用户名: 密码: 验证码:
电弧炉建模研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在技术和经济上的优越性,电弧炉炼钢技术在国内外钢铁行业得到了日益广泛的应用。随着直流电弧炉炼钢技术的方兴未艾和交流电弧炉炼钢技术的稳步发展,进一步提高电弧炉冶炼效率和改善由此所引发的电能质量问题是一项具有重要现实意义的课题。所有这些都要求对电弧炉内部的物理现象和电弧炉的阻抗特性有更为深入的了解,这也是改善和优化电弧炉冶炼过程、对电弧炉系统进行动态补偿和提高供电质量的基础。针对这些问题,本论文展开了相应的研究。
     基于大电弧电流行为在电弧炉冶炼过程中的重要性,本文首先对直流电弧炉内电弧射流部分的二维稳态磁流体力学模型进行了数值模拟。分析了电弧射流部分的电磁现象和传热过程,研究了过程参数和外部电参数对炉内电弧特性的影响和外部端口特性的影响。仿真计算结果进一步证实了前人关于电弧射流物理特性的研究结论,同时发现电弧炉负载伏安特性曲线的变化规律与电弧温度的变化情况密切相关,呈现出十分复杂的变化趋势。另外,阳极表面电流密度、热量分布和剪切力等量的计算结果是对直流电弧炉熔池部分进行数值模拟的基础。
     在对直流电弧炉的电弧射流部分进行数值模拟的基础上,考虑炉内电磁力、浮力和表面剪切力等作用力的影响,使用一个二维瞬变磁流体力学模型对电弧炉处于精炼期时熔池内的流场、温度场和电磁场分布进行了数值模拟。分析了熔池部分的电磁现象和流场特性,研究了熔池表面电弧射流的径向剪切力、浮力和电磁力单独作用和共同作用时及底电极直径大小对熔池部分搅拌特性的影响。仿真计算结果表明,电磁力在熔池部分的搅拌过程中起主导作用;底电极半径较大时对熔池的搅拌效果更有利。用该方法对熔池部分进行数值模拟更加符合实际情况,对实际操作过程具有直接的指导意义。
Currently, electric arc furnace (EAF) is widely used in iron and steel industry at home and abroad due to its advantage in technology and economics over others. With the rapid expanding of DC EAF and steady development of AC EAF, it is of great importance to further increase the production efficiency of EAF and improve the corresponding power quality problems to the power system. Consequently, it is required to have a deeper understanding of physical phenomena occurred in EAF and the electrical characteristics of EAF in power system, which is necessary to improve and optimize the iron-making process of EAF. It is also the basis of providing the dynamic compensation to the EAF system and improving the power quality of power system. According to these problems, some issues are reported in this thesis.
     Due to the importance of the behavior of large current arc in DC EAF, the numerical simulation of two-dimensional steady Magneto-hydrodynamics models is initially made for the arc plasma region. The electromagnetic phenomenon and heating-transfer processes in the arc plasma are analyzed. The effects of process parameters and electrical parameters to the characteristics of arc plasma and voltage-current characteristics of EAF are studied. The calculated results confirm again the existed conclusions of the physical characteristics of arc plasma presented by others. Meanwhile, it is found that the voltage-current characteristics of EAF are closed related to the varying of temperature of arc plasma and present a complicated nature. Moreover, the calculated results of current density, heat flux and the radial
引文
[1] C.J. Edgerley, L. Smith, C.F. Wilford. Electric metal melting — a review [J]. Power Engineering Journal, 1988, 2(2): 83-93
    [2] L.L. Teoh. Electric arc furnace technology — recent development and future trends [J]. Ironmaking and Steelmaking, 1989, 16(5): 303-313
    [3] 朱应波,宋东亮,曾昭生等. 直流电弧炉炼钢技术[M]. 北京:冶金工业出版社,1997
    [4] 李士琦,刘润藻,李峰等. 电弧炉炼钢技术现状及发展[J]. 中国冶金,2004,75(2): 12-15
    [5] J.P. Birat. Futures study analysis of the technology evolution of the EAF by 2010 [J]. Revue de Metallurgie, 2000, 97(11): 1347-1363
    [6] 王成喜. 我国大中型电炉炼钢技术现状调研和分析研究[学位论文]. 北京:北京科技大学,2002
    [7] J.G. Mayordomo, E. Prieto, A. Hernandez, etc. Arc furnaces characterization from an off-line analysis of measurements[C]. Proceedings of the 9th International Conference on Harmonic and Quality of Power, Orlando, U.S.A, 2000, 4: 1073-1079
    [8] C. Gilker, S. R. Mendis, M.T. Bishop. Harmonic analysis in electric arc furnace steelmaking facilities [J]. Iron & Steel Engineering, 1993, 70(5): 40-44
    [9] S.R. Mendis, M.T. Biship, J.F. Witte. Investigations of voltage flicker in electric arc furnace power systems [J], IEEE Transactions on Industry Applications Magazine, 1996, 2(1): 28-34
    [10] 王兆安,杨君,刘进军. 谐波抑制和无功功率补偿[M]. 北京:机械工业出版社,2002
