用户名: 密码: 验证码:
悬浮载体材质—结构的生物特性及新型转笼生物反应器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,河流水环境污染已十分严重。高效、低成本、机动灵活的河流水污染治理新技术和新装备的研究是环境工程的前沿和热点之一。本论文运用材料加工工程和环境工程学科交叉方法,从研究生物载体材质-结构的生物特性入手,构造高效的河流污水处理环境——转笼生物反应器,为污水处理提供新型水环境治理材料和高效河流水污染治理装备,具有十分重要的理论和实际意义。经过大量试验、分析及数值模拟,得到如下主要研究成果:
     (1)进行了大量生物载体挂膜试验研究,探讨了生物载体材质-结构的生物特性。研究发现,生物载体的挂膜性能与材质的主要成分有关,材质的多样性有利于提高生物载体的挂膜性能,载体混合的移动床的挂膜试验就表现出良好污水处理效果,这为载体混合使用、提高移动床处理效果、及载体设计中的材质搭配提供了参考。生物载体的结构以提供微生物容身的比表面积越大越好,同时,载体构造多连通结构能提高载体表面利用率,并有利于布气和获得较佳的表面剪切力,使生物载体挂膜性能良好。对动态环境下生物载体挂膜过程所受的力进行了详细地描述,采用附着动力学模型定量地分析生物载体挂膜效果。
     (2)实现了多相流和动网格的耦合计算,并对生物载体的流体力学特性行数值模拟计算,以此来评价生物载体空间结构合理性,两者具有较好的相关性,为生物载体空间结构评价及优化提供了便捷的手段。根据数值计算结果,设计了一种新型缠绕型悬浮生物载体,并进行污水处理试验,在移动床有效容积1.8L、水流量30mL/min、HRT为1h、曝气流量0.3L/min的情况下,COD_(Cr)、NH_3-N的去除率分别为79.5%、80.3%,优于同等条件下的多面空心球、鲍尔环、阶梯环、生物陶粒等生物载体,并具有良好的抗冲击负荷的能力。
     (3)根据河流水污染治理的特点,采用主动移动床的理念,构造高效河流污水处理环境——转笼生物反应器,初步探讨了其工作原理,估算了其启动液流速度,发现转笼生物反应器能在多数河流中被液流启动。进行了启动试验、运行参数优化试验、稳定运行试验研究,在优化参数条件:转笼周壁的开孔率为58%,内叶片长度为35mm,转笼转速为1.5r/min,曝气量为2 m~3/h,污水流量1 m~3/h,HRT为1.2h,悬浮生物载体为缠绕型悬浮生物载体的条件下,COD_(Cr)的平均去除率为86.9%,NH_3-N的平均去除率为87.6%。在基质去除率和容积去除负荷方面,均优于曝气生物滤池、移动床等生物反应器。
     (4)对转笼生物反应器的污水处理机理进行了深入研究,根据莫诺特方程导出转笼生物反应器的降解不同基质的动力学方程,并由动力学试验回归得到动力学方程中的反应速度常数,讨论了不同生物载体对反应速度常数的影响;根据反应器物料平衡原理,导出转笼生物反应器的初步设计计算模型,根据试验回归出模型常数,分析了不同生物载体对设计模型常数的影响,并进行试验验证,设计计算模型误差在15%以内,为转笼生物反应器的放大设计和实际应用提供理论依据。
     (5)实现了多相流与滑移网格的耦合计算,在此基础上,对转笼反应器流体力学特性进行数值模拟计算,工况计算结果与试验结果具有较好的相关性,能为转笼生物反应器结构评价和优化提供有效的手段。并进行了本文设计的转笼生物反应器结构的内部结构及外叶片的优化计算,得到具有良好的流体力学特性的转笼结构为:内叶片长度为0.15Rz、内叶片数目为10片、内叶片形状为正曲面,外叶片端面型线为样条曲线。
The rivers are polluted severely, and are cried for treatment. The research on new treatment technology and new devices is one of the most important and hot problem in environment engineering. In this dissertation, the interdisciplinary method with material machining is applied, from study on the biological properties of bio-carriers’material and structure to construction of high-efficiency sewage treatment environment, which is cage-type bioreactor, the new sewage treatment material and high-efficiency sewage treatment devices are provided. Through large numbers of experiments, analysis and numerical simulation, the main results and conclusions are as follows:
     (1) The large numbers of bio-film experiments of bio-carriers are processed, and the biological properties of bio-carriers’material and structure are discussed. The results show that the bio-film properties of bio-carriers are related with main components of bio-carriers materials, material diversity is beneficial for enhance the bio-film properties of bio-carriers, and the moving bed with mixing bio-carriers gets strong effect of sewage treatment. These can provide a reference for mixture using of bio-carriers, enhancing effect of moving bed, material combination in bio-carriers design. The results indicate that the bio-carriers structure need provide high specific surface area for microbe inhabiting region, and multi-connected structure can improve utilization rate of bio-carriers surface, and be beneficial for gas distribution and obtain the suitable surface shear stress. These can improve the bio-carriers bio-film properties. The force under condition of dynamics sewage treatment is described in detail, and the quantity of bio-carriers bio-film is analyzed by using of microbe adhesion kinetics model.
