科杂志, 2007, 27(1):11.
    [3]胡盛寿,孙寒松,朱晓东等.12例左心室辅助临床应用体会.中华胸心血管外科杂志, 2006, 22(2):139-140.
    [4]王佳棣.左心室辅助装置的技术进展及对未来的展望.中国医疗器械杂志, 2006, 30(6):469-472.
    [5] Deng M C, Naka Y. Mechanical Circulatory Support Therapy in Advanced Heart Failure. Singapore: World Scientific Publishing Company, 2007:40-57.
    [6] Long JW. Advanced mechanical circulatory support with the HeartMate left ventricular assist device in the year 2000. Ann Thorac Surg, 2001, 71(3 Suppl):176–182.
    [7] Burke DJ, Burke E, Parsaie F, et al. The Heartmate II: design and development of a fully sealed axial flow left ventricular assist system. Artif Organs, 2001, 25:380–385.
    [8] HeartMate2. http://www.texasheart.org/Research/Devices/thoratec_heartmateii.cfm.
    [9] Butler K, Thomas D, Taylor L, et al. The Heartmate II axial flow LVAS: journey toward clinical trial. ASAIO J, 2000, 46:195.
    [10] Maher TR, Butler KC, Poirier VL, et al. HeartMate left ventricular assist devices: a multigeneration of implanted blood pumps. Artif Organs, 2001,25:422–426.
    [11] Griffith BP, Kormos RL, Borovetz HS, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg, 2001, 71(3 Suppl):s116–s120.
    [12] D J,FARRAR, K. BOURQUE, C. P. DAGUE, C. J, COTTER, V. L, and POIRIER, "Design Features, Developmental Status, and Experimental Results With the Heartmate III Centrifugal Left Ventricular Assist System With a Magnetically Levitated Rotor", ASAIO J 2003, 2007, vol.53:310-315.
    [13] Wampler RK, Frazier OH, Olsen DB."In vivo evaluation of a peripheral vascularaccess axial flow blood pump." ASAIO Trans, 1988, 34(3):450-4.
    [14] Westaby S, Katsumata T, Houal R, et al. Jarvik 2000 Heart potential for bridge to myocyte recovery. Circulation, 1998, 98:1568-1574.
    [15] Frazier OH, Myers TJ, Jarvik R, et al. Research and development of an implantable, axial-flow left ventricular assist device: The Jarvik 2000 Heart. Ann Thorac Surg, 2001, 71(3 Suppl):125-132.
    [16] Westaby S, Frazier OH, Pigott DW, et al. Implant technique for the Jarvik 2000 Heart. Ann Thorac Surg, 2002, 73(4):1337-1340.
    [17] Frazier OH, Shah NA, Timothy J, et al. Use of the Flowmaker (Jarvik 2000) left ventricular assist device for destination therapy and bridging to transplantation. Cardiology, 2004, 101:111-116.
    [18] Westtaby S, Frazier OH, Beyersdorf F, et al. The Jarvik Heart, Clinical validation of the intraventricular position. Eur J Cardiothorac Surg, 2002, 22:228-232.
    [19] Tayama E, Olsen DB, Ohashi Y, et al. The DeBakey ventricular assist device: current status in 1997. Artif Organs, 1999, 23:1113–1116.
    [20] Noon GP, Morley D, Irwin S, et al: Development and clinical application of the MicroMed DeBakey VAD. Curr Opin Cardiol, 2000, 15:166–171.
    [21]夏东栋,白净. "轴流式血泵的现状与代表技术."国外医学生物医学工程分册, 2005, 28(6):366-369.
    [22] Cherniavskii AM, Al'sov SA, Marchenko AV, et al. Application of multiple-branch prostheses in reconstruction of the aortic arch in debakey type I aortic dissection. Angiol Sosud Khir, 2006, 12(3):116-119.
    [23] Musher DM, Nuila F, Logan, N. The Long-Term Outcome of Treatment of Clostridium difficile Colitis. Clin Infect Dis, 2007, 45(4):523-524.
    [24] Schmidt PJ. Technology transfer: the DeBakey roller pump. TRNASFUSION MEDICINE HISTORY ILLUSTRATED, 2007, 47:953-954.
    [25] Wampler RK, Baker BA, Wright WM. Circulatory support of cardiac interventional procedures with the Hemopump cardiac assist system. Cardiology, 1993, 84:194–201.
    [26] Wampler RK, Frazier OH, Olsen DB. In vivo evaluation of a peripheral vascularaccess axial flow blood pump. ASAIO Trans, 1988, 34(3):450-454.
    [27] MS S. The Hemopump in 1997: a clinical, political, and marketing evolution. Thorac Surg, 1999, 68(2):761-763.
    [28] Lachat M, Jaggy C, Leskosek B, et al. Hemodynamic properties of the hemopump HP14. Int J Artif Organs, 1999, 22:155–159.
    [29] Sweeney MS. The Hemopump in 1997: a clinical, political, and marketing evolution. Ann Thorac Surg , 1999,68: 761–763.
    [30] Cardiac Surgical Associates: CSA Web Page. Hemopump cardiac assist system. Available at: http://www.csa.-heart.com/hemopump.htm. Accessed June 26, 2002.
    [31] Wampler RK, Baker BA, Wright WM. Circulatory support of cardiac interventional procedures with the Hemopump cardiac assist system. Cardiology, 1994, 84(3):194-201.
    [32] Apel J, Neudel F, Reul H. Computational fluid dynamics and experimental validation of a microaxial blood pump. ASAIO J, 2000, 47:552–558.
    [33] Apel J, Paul R, Klaus S, et al. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs, 2001, 25:341–347.