    [11] Z. Zhang, N.R. Fahmi, W.T. Norris. Flicker analysis and methods for electric arc furnace flicker Mitigation (A Survey) [C]. Proceedings of the IEEE Porto Power Tech Conference, Porto, Portugal, 2001: 1-6
    [12] G. Chang, C. Hatziadoniu, W. Xu, etc. Modeling Devices with nonlinear voltage-current Characteristics for harmonics studies [J]. IEEE Transactions on power delivery, 2004, 19(4): 1802-1811
    [13] 刘小河. 电弧炉电气系统的模型、谐波分析及电极调节系统自适应控制的研究[学位论文]. 西安:西安理工大学,2000
    [14] 宋东林. 电弧炉炼钢[M]. 北京:冶金工业出版社,1996
    [15] 李士琦,李伟立,刘仁刚[M]. 现代电弧炉炼钢. 北京:冶金工业出版社,1995
    [16] A. Chofre, M. Pinilla, J.M. Romero. Connection of a plant with arc furnaces to the Andlucian network[C]. Proceedings of the 16th International Conference and Exhibition on Electricity Distribution, Amsterdam, Netherlands, 2001, 2: 35-39
    [17] 南条敏夫,乔以武. 直流电弧炉的电弧现象[M]. 北京:冶金工业出版社,1998
    [18] M.Ushio, J.Szekely, C.W. Chang. A mathematical modeling of flow field and heat transfer in high-current arc discharge [J]. Ironmaking and Steelmaking, 1981, 6(1): 279-286
    [19] J.Szekely, J.Mckelliget, M.Choudhary. Heat transfer fluid flow and bath circulation in electric arc furnace and DC plasma furnaces [J]. Ironmaking and Steelmaking, 1983, 10(4): 169-179
    [20] J.W Mckelliget, J.Szekely. A mathematical model of the cathode region of a high intensity carbon arc [J]. Journal of Physical D: Applied Physics, 1983, 16: 1007-1022
    [21] F. Qian, B.Farouk, R.Mutharasan. Modeling of fluid flow and heat transfer in the plasma region of the dc electric arc furnace [J]. Metallurgical and Materials Transactions B, 1995, 26B: 1057-1067
    [22] H. Wanping, J. D. Lavers. Coupled electro-thermal-flow model for very long electric arcs [J].IEEE Transactions on Magnetics, 1997, 33(2): 1726-1729
    [23] J. Alexis. Simulation of fluid flow, thermodynamics and chemical reactions in a DC electric arc [C]. Proceedings of the 56th electric furnace conference, New Orleans LA, U.S.A, 1998: 319-326
    [24] J. Alexis, M. Ramirez, G. Trapaga. Modeling of heat transfer from an electric arc — a simulation of heating Part I [C]. Proceedings of the 57th electric furnace conference, Pittsburgh PA, U.S.A, 1999: 279-287
    [25] J. Alexis, M. Ramirez, G. Trapaga, etc. Modeling of a DC electric arc furnace—heat transfer from the arc [J]. ISIJ International, 2000, 40(11): 1089-1097
    [26] M. Ramirez. Mathematical Modeling of DC electric arc furnace operations [Dissertation]. U.S.A, Massachusetts Institute of technology, 2000
    [27] M. Ramirez, G. Trapaga. Mathematical modeling of a DC electric arc — Dimensionless representation of a DC arc [J]. ISIJ International, 2003, 43(8): 1167-1176
    [28] M. Ramirez, G. Trapaga. Mathematical modeling of a direct current electric arc: Part I. Analysis of the characteristics of a direct current arc [J]. Metallurgical and Materials Transactions, 2004, 35(2): 363-372
    [29] M. Ramirez, G. Trapaga, J. Garduno-esquivel. Mathematical modeling of a direct current electric arc: Part Ⅱ.Dimensional representation of a direct current arc [J]. Metallurgical and Materials Transactions, 2004, 35(2): 373-380
    [30] 过增元,赵文华. 电弧和热等离子体[M]. 北京:科学出版社,1986
    [31] H.L. Larsen, G. Saevardottir, J.A. Bakken. Improved channel arc model for high-current AC arcs [C]. Proceedings of the 5th European Conference on Thermal Plasma Process — TPP-5, St Petersburg, Russia, 1995: 837-844
    [32] H.L.Larsen, J.A.Bakken. Modeling of industrial AC arcs [J]. Journal of temperature material processes, 1999, 1(1): 1-15
    [33] H.L.Larsen, G.Saevardottir, and J.A.Bakken, Simulation of AC arcs in the silicon metal furnace [C]. Proceedings of the 54th electric furnace conference, Texas, U.S.A, 1996: 157-168