     (2) The coupling computation of multi-phase and dynamics mesh is realized, and the hydrodynamics characteristics of bio-carriers are numerical simulated, and it is used for evaluating the rationality of bio-carriers structure, and the computation results are positive related with bio-film results of experiment. It is an efficient method for evaluation of bio-carriers space structure and optimization. According to the computation results, a new suspended bio-carriers, whose structure is wire-wound, is designed, and it is used to treat sewage, the experiment results show that the removal rates of COD_(Cr) and NH3-N are 79.5%, 80.3% respectively under condition of the effective volume with 1.8L, water flow with 30 mL/min, aeration with 0.3 L/min. These results are better than that of multi-face hollow sphere, pall ring, stage ring, bio-ceramic, and it has more stable to shock load.
     (3) According to the characteristic of rivers pollution control, based on the initiative moving bed concept, the cage-type suspended carriers bioreactor is developed, which constructs high-efficiency environment for rivers sewage treatment. Its mechanism of removing contamination is analyzed, and flow velocity, which just can drive the bioreactor to rotate, is computed. The start-up experiment, operation parameters optimum experiment, and operation experiment are processed, the results show that the cage-type bioreactor can high effective treat sewage. Under the condition that aperture porosity on cage wall is 58%, the length of inside laminae is 35mm, the carriers fill rates is 50%, the hydraulic retention time is 1.2 h, aeration flow is 2.5 m~3/h, the sewage flow is 1 m~3/h, rotation-cage rotated speed is 1.5 r/min, and the removal rates of COD_(Cr) and NH_3-N are 86.9% and 87.6% respectively. Comparing with biological aerated filter and moving bed, it can get high effect.
     (4) The sewage treatment mechanism of cage-type bioreactor is studied in depth, according to the Monod equation, the kinetics equations of and biodegradation are deducted. The reaction rates constants are obtained by kinetics experiment, and the influence of different bio-carriers is discussed. The preliminary design model of cage-type bioreactors is derived from material balance principles, and the model constants are obtained by experiments. This model is validated by experiment, and the errors are less than 15%, these models are reference for enlarged design and practical application of cage-type bioreactors.
     (5) The coupling computation of multi-phase and sliding mesh is realized, and the hydrodynamics characteristics of cage-type bioreactors is numerical simulated. The computation results are positive related with experiment results, so the technology with multi-phase and sliding mesh is an efficient method for evaluation of bio-carriers space structure and optimization, and the inside structure of cage-type bioreactors is optimized. The optimized inside structure with proper hydrodynamics characteristics is obtained, which the length of inside lamina is 0.15 Rz, the number of inside lamina is 10, the profile of inside lamina is positive curve surface, the profile of outside lamina is spline.