    [34] Siess T, Nix C, Menzler F. From a lab type to a product: a retrospective view on Impella's assist technology. Artif Organs 2001; 25(5):414-421.
    [35] Siess T, Reul H, Rau G. Concept, realization, and first in vitro testing of an intraarterial microaxial blood pump. Artif Organs, 1995, 19(7):644-652.
    [36] Isgro F, Kiessling AH, Rehn E, et al, "Intracardiac left ventricular support in beating heart, multi-vessel revascularization," J Card Surg, 2003, 18(3):240-244.
    [37] Henriques JP, Remmelink M, Baan J, et al "Safety and Feasibility of Elective High-Risk Percutaneous Coronary InterventionProcedures With Left Ventricular Support of the Impella Recover LP 2.5." Am J Cardiol, 2006, 97:990-992,.
    [38] Garatti A, Colombo T, Russo C, et al. "Left ventricular mechanical support with the Impella Recover left direct microaxial blood pump: a single-center experience." Artif Organs, 2006, 30:523-528.
    [39] Lee MS, Makkar RR. "Percutaneous left ventricular support devices." Cardiol Clin, 2006, 24(2): 265-275.
    [40] Schmidt T, Siefker J, Spiliopoulos S, et al, "New experience with the paracardial right ventricular axial flow micropump impella elect 600." EJCTS, 2003, 24:307-308.
    [41] Ramondo A, Napodano M, Tarantini G, et al. "High-risk percutaneous coronary intervention using the intracardiac microaxial pump 'Impella recover'," J Cardiovasc Med (Hagerstown), 2006, 7:149-152.
    [42]姜华,席光. "心脏泵的研究进展."医疗卫生装备杂志, 2006, 27:33-35.
    [43]陈铭伍. "心室辅助装置及人工心脏的研究现状."广西医学杂志, 2005, 27:1893-1895.
    [44]孙寒松.气动带瓣导管泵左心辅助循环装置的实验研究.博士学位论文.中国协和医科大学:心血管外科系, 1993.
    [45]云忠,龚中良.旋转叶轮血泵的发展与展望.生物医学工程学杂志, 2005, 22(1): 151-154.
    [46]钱坤喜,曾培,茹伟民等.一种新颖的急救型循环辅助用心室内轴流泵.中华胸心血管外科杂志, 2005, 21(5):331.
    [47]钱坤喜.用三元理论设计血泵叶轮.工程数学学报,1987,4(2):99-101.
    [48] Wang D, Zwischenberger JB, Zhou X, et al. Development of "plug and play" TransApical to aorta VAD. Asaio J, 2007, 53(2):171-175.
    [49]李忠.轴流泵内部流场数值模拟及实验研究:硕士学位论文.江苏大学:流体机械及工程, 2007.
    [50]谭雪松,谢正超,柳祖国. Pro/ENGINEER 2001中文版基础教程.北京:人民邮电出版社,2002:58-109.
    [51]孙江宏,段大高. Pro/ENGINEER2001高级功能应用及开发.北京:清华大学出版社,2002:118-187.
    [52]阎超.计算流体力学方法及应用.北京:北京航空航天大学出版社,2006:20-124.
    [53]陶文锉.计算传热学的近代发展.北京:科学出版社,2000:55-109.
    [54]朱自强等.应用计算流体力学.北京:北京航空航天大学出版社, 1999:15-80.
    [55]结构化和非结构化网格技术. http://hi.baidu.com/qinpc/blog/item/6961ecf80f4f1d0dd9f9fd4f.html.
    [56]王福军.计算流体动力学分析.北京:清华大学出版社, 2004:(1-243).
    [57] Haifa ES, Nabil E. Simulation of Complex Liquids in miero pump. Microelecron J, 2005, 36(6):657-666.
    [58]马希金,郭俊杰,吴蓓. CFD法设计轴流式汕气混输泵初探.流体机械, 2004, 32(7):15-18.
    [59]朱保林.离心泵内三维数值模拟.硕士学位论文。浙江:浙江工业大学, 2005.
    [60]王芳群.应用CFD技术探明叶轮设计对人工心脏血泵内流场切应力分布的影响:硕士学位论文.江苏大学:生物医学工程, 2003.
    [61]中国人民解放军总装备部军事训练教材编辑工作委员会.计算流体力学及应用.北京:国防工业出版社, 2003.1-298.
    [62]张平豪,吴新跃.离心泵的有限元建模研究.水泵技术, 2005, 6(2):31-41.
    [63]有限体积法. http://baike.baidu.com/view/660159.htm.
    [64]陶文锉.数值传热学(第二版).西安:西安交通大学出版社, 2001:76-94.
    [65] Giersiepen M, Wurzinger LJ, Opitz R. Estimation of shear stress related blood damage in heart valve prostheses: In vitro comparison of 25 aortic valves. Int J Artif Organs, 1990, 13:300–306.
    [66] Wieselthaler GM, Schima H, Hiesmayr M ,et al. First clinical experience with the DeBakey VAD continuous-axial-flow pump for bridge to transplantation. Circulation, 2000, 101(4):356-359.
    [67] Goldstein DJ, Zucker M, Arroyo L,et al. Safety and feasibility trial of the MicroMed DeBakey ventricular assist device as a bridge to transplantation. J Am Coll Cardiol. 2005, 45(6):962-963.
    [68] DeBakey ME. Development of mechanical heart devices. Ann Thorac Surg, 2005, 79(6):2228-2231.
    [69]王芳群,钱坤喜.计算流体动力学在叶轮式心脏泵中的应用研究.生物医学工程学杂志, 2006, 23(5):1033-1036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700