    [34] 魏利平,潘萌华,周璜. 直流电弧炉电弧通路的模型[J]. 北京科技大学学报,2002,24(5): 500-503
    [35] B. Bowman, G.R. Jordan, F. Fitzgerald. The physics of high-current arcs [J]. Journal of the Iron and Steel Institute, 1969: 798-805
    [36] G.R. Jordan, B. Bowman, D. Wakelam. Electrical and photographic measurements of high-power arc [J]. Journal of Physics D: Applied Physics, 1970, 3(7): 1089-1099
    [37] B. Bowman. Measurements of plasma velocity distribution in free-burning DC arcs up to 2160A [J]. Journal of Physics D: Applied Physics, 1972, 4(5): 1422-1434
    [38] B. Bowman. Effects on furnace arcs of submerging by slag [J]. Ironmaking and Steelmaking, 17(2): 123-129
    [39] B. Bowman. Properties of arcs in DC furnaces [C]. Proceedings of the 52nd electric furnace conference, Nashville, U.S.A, 1994: 111-119
    [40] R.T. Jones, Q.G. Reynolds, M.J. Alport. DC arc photography and modeling [J]. Minerals Engineering, 2002, 15: 985-991
    [41] H. Kurimoto, H.N. Mondal, T. Morisue. Analysis of velocity and temperature fields of molten metal in DC arc furnace [J]. Journal of Chemical Engineering of Japan, 1996, 29(1): 75-81
    [42] H.N. Mondal, H. Kurimoto, T. Morisue. Analysis of Electrically Induced Flows in DC electric arc furnace [J]. IEEE Transactions on Magnetics, 1996, 32(3): 1026-1030
    [43] M.D. Lee, W.J. Mckenzie. Bottom refractory performance in Consteel and top charged DCfurnaces [J]. Iron and Steelmaker, 1998, 25(2): 47-52
    [44] G. Liping, G.A. Irons. Physical modeling of fluid flow in electric arc furnaces [C]. Proceedings of the 55th electric furnace conference, Chicago, U.S.A, 1997: 651-659
    [45] G. Liping, G.A. Irons. Physical and mathematical modeling of fluid flow in electric arc furnaces [C]. Proceedings of the 56th electric furnace conference, New Orleans, U.S.A, 1998: 413-420
    [46] G. Liping, G.A. Irons. Physical and mathematical modeling of oxygen lancing and arc jetting in electric arc furnaces [C]. Proceedings of the 57th electric furnace conference, Pittsburgh, U.S.A, 1999: 269-278
    [47] M.A. Ramirez, J. Alexis, G. Trapaga, etc. Effects of the arc, slag and bottom bubbling of argon on the fluid flow and heat transfer of a DC EAF bath [C]. Proceedings of the 57th electric furnace conference, Pittsburgh, U.S.A, 1999: 751-761
    [48] M.A. Ramirez, J. Alexis, G. Trapaga. Modeling of a DC electric arc furnace — mixing in the bath [J]. ISIJ International, 2001, 41(10): 1146-1155
    [49] A.C. Deneys, D.C. Robertson. Fluid flow phenomena in a laboratory scale DC arc furnace for slag cleaning [C]. Proceedings of the 56th electric furnace conference, New Orleans, U.S.A, 1998: 423-432
    [50] G. Carpinelli, M. Di Manno, P. Verde, etc. AC and DC arc furnaces: a comparison on some power quality aspects [C]. Proceeding of IEEE Power Engineering Society Summer Meeting, Edmonton, Alta. Canada, 1999, 1: 499-506
    [51] S. Varadan, E.B. Makram, A.A. Girgis. A new time domain voltage source model for an arc furnace using EMTP [J]. IEEE Transactions on Power Delivery, 1996, 11(3): 1685-1691
    [52] R.C. Dugan. Simulation of arc furnace power systems [J]. IEEE Transactions on Industry Application, 1980, IA-16: 813-818
    [53] S. Ashmore, U. Urbanek, N. Gothelf. Design of harmonic filters for DC arc furnaces [C]. Proceedings of the 53rd Electric Furnace Conference, Orlando, U.S.A, 1995: 483-490
    [54] D.P. Manjure, E.B. Makram. Drawbacks of Linearization in harmonic analysis and modeling [C]. Proceedings of the 9th International Conference on Harmonic and Quality of Power, Orlando, U.S.A, 2000, 3: 926-931