引文
[1] Slobodan P. S.. World water dynamics: global modeling of water resources[J]. Journal of Environmental Management, 2002.66:249~267
    [2] 刘岩. 地球的水体与水污染[J]. 飞碟探索,2000.3:42
    [3] Drolc A., Koncan J. Z.. Estimation of sources of total phosphorus in a river basin and assessment of alternatices for river pollution reduction[J]. Environment International, 2002,28: 393~400
    [4] Bishwanath G., Nandini B.. Impact of informal regulation of pollution on water quality in rivers in India[J]. Journal of Environmental Management, 2004,73: 117~130
    [5] Vishal N.. India’s water crisis: the challenges of governance[J]. Water Policy, 2000,2: 433~444
    [6] 刘鸿志,卢雪云. 中外河流水污染治理比较[J] 世界环境,2001.4:27~30
    [7] 吴淑武. 也谈水污染现状及其对策[J]. 琼洲大学学报,2002(9).2:83~86
    [8] 江刚. 美国河流受多种污染物污染[J]. 中国环境科学,2002(22).4:369
    [9] 2004 年中国环境状况公报,中国国家环保总局
    [10] 徐祖信. 河流污染治理技术与实践[M]. 中国水利水电出版社,2003.2:1~48
    [11] 曹梅英,王建化. 城市河流整治与生态环境保护[J]. 山西水利,2003.1:13~14
    [12] 徐祖信. 河流污染治理规划理论与实践[M]. 中国环境科学出版社,2003.2:112~178
    [13] 汤建中,宋韬,江心英等. 城市河流污染治理的国际经验[J]. 世界地理研究,1998(7).2:114~119
    [14] Crawford R. L., Crawford D. L.. Bioremediation: principles and applications [M]. London: Cambridge University Press, 1996.1
    [15] 邓建绵. 污染河流生物修复技术研究[J]. 环境科学与技术,2003,26(增刊):55~58
    [16] 徐亚同,史家梁,张明. 生物修复技术的作用机理和应用(上)[J]. 上海化工,2001,18:4~8
    [17] 徐亚同,史家梁,张明. 生物修复技术的作用机理和应用(中)[J]. 上海化工,2001,19:4~7
    [18] 徐亚同,史家梁,张明. 生物修复技术的作用机理和应用(下)[J]. 上海化工,2001,20:4~7
    [19] 沈耀良,黄勇,赵丹等. 固定化微生物污水处理技术[M]. 北京:化学工业出版社,2002.5:21~52
    [20] 李军,杨秀山,彭永臻. 微生物与水处理工程[M]. 北京:化学工业出版社,2002.9:207~302
    [21] 江帆,陈维平,张弢等. 新型水环境治理材料的研究进展[J]. 水处理技术,2006,32(2):1~4
    [22] 刘翔,高延耀. 生物接触氧化法处理污水的一种新型填料——悬浮填料[J]. 重庆环境科学, 1999,21(2):42~44
    [23] Morper M., et al. Improvement of existing wastewater treatment plants’ efficiencies without enlargement of tankage by application of the LINPOR process—CASE STUDIES[J]. Wat. Sci. & Tech., 1990,22(7~8):207~215
    [24] Wartchow D.. Nitrification and denitrification in combined activated sludge systems[J]. Wat. Sci. & Tech., 1990, 22(7~8): 199~206
    [25] 范懋功. 幅度型生物载体在建筑中水处理系统中的应用[J]. 给水排水,1999,25(7):45~47
    [26] φ degaard H., et al. A new moving bed biofilm reactor applications and results[J]. Wat. Sci. & Tech., 1994, 29(10~11):157~165
    [27] Rusten B., Φdegaard H., Lundar A.. Treatment of dairy wastewater in a novel moving bed biofilm reactor[J]. Wat. Sci. & Tech., 1992, 26(3~4): 703~711
    [28] Rusten B., Mattsson E., Broch-Due A., et al. Treatment of pulp and paper industry wastewater in novel moving bed biofilm reactors[J]. Wat. Sci. & Tech., 1994, 30(3): 161~171
