用户名: 密码: 验证码:
炭基材料去除水体中微藻及铅离子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国际经济一体化进程与国际贸易的飞速发展,海洋生物入侵和水体重金属的污染的问题愈加突出,对海洋环境的侵害愈加严重,已被全球环境基金组织确认为危害海洋的四大威胁之一。因此,为了保护海洋环境,有效地控制和减少海洋生物入侵和重金属的污染的加剧,急需建立新的防治技术与有害金属去除方法,这也是海洋科学领域深入研究和探索的热点问题。
     论文利用炭膜对含有小球藻、叉鞭金藻和扁藻的模拟压载水进行处理,考察了藻类尺寸、跨膜压差、错流速率以及藻密度对处理效果的影响。结果表明,压载水中藻尺寸越大,稳定通量越小。在跨膜压差为0.1MPa以前,稳定通量随跨膜压差的升高呈线性上升的趋势,继续增大跨膜压差,稳定通量增幅开始变缓;增大错流流速可使膜表面剪切力增加,减少藻在炭膜表面的堆积,使得炭膜具有较高的稳定通量。经炭膜处理后,渗透液中均未检出藻类的存在,显示炭膜在压载水处理领域具有巨大的应用潜力。
     论文选取两种椰壳炭进行水体中Pb2+吸附去除研究,利用扫描电镜和N2吸附技术分析了椰壳炭的表面形貌和孔结构特性,考察了吸附时间、椰壳炭加入量、Pb2+浓度等影响因素对Pb2+吸附去除能力的影响,并利用吸附动力学模型对Pb2+吸附过程进行分析。结果表明,高比表面积能够促进椰壳炭对Pb2+的吸附,使其更容易达到吸附平衡;随着椰壳炭用量的增加,对Pb2+的吸附比率逐渐降低,而去除率则逐渐增大,达到一定水平后基本保持不变;浓度越大,Pb2吸附驱动力越强,吸附比率越高;椰壳炭对Pb2+的吸附动力学满足Langmuir和Freundlich等温式;与其它类炭基材料进行Pb2+的吸附去除能力比较时发现,椰壳炭在对重金属Pb2+吸附去除方面具有很强的竞争力。
With the rapid development of international economic integration and international trade, marine biological invasions and heavy metal pollution in water, which are recognized by the Global Environment Fund (GEF) as one of the four major threats to the ocean, have raised increasingly serious harm on marine environment. Therefore, in order to protect the marine environment, effectively control and reduce marine bio-invasion and heavy metal pollution, it urgently need to create a new control techniques against bio-invasion and methods to remove the hazardous heavy metal, which is the important and hot problems on ocean anti-pollution in marine science field.
     Carbon membranes are used to treat simulate ballast water including Chlorella vulgaris, Dicrateria inornata, Platymonas subcordiform as target algae, respectively. Effects of algae size, transmembrane pressure and crossflow velocity on the steady-state flux are investigated. The results indicate that it is feasible to treat ballast water by carbon membranes with slit-shape pore structure. A decrease in steady-state flux is observed as the algae size increases. High transmembrane pressure is more prone to block the membrane pore and results in the decrease of the steady-state flux. High crossflow velocity will be favorable to increase the steady-state flux owing to the inhibition of fouling layer development through the high shear stress on membrane surface. After treated by carbon membranes, no algae are detected. It indicates that carbon membranes are of potential for ballast water treatment.
     Removal of Pb2+from aqueous solutions using coconut shell carbon is performed in this paper. Morphology and pore structure characteristic of coconut shell carbon are investigated by SEM and nitrogen adsorption techniques. Effect of adsorption time, coconut shell carbon dosage and initial ion concentration on removal efficiency is also studied, and adsorption kinetics model of Pb2+in removal process is established. The results show that high specific surface area can promote coconut shell carbon to adsorb Pb2+in aqueous solutions and make it easier to reach adsorption equilibrium.Pb2+adsorption uptake decreases with the increase of coconut shell carbon dosage, while the removal efficiency shows a gradual increase trend, and remains unchanged until it reached a certain level. Higher Pb2+concentration enhances adsorption driving force, which is favorable to produce higher Pb2+adsorption uptake. Adsorption data of coconut shell carbon fits well with the Langmuir and Freundlich models. Pb2+removal ability in this work exhibits great competition respect to other carbon-based material. These clearly indicate that coconut shell carbon is a promising adsorbent for removal of heavy metal.
引文
[1]张莉萍.海洋污染浅析.丹东海工,2005,9:93-95.
    [2]张明华.海洋污染形成“第七大洲”.水资源研究,2009,1:93-95.