    [55] Z. Tongxin, E.B. Makram. An adaptive arc furnace model [J]. IEEE Transactions on Power Delivery, 2000, 15(3): 931-939
    [56] M.A.P. Alonso, M.P. Dosion. An improved time domain arc furnace model for harmonic analysis [J]. IEEE Transactions on Power Delivery, 2004, 19(1): 367-373
    [57] D. Stade, H. Schau, I. Aprelkov, etc. Mathematical simulation of DC arc furnace operation in electric power systems [C]. Proceeding of the 8th International Conference on Harmonics and Quality of Power, Athens, Greece, 1998: 1086-1091
    [58] A.M. Shustov, B.M. Valov. Voltage-current characteristic mathematical modeling of a direct current arc of a power steel furnace and it introducing into the program complex Salomon [C]. Proceedings of the VI International Scientific and Practical Conference of Students, Post-graduates and Young Scientists, Tomsk, Russia, 2000: 35-37
    [59] D. Raisz, M. Sakulin, H. Renner, etc. Recognition of the operation states in electric arc furnaces [C]. Proceedings of the 9th International Conference on Harmonics and Quality of Power, Orlando, U.S.A, 2000, 3: 475-480
    [60] A.A. Mahmoud, R.D. Stahlhut. Modeling of a resistance regulated arc furnace [J]. IEEE Transactions on Power Apparatus and Systems, 1985, PAS-104: 58-66
    [61] S. Etminan, R.H. Kitchin. Flicker meter results of simulated new and conventional TSCcompensators for electric arc furnace [J]. IEEE Transactions on Power Systems, 1993, 8(3): 914-919
    [62] G. El-saady. Adaptive static VAR controller for simultaneous elimination of voltage flickers and phase current imbalances due to arc furnaces loads [J]. Electric Power Systems Research, 2001, 58: 133-140
    [63] C.S. Chen, H.J. Chuang, C.T. Hsu, etc. Stochastic voltage flicker analysis and its mitigation for steel industrial power systems [C]. Proceedings of the IEEE Porto Power Tech Conference, Porto, Portugal, 2001, 1: 24-26
    [64] G. Jin-lung, G. Jyh-Cherng, W. Chi-Jui. A novel method for estimating voltage flicker [J]. IEEE Transactions on Power Delivery, 2005, 20(1): 242-247
    [65] A. Sarshar, M. Sharp, R.M. Iravani. Analyses of harmonic and transient phenomenon due to operation of an AC arc furnace [J]. Iron and Steel Engineer, 1996: 78-82
    [66] 刘小河,程少庚,苏文成. 电弧炉系统的谐波分析研究 [J]. 电工技术学报,1994,9(1): 21-26
    [67] 刘小河,赵刚,于娟娟. 电弧炉非线性特性对供电网影响的仿真研究 [J]. 中国电机工程学报,2004, 24(6): 30-34
    [68] H.M. Petersen, R.G. Koch, P.H. Swart, etc. Modeling arc furnace flicker and investigating compensation techniques [C]. Proceedings of the 13th IEEE Industry Applications Conference, Orlando, U.S.A, 1995, 2: 1733-1740
    [69] J. Bekker, P.H. Swart, C.F. Landy, etc. Modeling of a DC arc furnace for optimal integration with the supply system [C]. Proceedings of the 13th IEEE Industry Application Conference Annual Meeting, Orlando, U.S.A, 1995, 2: 1741-1748
    [70] D. Stade, H. Schau, S. Prinz. Influence of the current control loops of DC arc furnaces on voltage fluctuations and harmonics in the HV power supply system [C]. Proceedings of the 9th International Conference on Harmonics and Quality of Power, Orlando, U.S.A, 2000, 3: 821-827
    [71] M.D, Cox, A. Mirbod. A new static VAR compensator for an arc furnace [J]. IEEE Transactions on Power System, 1986, PWRS-1: 110-120
    [72] E. O’Neill-Carrillo, G.T. Heydt, E.J. Kostelich. Nonlinear deterministic modeling of highly varying loads [J]. IEEE Transactions on Power Delivery, 1999, 14(2): 537-542
    [73] D. Andrews, M.T. Bishop, J.F. Witte. Harmonic measurements, analysis, and power factor correction in a modern steel manufacturing facility [C]. Proceedings of IEEE Conference of Industry Application Society Annual Meeting, Dever, U.S.A, 1994, 3: 2021-2029