    [29] Rusten B., Hem L. J. φdegaard H.. Nitrification of municipal wastewater in moving bed biofilm reactors[J]. Wat. Envir. Res., 1995,67(1):75~85
    [30] Rusten B., Hem L. J. φdegaard H.. Nitrogen removal from dilute wastewater in cold climate using moving bed biofilm reactors[J]. Wat. Envir. Res., 1995,67(1):65~74
    [31] Rusten B., Kolkinn O., φdegaard H.. Moving bed biofilm reactors and chemical precipitation for high efficiency treatment of wastewater from small communities[J]. Wat. Sci. & Tech., 1997, 35(6):71~79
    [32] Rusten B., Johnson C. H., Devall S., et al. Biological pretreatment of a chemical plant wastewater in high-rate moving bed biofilm reactors[J]. Wat. Sci. & Tech., 1999, 39(10~11): 257~264
    [33] Jahren S. J., Rintala J. A., φdegaard H.. Aerobic moving bed biofilm reactor treating thermomechanical pulping whitewater under thermophilic conditions[J]. Wat. Res., 2002,36: 1067~1075
    [34] Pastorelli G., Andreottola G., Canziani R., et al. Organic carbon and nitrogen removal in moving-bed biofilm reactors[J]. Wat. Sci. & Tech., 1997, 35(6): 91~99
    [35] Aspegren H., Nyberg U., Andersson B., et al. Post denitrifiction in a moving bed biofilm reactor process[J]. Wat. Sci. & Tech., 1998, 38(1): 31~38
    [36] Labelle M. A., Juteau P., Jolicoeur M., et al. Seawater denitrification in a closed mesocosm by a submerged moving bed biofilm reactor[J]. Wat. Res. 2005, 39: 3409~3417
    [37] 张文虎. 流动床生物膜反应器污水处理技术[J]. 电力建设,2000.12:45~48
    [38] 田刚. 污水生物流化床法处理用的新型高粒度填料[P]. 中国专利,91205096,1992.3
    [39] 金冬霞,田刚,施汉昌. 悬浮填料的选取及其性能试验研究[J]. 环境科学学报, 2002,22(3):333~337
    [40] 张辉明,文一波. SNP悬浮型生物填料设计及使用方法[J]. 化工环保,1995,15(3):180~183
    [41] 胡杰. SNP悬浮型生物填料在生活污水处理中的应用[J]. 环境导报,1998,5:18~19
    [42] 周增炎,高延耀,刘霞. 一种悬浮式生物载体[P]. 中国专利,97234855.7,1998.8
    [43] 张菊萍,孙华,周增炎. 一种新型悬浮填料的性能试验研究[J]. 安全与环境学报,2002,2(5):42~44
    [44] 夏四清,高延耀,周增炎. 多级悬浮填料生物反应器处理石化废水[J]. 中国给水排水,2002,18(1):9~12
    [45] 王学江,夏四清,张全兴等. 悬浮填料移动床处理苏州河支流河水试验研究[J]. 环境污染治理技术与设备,2002,3(1):27~30
    [46] 夏四清,徐斌,高延耀等. 悬浮填料床生物预处理黄浦江原水中试研究[J]. 同济大学学报,2003,31(8):977~981
    [47] 赵庆良,刘淑彦,王琨. 复合式生物膜反应器中生物膜量、厚度及活性[J]. 哈尔滨建筑大学学报,1999,32(6):39~43
    [48] 殷渝强. 一种悬浮填料在处理PTA废水中的应用[J]. 石油化工环境保护,2003,26(2):19~23
    [49] 徐斌,夏四清,高延耀等. 悬浮生物填料床处理微污染原水硝化试验研究[J]. 环境科学学报,2003,23(6):742~747
    [50] 董滨,周增炎,高延耀. 投料A2/O工艺的硝化特性[J]. 给水排水,2004,30(9):50~52
    [51] 王立立. 厌氧膜床-曝气生物滤池-絮凝沉淀组合工艺处理低浓度生活污水的研究[D]. 华南理工大学博士学位论文,2003.6:20~28
    [52] 丁宁. 陶粒填料的挂膜行为及其对模拟废水的处理特性[D]. 华南理工大学硕士学位论文,2002.5:29~32