    [3]李明.海洋污染来源及防治对策.科技经济市场,2011,8:68-70.
    [4]http://baike. baidu.com/view/135496.htm..
    [5]龚伟.生物入侵的危害与防治措施.现代园艺,2011,13:59.
    [6]陈赛.外来物种入侵及其环境法律调控准则.新疆环境保护,2002,24(4):32.
    [7]高利丹.外来物种每年给非洲造成数十亿美元损失.世界科技研究与发展,2003,25(2):101.
    [8]Westcott D A, Fletcher C S. Biological invasions and the study of vertebrate dispersal of plants. Opportunities and integration. Acta Oecologica,2011,37:650-656.
    [9]Mistro D C, Rodrigues L A D, PetrovskiiS. Spatiotemporal complexity of biological invasion in a space-and time-discrete predator-prey system with the strong Allee effect. Ecological Complexity,2012,9:16-32.
    [10]Carlton J T. Pattern, process and prediction in marine invasion ecology. Biological Conservation,1996,78:97-106.
    [11]Thomsen M S, Wernberg T, Olden J D. A framework to study the context-dependent impacts of marine invasions.Journal of Experimental. Marine Biology and Ecology,2011,400:322-327.
    [12]Acostaa H, Wub D, Forrestc B M. Fuzzy experts on recreational vessels, a risk modelling approach for marine invasions. Ecological Modelling,2010,221:850-863.
    [13]Hewitt C L, Campbell M L. Mechanisms for the prevention of marine bioinvasions for better biosecurity. Marine Pollution Bulletin,2007,55:395-401.
    [14]Wasson K, Zabin C J, Bedinger L et al. Biological invasions of estuaries without international shipping:the importance of intraregional transport. Biological Conservation,2001,102:143-153.
    [15]Karin Troost. Causes and effects of a highly successful marine invasion:Case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European. estuaries.Journal of Sea Research,2010,64:145-165.
    [16]Khuroo A A,.Reshi Z A, Rashid I et al. Towards an integrated research framework and policy agenda on biological invasions in the developing world:A case-study of India. Environmental Research,2011,111:999-1006.
    [17]Occhipinti A A, Savini D. Biological invasions as a component of global change in stressed marine ecosystems. Marine Pollution Bulletin,2003,46:542-551.
    [18]刘辉.外来生物入侵与防控对策.科技信息,2012,12:545-546.
    [19]邱政.外来海洋生物入侵对我国水产养殖业的危害与预防.中国水产,2010,4:20-21.
    [20]http://baike. baidu. com/view/39004. htm.
    [21]孙云明,刘会峦.海洋中的主要化学污染物及其危害.化学教育.2001,7(8):1-5.
    [22]翁建中,杨积德,徐恒省.“加压上浮法”应急除藻技术在水源地的应用示范.环境监控与预警,2010,2(1):8-11.
    [23]王永,杨硕,陈艳荣.除藻技术及藻类的综合利用研究.山西建筑,2008,34(26):30-31.
    [24]王利平,郭宇川,陆雷等.电气浮工艺对富营养化湖泊型原水中蓝藻的去除.中国农村水利水电,2011,7:42-44.
    [25]张智,王艳东,范功端等.超声波除藻型过滤器应用实验研究.水处理技术,2012,38(2):56-64.
    [26]陆贻超,王国,李仁辉.超声波和改性粘土集成技术在去除蓝藻水华上的应用.湖泊科学,2010,22(3):421-429.
    [27]施国键,乔俊莲,王国强等.活化粉煤灰改性壳聚糖絮凝除藻的研究.环境污染与防治,2009,31(9):45-54.
    [28]王洪亮,俞志明,宋秀贤等.改性小麦秸秆去除赤潮异弯藻的实验研究.环境科学,2010,31(2):296-300.
    [29]王晓雪,钟成华,刘洁等.改性粘土除藻技术研究进展.安徽农业科学,2011,39(2):883-884,896.
    [30]聂祥平,王晓蓉,郭红岩.聚合氯化铝铁和粘土应急去除蓝藻的室外模拟研究.环境科学与技术,2012,35(3):98-103.
    [31]张跃军,赵晓蕾,李潇潇等AS/PDM对夏季太湖预氯化高藻水的除藻效果.高校化学工程学报,2011,25(2):331-336.
    [32]赵红,周俊波,赵振凤.臭氧与二氧化氯工艺杀菌除藻效果的实验研究.给水排水,2011,37:70-73.
    [33]梁爽,李星,杨艳玲.沸石负载高锰酸钾除藻及藻毒素效能研究.北京工业大学学报,2011,37(12):1843-1847.