    [74] D. Andrews, M.T. Bishop, J.F. Witte. Harmonic measurements, analysis, and power factor correction in a modern steel manufacturing facility [J]. IEEE Transactions on Industry Application, 1996, 32(3): 617-624
    [75] E.E. Ahmed, M.M.A. Aziz, E.A. El-Zahab, etc. Investigation and mitigation of harmonics from electric arc furnaces [C]. Proceedings of the 1999 Canadian Conference on Electrical and Computer Engineering, Shaw Conference Center, Edmonton, Canada, 1999: 1126-113
    [76] J.G. Mayordomo, A. Hernandez, R. Asensi, etc. A unified theory of uncontrolled rectifiers, discharge lamps and arc furnace, Part Ⅰ: An analytical approach for normalized harmonic emission calculations [C]. Proceedings of the 8th International Conference on Harmonics and Quality of Power, Athens, Greece, 1998, 2: 740-748
    [77] M. Parniani, H. Mokhtari, M. Hejri. Effects of dynamic reactive compensation in arc furnace operation characteristics and its economic benefit [C]. Proceedings of IEEE/PES Transmission and Distribution Conference and Exhibition, Asia Pacific, 2002, 2: 1044-1049
    [78] J.G. Mayordomo, L.F. Beites, R. Asensi, etc. A new frequency domain arc furnace model foriterative harmonic analysis [J]. IEEE Transactions on Power Delivery, 1997, 12(4): 1771-1778
    [79] L.F. Beites, J.G. Mayordomo, A. Hernandez, etc. Harmonics, interharmonics and unbalances of arc furnaces: A new frequency domain approach [J]. IEEE Transaction on Power Delivery, 2001, 16(4): 661-668
    [80] G.C. Montanari, M. Loggini, A. Cavallini, etc. Arc-furnace model for the study of flicker compensation in electrical networks [J]. IEEE Transactions on Power Delivery, 1994, 9(4): 2026-2034
    [81] A. Cavanilli, G.C. Montanari, L. Pitti, etc. ATP simulation for arc-furnace flicker investigation [J]. European Transactions on Electric Power, 1995, 5(3): 165-172
    [82] L. Tang, S. Kolluri, M.F. Mcgranaghan. Voltage flicker prediction for two simultaneously operation ac arc furnaces [J]. IEEE Transactions on Power Delivery, 1997, 12(2): 985-992
    [83] A.G. Cerrada, P. Garcia-Gonzalez, R. Collantes, etc. Comparison of thyristor-controlled reactors and voltage-source inverters for compensation of flicker caused by arc furnaces [J]. IEEE Transactions on Power Delivery, 2000, 15(4): 1225-1231
    [84] B.N. Ramos, J.L.D.C. Parga. An EMTP study of flicker generation and transmission in power systems due to the operation of an AC electric arc furnace [C]. Proceedings of the 9th International Conference on Harmonics and Quality of Power, Orlando, U.S.A, 2000: 942-947
    [85] G. Carpinelli, M. Di Manno, P. Verde, etc. AC and DC arc furnaces: a comparison on some power quality aspects [C]. Proceeding of IEEE Power Engineering Society Summer Meeting, Edmonton, Alta. Canada, 1999, 1: 499-506
    [86] R. Collantes-Bellido, T. Gomez. Identification and modeling of a three phase arc furnace for voltage disturbance simulation [J]. IEEE Transactions on Power Delivery, 1997, 12(4): 1812-1817
    [87] G. Carpinelli, F. Iacovone, A. Russo. Compensation of waveform distortions and voltage fluctuations of DC arc furnaces: the decoupled compensator [C]. Proceedings of the 10th International Conference on Harmonics and Quality of Power, Rio de Janeiro, Brazil, 2002, 1: 248-255
    [88] R. Mienski, R. Pawelek, I. Wasiak. Shunt compensation for power quality improvement using a STATCOM controller: modeling and simulation [C]. Proceedings of IEE Generation, Transmission and Distribution, 2004, 2: 1350-2360