    [53] 钟世云,胡艳. 塑料在污水处理悬浮载体生物膜工艺中的应用[J]. 中国塑料,2004,18(9):84~89
    [54] 艾恒雨,汪群慧,谢维民等. 接触氧化工艺中生物填料的发展及应用[J]. 给水排水,2005,31(2):89~92
    [55] 童省吾. 条片形旋转式悬浮填料[P]. 中国专利,99203037.4,2000.2
    [56] 徐令云. 纺锤型悬浮填料[P]. 中国专利,99253300.7,2000.11
    [57] 张凡,程江,杨卓如等. 废水处理用生物填料的研究进展[J]. 环境污染治理技术与设备,2004,5(4):8~12
    [58] 汪晓军,罗芳旭,何翠萍等.亲水性塑料弹性填料生物膜法处理模拟废水的研究[J]. 环境污染治理技术与设备,2003,4(4):31~34
    [59] 罗芳旭. 亲水性弹性填料的应用研究[D]. 华南理工大学硕士学位论文,2002.6:32~36
    [60] 程江,张凡,海景等. 聚丙烯填料的生物亲和亲水磁化改性对其润湿及挂膜的影响[J]. 化工学报,2004,55(9):1564~1567
    [61] 龙腾锐,张勤,郭劲松等. 酶促填料与某些多孔填料挂膜特性对比试验研究[J]. 给水排水,2000,26(3):22~25
    [62] 刘雨,赵庆良,郑兴灿. 生物膜法污水处理技术[M]. 北京:中国建筑工业出版社,2000.3:207~302:16~20
    [63] 陈欢林. 环境生物技术与工程[M]. 北京:化学工业出版社,2003.8:226~237
    [64] 陈维平,江帆,吴纯德等. 基于全息模型的悬浮填料的设计[J]. 现代制造工程,2005,25(3):64~66
    [65] 江帆,陈维平,张弢等. 水环境材料——悬浮填料的绿色设计[J]. 环境工程,2005,23(4):86~88
    [66] 季民,杨造燕,薛广宁等. 移动床生物膜反应器在污水处理中的应用研究[J]. 城市环境与城市生态,2000,13(3):47~49
    [67] 王奕,张兴文,杨凤林. 移动床生物膜反应器的研究及应用现状[J]. 环境污染治理技术与设备,2002,3(7):78~80
    [68] 杨玉旺. 移动床生物膜反应器处理污水的研究应用进展[J]. 工业水处理,2004,24(2):12~15
    [69] 赵江冰,胡龙兴. 移动床生物膜反应器技术研究现状与进展[J]. 环境科学与技术,2004,27(2):103~106
    [70] Helness H., φdegaard H.. Biological phosphorus removal in a sequenceing batch moving bed biofilm reactor[J]. Wat. Sci. & Tech., 1999, 40(4~5): 161~168
    [71] Andreottola G., Foladori P., M. Ragazzi. Upgrading of a small watewater treatment plant in a cold climate region using a moving bed biofilm reator (MBBR) system[J]. Wat. Sci. & Tech., 2000, 41(1): 177~185
    [72] Rodgers M., Zhan X. M., Gallagher B.. A pilot plant study using a vertically moving biofilm process to treat municipal wastewater[J]. Bioresource Technology, 2003, 89(2): 139~143
    [73] Perron N., Welander U.. Degradation of phenol and cresols at low temperatures using a suspend-carrier biofilm process[J]. Chemosphere, 2004, 55: 45~50
    [74] Loukidou M. X., Zouboulis A. I.. Comparison of two biological treatment processes using attached-growth hiomass for sanitary landfill leachate treatment[J]. Environmental Pollution, 2001, 111(2): 273~281
    [75] Welander U., Henrysson T., Welander T.. Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process[J]. Wat. Res. 1998, 32(5): 1564~1570
    [76] Chandler H., Cornelis D.. Treatment of recycle paper mill wastewater in moving bed biofilm reactors[C]. TAPPI Proceeding Environmental Conference & Exhibtion, TAPPI press, 1997, 2: 999~1002
    [77] Johnson C. H., Page M. W., Blaha L.. Full scale moving bed biofilm reactor results from refinery and slaughter house treatment facilities[J]. Wat. Sci. & Tech., 1999, 40(4~5): 401~407