    [34]赵春禄,侯孝来,孙鹏程.H202预氧化颤藻及其复合高岭土除藻性能研究.环境工程学报,2011,5(2):357-360.
    [35]刘伯雅,魏东芝,鲁思然等.灵菌红素对有害藻类的除藻活性研究.中国环境科学,2010,30(4):477-482.
    [36]汪小雄,姜成春,朱佳等.微生物在除藻方面的应用研究.工业水处理,2011,31(2):1-4.
    [37]张昱.碳羟磷灰石对重金属离子的吸附研究:(硕士学位论文).湖南:湖南大学,2008.
    [38]刘福强.碳纳米管海藻酸钠复合材料对污水中重金属离子的吸附性能研究:(硕士学位论文).青岛:青岛大学,2010.
    [39]刘行,熊智淳,陈祎东.碳纳米管薄膜对重金属离子吸附的研究及应用.大连理工大学学报,2011,51(S1):49-52.
    [40]陈再明,方远,徐义亮.水稻秸秆生物碳对重金属Pb2+的吸附作用及影响因素.环境科学学报,2012,32(4):769-776.
    [41]周延秀,朱果逸.琉基活性碳富集剂对重金属离子的吸附特性.应用化学,1993,10(2):4246.
    [42]陈田,王涛,王道军.功能化有序介孔碳对重金属离子Cu(II)、Cr(VI)的选择性吸附行为.物理化学学报,2010,26(12):3249-3256.
    [43]Say R, Birlik E, Denizli A. Removal of heavy metal ions by dithiocarbamate-anchored polymer/organosmectite composites. Applied Clay Science,2006,31:298-305.
    [44]JoAnn M. B, Gustaaf M. H, Gregory M et al. Phytoplankton and bacterial assemblages in ballast water of U.S military ships as a function of port of origin,voyage time and ocean exchange practices. Harmful Algae,2007,6:486-518.
    [45]http://wenku. baidu.com/view/bf8968f34693daef5ef73d26. html.
    [46]谢良杰,李伟英,陈杰等.粉末活性炭—超滤膜联用工艺去除水体藻毒素的特性研究.水处理技术,2010,36(7):92-95.
    [47]雷国元,金黎,余雄奎等.高通量陶瓷膜研制及其除藻性能的初步研究.净水技术,2009,28(1):63-66.
    [48]王同华,魏微,刘淑琴等.管状多孔炭膜的研究.新型炭材料,2000,15(1):6211.
    [49]WANG Tong-hua, WEI Wei, LIU Shu-qin et al. The study on tubular porous carbon membrane. New Carbon Materials,2000,15(1):6-11.
    [50]Song C W, Wang T H, Qiu J S, et al. Effects of carbonization conditions on the properties of coal-based microfiltration carbon membranes. Journal of Porous Materials,2008,15:1-6.
    [51]Arkhangelsky E, Gitis V. Effect of transmembrane pressure on rejection of viruses by ultrafiltration membranes. Separation and Purification Technology,2008,62:619-628.
    [52]Thomassen J K, Faraday D B F, Underwood B O et al. The effect of varying transmembrane pressure and crossflow velocity on the microfiltration fouling of a model beer. Separation and Purification Technology,2005,41:91-100.
    [53]Danis U, Keskinler B. Chromate removal from wastewater using micellar enhanced crossflow filtration:Effect of transmembrane pressure and crossflow velocity. Desalination, 2009,249:1356-1364.
    [54]Ahmad A L, Ismail S, Bhatia S. Membrane treatment for palm oil mill effluent:effect of transmembrane pressure and crossflow velocity. Desalination.2005,179:245-255.
    [55]Tofighy M A, Mohammadi T. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets. Journal of Hazardous Materials,2011,185:140-147.
    [56]Xiaolan Song, Hongyan Liu, Lei Chen et al. Surface modification of coconut-based activated carbon by liquid-phase oxidation and its effects on lead ion adsorption. Desalination, 2010,255:78-83.
    [57]Momcilovic M, Purenovic M, Bojic A et al. Removal of lead(II) ions from aqueous solutions by adsorption onto pine cone activated carbon. Desalination,2011,276:53-59.
    [58]肖乐勤,陈霜艳,周伟良.改性活性炭纤维对重金属离子的动态吸附研究.环境工程,2011,29:289-293.
    [59]李坤权,郑正,张继彪等.磷酸活化植物基活性炭对水溶液中铅的吸附.环境工程学报,2010,4(6):1238-1242.
    [60]夏畅斌,何湘柱,黄念东.碳黑泥吸附铬(Ⅱ)的动力学研究.水处理技术,2001,27(5):261-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700