    [89] D. Stade, H. Schau, M. Malsch, etc. Generation of voltage fluctuations in power systems with DC arc furnaces, [C]. Proceedings of the 8th International Conference on Harmonics and Quality of Power, Athens, Greece, 1998: 1100-1105
    [90] E. Aha, A. Semlyen, N. Rajakovic. A harmonic domain computational package for nonlinear problems and its application to electric arcs [J]. IEEE Transactions on Power Delivery, 1990, 5(3): 1390-1397
    [91] W. Ting, S. Wennan, Z. Yao. A new frequency domain method for the harmonic analysis of power systems with arc furnace[C]. Proceedings of the 4th International Conference on Advances in Power System Control, Operation and Management, Hong Kong, 1997: 552-555
    [92] A. Medina, N. Garcia. Dynamic analysis of electric arcs using a time domain Newton technique [C]. Proceeding of IEEE International Power Electronics Congress, Molelia, Mexico, 1998: 82-88
    [93] A. Medina, N. Garcia. Newton methods for the fast computation of the periodic steady-state solution of systems with nonlinear and time-varying components [C]. Proceedings of the IEEE Power Engineering Society Summer Meeting, Edmonton, Canada, 1999, 2: 664-669
    [94] O. Ozgun, A. Abur. Development of an arc furnace for power quality studies [C]. Proceeding of IEEE Power Engineering Society Summer Meeting, Edmonton, Alta. Canada, 1999, 1: 507-511
    [95] O. Ozgun, A. Abur. Flicker study using a novel arc furnace model [J]. IEEE Transactions on Power Delivery, 2002, 17(4): 1158-1163
    [96] P.E. King, M.D. Nyman. Modeling and control of electric arc furnace using a feedforward artificial neural network [J]. Journal of applied physics, 1996, 80(3): 1872-1877
    [97] A.R. Sadeghian, J.D. Lavers. Application of radial basis functions networks to model electric arc furnaces [C]. Proceedings of International Joint on Neural Networks, Toronto, Canada, 1999, 6: 3996-4001
    [98] A.R. Sadeghian, J.D. Lavers. Nonlinear black-box modeling of electric arc furnace: an application of fuzzy logic system [C]. Proceedings of IEEE International Fuzzy Systems Conference, Seoul, Korea, 1999, 1: 234-239
    [99] A.R. Sadeghian, J.D. Lavers. Application of adaptive fuzzy logic systems to model electric arc furnace [C]. Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society, New York, U.S.A, 1999: 854-858
    [100] A.R. Sadeghian, J.D. Lavers. Neuro-Fuzzy predictors for the approximate prediction of v-i characteristic of electric arc furnace [C]. Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society, Atlanta, U.S.A, 2000: 183-187
    [101] A.R. Sadeghian, J.D. Lavers. Recurrent neural-fuzzy predictors for multi-step prediction of v-i characteristics of electric arc furnaces [C]. Proceedings of the 9th International Conference on Fuzzy Systems, San Antonio, U.S.A, 1: 110-115
    [102] A.R. Sadeghian, J.D. Lavers. Application of feedfoward neuro-fuzzy networks for current prediction in electric arc furnaces [C]. Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks, Como, Italy, 4, 2000: 420-425
    [103] P.E. King, T.L. Ochs, A.D. Hartman. Chaotic response in electric arc furnace [J]. Journal of applied physics, 1994, 76(9): 2059-2065
    [104] E. O’Neill-Carrillo, B. Banfai, G.T. Heydt, etc. EMTP implementation and analysis of nonlinear load models [J]. Electric Power Components and Systems, 2001, 29(3): 809-820
    [105] G. Jang, W. Weiguo, G.T. Heydt. Development of enhanced electric arc furnace models for transient analysis [J]. Electric Power Components and Systems, 2001, 29(4): 1061-1074
    [106] G. Carpinelli, F. Iacovone, A. Russo. Chaos-based modeling of DC arc furnace for power quality issues [J]. IEEE transaction on Power Delivery, 2003, 19(1): 1-8