    [78] 朱文亭,颜玲,阎海英等. 循环移动载体生物膜反应器的试验研究[J]. 中国给水排水, 2000, 16(11): 51~54
    [79] 李锋,向阳,周增炎. MBBR法处理桃浦工业区废水的中试研究[J]. 给水排水, 2001, 27(4): 47~49
    [80] 王学江,夏四清,张全兴. 用移动床生物膜反应器处理石化废水[J]. 化工环保, 2001, 21(5): 333~336
    [81] 马建勇,张兴文,杨凤林等. 移动床生物膜反应器处理低浓度污水的性能[J]. 大连理工大学学报, 2003, 43(1): 46~50
    [82] 张兴文,杨凤林,马建勇等. MBBR处理低浓度污水的工程应用[J]. 环境工程, 2002, 20(5): 12~15
    [83] 邢国平,张云霞,朱文亭等. 生物膜法处理2,3-二甲基苯胺废水试验研究[J]. 河南化工, 2003, (1): 20~22
    [84] Wang R. C., Wen X. H., Qian Y.. Influence of carrier concentration on the performance and microbial characteristics of a suspended carrier biofilm reactor[J]. Process Biochemistry, 1997, 40: 2992~3001
    [85] Lazarova V., Nogueira R., Manem J., et al. Control of nitrification efficiency in a new biofilm reactor[J]. Wat. Sci. & Tech., 1997, 36(1): 31~41
    [86] 楼菊青. 循环移动载体生物膜反应器工艺性能的研究[D]. 浙江大学硕士学位论文,2004.11:1~19
    [87] 陈维平,江帆,张弢等. 水环境治理装备研究现状与发展趋势[J]. 工业水处理,2006,26(3):1~3
    [88] 江帆,陈维平,赵海东. 基于集成全相关技术的水环境治理装备设计[J]. 环境污染治理技术与设备,2005,6(12):108~110
    [89] 国家环境保护总局水和废水监测分析方法编委会编. 水和废水监测分析方法[M]. 北京:中国环境科学出版社,2002.7第四版:207~302
    [90] 杨清芝主编. 现代橡胶工艺学[M]. 中国石化出版社,2004.10:77~78
    [91] 郑俊,吴浩汀. 曝气生物滤池的工艺理论与工程应用[M]. 北京:化学工业出版社,2005.1:34~81
    [92] 王建龙. 生物固定化技术与水污染控制[M]. 北京:科学出版社,2002.7:2~124
    [93] Picioreanu G., Loosdrecht M. C. M. V., Heijnen J. J.. Discrete-differential modelling of biofilm structure[J]. Wat. Sci. & Tech., 1999, 39(7): 115~122
    [94] Loosdrecht V.. Influence of interface on microbial activity[J]. Microbial Rev., 1994, 54: 75~87
    [95] Daniels S. L.. Mechanisms involved in adsorption of microorganisms to solid surface[C]. John Willey & Sons Inc., 1980: 8~58
    [96] 浙江大学普通化学教研组编. 普通化学[M]. 北京:高等教育出版社,2002.7第五版:207~302
    [97] 沈钟,赵振国,王果庭. 胶体与表面化学[M]. 北京:化学工业出版社,2004.8第三版:50~219
    [98] 程守洙,江之水. 普通物理学[M].北京:高等教育出版社,2002.7第五版:6~7
    [99] 郭烈锦. 两相与多相流动力学[M]. 西安交通大学出版社,2002.12:340~360
    [100] Squires K. D., Eation J. K.. Particle response and turbulence modification in isotropic turbulence[J]. Phys. Fluid, 1990, 2(7): 1191~1203
    [101] Sommerfeld M.. Validation of a stochastic lagrangian modelling approach for iter-particle collisions in homogeneous isotropic turbulence[J]. International Journal of Multiphase Flow, 2001, 27: 1829~1858
    [102] 洪嘉振,杨长俊编著. 理论力学(下)[M]. 北京:高等教育出版社,2002.8第二版:253~255
    [103] Merle C. P., David C. W.. Mechanics of fluids [M]. China Machine Press, 2003.6:753~797
    [104] 周光坰,严宗毅,许世雄等. 流体力学[M]. 高等教育出版社,2000.6第二版:50~55