    [107] M. Zouiti, S. Saadate, X. Lombard, etc. Electronic, Electronic based equipment for flicker mitigation [C]. Proceedings of the 8th International Conference on Harmonics and Quality of Power, Athens, Greece, 1998: 1182-1187
    [108] H. Mokhtari, M. Hejri. A new three phase time-domain model for electric arc furnaces using MATLAB [C]. Proceedings of IEEE/PES Transmission and distribution Conference and Exhibition, Asia Pacific, Yokohama, Japan, 2002: 2078-2083
    [109] S. Chirattananon, Z. Gao. A model for the performance evaluation of the operation of electric arc furnace [J]. Energy Conversion Management, 1996, 37(2): 161-166
    [110] C. Surapong, C.Y. Yu, D. Thukaram, etc. Minimization of the effects of harmonics and voltage caused by electric arc furnace [C]. Proceedings of the IEEE Power Engineering Society Winter Meeting, Singapore, 2000, 4: 2568-2576
    [111] F. Chen, K.B. Athreya, V.V. Sastry, etc. Function space valued Markov model for electric arc furnace [J]. IEEE Transactions on Power Systems, 2004, 19(2): 826-833
    [112] F. Chen. Markov-like models for nonlinear loads in distribution systems [Dissertation]. Iowa State University, 2002
    [113] D. Tewari, G.T. Heydt. Load modeling utilizing symbolic dynamics [J]. IEEE Power Engineering Review, 2002: 53-54
    [114] J.J Lowke, R. Morrow, J. Haidar. A simplified unified theory of arcs and their electrodes [J]. Journal of Physics D: Applied Physics, 1997, 30: 2033-2042
    [115] 陶文铨. 数值传热学(第二版)[M]. 西安:西安交通大学出版社,2001
    [116] D.A. Scott, P. Kovitya, G.N. Haddad. Temperatures in the plume of a dc plasma torch [J]. Journal of Applied Physics, 1989, 66(11): 5232-5239
    [117] C. James, G.R. Bach, R.U. Kery, et al. Continuum radiated power for high-temperature arc and its components [J]. AIAA Journal, 1969, 4(7): 1223-1226
    [118] D.B. Spalding. A general purpose computer program for multi-dimensional one-and-two-phase flow [J]. Mathematics and computers in simulation XXIII, 1981: 267-276
    [119] D. B. Spalding. PHOENICS overview-CHAM TR001[M], London, UK, 2000
    [120] M. Capitelli, G. Colonna, C. Corse, etc. Transport properties of high temperature air in local thermodynamic equilibrium [J]. The European Physical Journal D, 2000, 11: 279-289
    [121] 王丰华,金之俭,朱子述. 直流电弧炉电弧射流等离子体射流的数值模拟[J]. 高压电器,2005, 41(4): 241-244
    [122] T. Kang. Experimental and computational study of electromagnetically driven flow due to the passage of a current between two electrodes [Disseration]. U.S.A, Massachusetts Institute of technology, 1987
    [123] J. Jenista, J.V.R. Heberlein. Numerical model of the anode region of high-current electric arcs [J]. IEEE Transaction on plasma science, 1997, 25(5): 883-890
    [124] B.K. Choi, C.D. Yoo, Y.S. Kim. Dynamics simulation of metal transfer in GMAW- Part 1: globular and spray transfer modes [J]. Weld Journal, 1998, 77: 38-s-44-s
    [125] B.K. Choi, C.D. Yoo, Y.S. Kim. Dynamics simulation of metal transfer in GMAW- Part 2: globular and spray transfer modes [J]. Weld Journal, 1998, 77: 45-s-51-s
    [126] N.A. Sanders, E. Pfender. Measurement of anode falls and anode heat transfer in atmospheric pressure high intensity arcs [J]. Journal of Applied Physics, 1984, 55(3): 714-722
    [127] J. Menart, S. Malik, L. Lin. Coupled radiative, flow and temperature-field analysis of a free-burning arc [J]. Journal of Physics: Applied Physics, 2000, 32: 257-269
    [128] P. Seungho, H.D. Nguyen. Numerical modeling of multiphase plasma/oil flow and heat transfer in an electric arc furnace [J]. International Journal of Heat Mass Transfer, 1995, 38(7): 1161-1171
    [129] Wang Feng-hua, Jin Zhi-jian, Wang Xiu-sheng, etc. Modeling the DC electric arc furnace based on chaos theory and neural network [C]. Proceedings of 2005 IEEE Power Engineering Society General Meeting, San Francisco, 2005, 3: 2503-2508
    [130] 黄润生. 混沌及其应用[M]. 武汉:武汉大学出版社,2000
    [131] N.H. Packard, J.P. Crutchfield, J.D. Farmer, etc. Geometry from a time series [J]. Physics Review Letter, 1980, 45: 712-728
    [132] F. Takens. Determining strange attractors in turbulenc [J]. Lecture notes in Math, 1981, 898: 361-381
    [133] 吕金虎,陆君安,陈士华. 混沌时间序列分析及其应用[M]. 武汉:武汉大学出版社,2002
    [134] A.M. Fraser, H.L. Swinney. Independent coordinates for strange attractors from mutual information [J]. Physical Review, 1986, 33: 1134-1140
    [135] P. Grassberger, I. Procaccia. Measuring the strangeness of strange attractors [J]. Physica 9D (1983) 189-208
    [136] B. Taiye, Sangoyomi, U. Lall, etc. Nonlinear dynamics of the Great Salt Lake: dimension estimation [J]. Water Resource Research, 1996, 32(1): 23-52
    [137] H.D.I. Abarbanel. Analysis of observed chaotic data [M]. Springer-Verlag New York Incorportation, 1996
    [138] D.S. Broomhead, P.K. Gregory. Extracting qualitative dynamics from experimental data [J]. Physica D, 1986, 20: 217-236
    [139] D. Kugiumtzis. State space reconstruction parameters in the analysis of chaotic time series – the role of the time window length [J]. Physica D, 1996, 95: 13-28
    [140] H.S. Kim, R. Eykholt, D.J. Salas. Nonlinear dynamics, delay times, and embedding windows [J]. Physica D, 1999, 127: 48-60
    [141] W.A. Brock, D.A. Hsieh, B. Lebaron. Nonlinear dynamics, chaos, and Instability: Statistical theory and economic evidence [M]. Cambridge: MIT press, 1991
    [142] H. Kantz, T. Schreiber. Nonlinear Time Series Analysis [M]. London: Cambridge University Press, 1997
    [143] A. Wolf, J.B. Swift, H.L. Swinney, et al. Determinint Lyapunov exponents from time series [J]. Physica D, 1985, 16(2): 285-371
    [144] M. Sano, Y. Sawada. Measurement of Lyapunov spectrum from a chaotic time series [J]. Physical Review Letters. 1985, 55(10): 1082-1085
    [145] G. Barana, I. Tsuda. A new method for computering Lyapunov exponents [J]. Physical Letters A. 1993, 175: 421-427
    [146] M.T. Rosestein, J.J. Collins, C.J.D. luca. A practical method for calculating largest Lyaapunov exponents from small data sets [J]. Physica D, 1993, 65: 117-134
    [147] M. Bianchini, P. Frasconi, M. Gori. Learning without local minima in radial basis function networks [J]. IEEE Transaction on Nerual Network, 1995, 6(3): 749-756
    [148] 黄德双. 神经网络模式识别系统理论 [M]. 北京:电子工业出版社,1996
    [149] S. Chen, C.F.N. Cowan, P.M. Garnt. Orthogonal least squares learning algorithm for radial basis function networks [J]. IEEE Transaction on Neural networks, 1991, 2 (1): 302-309
    [150] 闻新,周露,王丹力. MATLAB 神经网络应用设计[M]. 北京:科学出版社,2002
    [151] 殷杰. 电弧炉电极调节系统控制方法研究[学位论文]. 北京:北京机械工业学院,2005
    [152] 周建平,袁强,安景松. 宝钢超高功率直流电弧炉控制系统改造[J]. 宝钢技术,2004,3: 43-47
    [153] 王其平. 电器电弧理论[M]. 北京:械工业出版社,1991
    [154] B. Bowman, H. Edels. Radial temperature measurements of alternating current arcs [J]. British Journac of Applied Physics, 1969, 2(2): 53-63
    [155] Wang Feng-hua, Jin Zhi-jian, Zhu Zi-shu. Modeling and prediction of electric arc furnace based on neural network and chaos theory [C]. Lecture Notes in Computer Science, 2005, 3498(3), Proceedings of the Second International Symposium on Neural Networks, ISNN 2005, Chongqing, 2005: 819-826
    [156] J.J. Lowke, R.J. Zollweg, R.W. Liebermann. Theoretical description of ac arcs in mercury and argon [J]. Journal of Applied Physics, 1975, 46(2): 650-659
    [157] 姚俊,马松辉. Simulink 建模与仿真[M]. 西安:西安电子科技大学出版社,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700