    [105] 江帆,陈维平,李元元等. 基于射流与两相流的射流曝气器研究[J]. 流体机械,2005,33(6):18~21
    [106] Jiang F., Chen W. P., Zhao H. D., et al. Numerical simulation of water environment pollution induced by the leakage of noxious liquid substance in bulk[C]. Progress in Safety Science and Technology Ⅳ, 2004.10: 2280~2285
    [107] Jiang F., Chen W. P., Mai M. R., et al. Numerical simulation on water and sediments two-phase flows in river[C]. Progress in Safety Science and Technology V, 2005.11, 1634~1639
    [108] Fluent Inc. FLUENT User’s Guide. Fluent Inc., 2003
    [109] 李宝宽,赫冀成. 炼钢中的计算流体力学[M]. 冶金工业出版社,1998.4:228~239
    [110] Dhaouadi H., Poncin S., J. M. Hornut, et al. Hydrodynamics of an airlift reactor: experiments and modeling [J]. Chemical Engineering Science, 1996, 51(11): 2625-2630
    [111] 陶文铨编著. 数值传热学[M]. 西安:西安交通大学出版社,2004.2第二版:332~411
    [112] Moureau V., Lartigue G., Sommerer Y., et al. Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids [J]. Journal of Computational Physics, 2005, 202: 710~736
    [113] Bottasso C. L., Detomi D., Serra R.. The ball-vertex method: a new simple spring analogy method for unstructured dynamics meshes [J]. Comput. Methods Appl. Mech. Engrg., 2005, 194: 4244~4264
    [114] Michler C., Sterck H. D., Deconinck H.. An arbitrary Lagrangian Eulerian formulation for residual distribution schemes on moving grids [J]. Computers & Fluids, 2003, 32: 59-71
    [115] 刘雨,杨学富,高大林. 流动系统内生物膜的形成及控制[J]. 环境科学,1999,6:98~99
    [116] 任兆刚. 液气射流内循环三相流流化床反应器特性及废水处理实验. 华南理工大学硕士学位论文,2003.5:29~32
    [117] 陈维平,江帆,吴纯德等. 一种转笼式悬浮填料生物污水处理方法及其装置[P]. 发明专利,申请号:200410077611.2
    [118] 江帆,陈维平,吴纯德等. 悬浮填料转笼式生物反应器的研制与应用[J]. 现代化工, 2005,25(8):53~55
    [119] 项可风, 吴启光. 试验设计与数据分析[M]. 上海:上海科学技术出版社, 1989. 7: 252
    [120] 张可方,张朝升,方茜等. 序批式活性污泥法处理城市污水试验研究[J]. 工业用水与废水,2002,32(2):18~20
    [121] 周增产,马京汉,李梅等. 小型高效网状生物转盘污水处理设备的研制[J]. 农业工程学报,1998, 14(3):173~176
    [122] 顾夏声. 废水生物处理数学模式[M]. 北京:清华大学出版社,1993.7:42~88
    [123] Chaluvadi V. S. P., Kalfas A. I., Banjeghbal M. R., et al. Blade-row interaction in a high-pressure turbine[J]. Journal of Propulsion and Power, 2001,17(4): 892~901
    [124] 徐朝晖,吴玉林,陈乃祥等. 基于滑移网格与RNG湍流模型计算泵内的动静干扰[J]. 工程热物理学报,2005,26(1):66~68
    [125] Montante G., Lee K. C., Brucato A., et al. Numerical simulation of the dependency of flow pattern on impeller clearance in stirred vessels[J]. Chemical Engineering Science, 2001, 56(3): 3751~3770
    [126] 孙会,潘家祯. 搅拌设备内流场的数值研究[J]. 华东理工大学学报,2005,31(2):232~236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700