用户名: 密码: 验证码:
痕量元素和预处理对高压铝箔立方织构和发孔性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高比电容电解电容器用铝箔是一种高技术和高附加值产品,它是电子工业最基本的元器件——电容器的基础材料。国内某厂现有高压箔产品在铬酸体系下发孔效果较好,比电容高;但在环保型硫酸体系工艺条件下,出现发孔腐蚀不均匀,发孔数量少等问题,导致化成后表面积小,静电容量不高。因此,为了提高铝箔的发孔率及发孔均匀性,开发适合硫酸体系的高压箔生产技术和产品,本文利用金相显微镜(OM)、X-射线织构仪、扫描电镜(SEM)、二次离子质谱(SIMS)和电化学工作站等检测分析手段和技术平台,对高纯铝箔组织和再结晶织构的演变规律进行了研究,结合第一原理模拟技术,研究了热处理、表面处理和痕量元素含量及分布对铝箔腐蚀发孔性能的影响规律,得到以下结论:
     (1)利用第一原理模拟技术,揭示了痕量元素在铝合金中的分布规律;利用空位迁移原理,建立了痕量元素表面偏析的动力学模型;首次建立了痕量元素种类和含量作用于铝合金表面化学势和溶解电极电势的直接关系式,揭示了痕量元素对铝合金表面电化学性质的影响机理。理论计算结果为高压铝箔成分的设计提供指导。
     (2)揭示了最终退火工艺对铝箔的立方织构占有率、微观组织和铝箔腐蚀发孔率及发孔均匀性的影响规律。结果表明:采用适当速度升温,高温退火后快冷可使铝箔中的痕量元素富集在铝箔表面并保持相对分布均匀的状态,使得腐蚀发孔均匀,腐蚀性能得到提高。
     (3)确定了使铝箔形貌状态均匀并提高发孔均匀性的表面清洗工艺技术。在发孔前用碱清洗铝箔表面可以使铝箔表面的氧化膜溶解变薄,酸清洗则将Cl-引入铝箔表面,酸碱清洗共同使铝箔的腐蚀电位降低,腐蚀电流增大,促进铝箔的腐蚀发孔,提高发孔率,增加发孔均匀性。
     (4)揭示了痕量元素In影响高纯铝形变组织及宏观冷轧织构的形成和演变规律,及其对再结晶立方织构的影响规律。实验发现In可细化铝箔组织,添加In含量在40ppm以内对铝箔立方织构的形成有利。In含量在40ppm时,铝箔经高温短时退火后立方织构取向密度最大,继续增加In含量立方取向密度反而下降。
     (5)探明了痕量元素In含量和分布、最终退火工艺和表面清洗工艺对铝箔腐蚀发孔性能的影响规律,并探讨了其影响机理。In为大尺寸的原子,通过控制不同的热处理条件可以调整和控制痕量元素In在铝箔表面的富集和存在状态。痕量元素In对铝箔的腐蚀机制与Pb相似,迁移到铝箔表面的In原子主要富集在铝箔基体与氧化膜界面处。由于In有比Al更正的电位,In与Al原子形成局部微电池,提高铝箔表面的活性,进而显著提高铝箔的腐蚀效率、增加腐蚀发孔面积,使腐蚀孔坑分布均匀。
     (6)建立了铸锭无均匀化退火直接制备高立方织构含量和优异腐蚀发孔性能的高压铝箔的技术,以及添加ppm级痕量元素的技术。利用三层法高纯铝和偏析法高纯铝包含不同痕量元素的优点,混合使用通过特定的制备工艺可以确保高压箔的立方织构比例高于95%,腐蚀发孔率在98%以上,蚀坑分布均匀。该技术不但省掉了铸锭均匀化退火工艺,还将痕量ppm级的对铝箔腐蚀发孔有利的元素如Ga等直接加入铝箔中,减少了熔铸时添加痕量元素中间合金的麻烦,即节约能耗又提高了生产效率和经济效益。
The electrolytic capacitor aluminum foil with high specific capacitance is a high-tech and high value-added product. It is the main material for capacitors which are the basic devices of the electronic industry. The domestic aluminum foil has high corrosion capacitance in the chromic acid system, but uneven pitting and few etching pits are produced in the environmental of H2SO4 corrosion system, which result in small surface area and low capacitance after forming and etching. In order to promote pitting ability and corrosion homogeneities of aluminum foils, the microstructure and recrystallization texture evolution of high voltage aluminum foils have been investigated using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), secondary ion mass spectrometer (SIMS), electrochemical technique. Combined with first principle simulation, the influence of heat treatment, surface treatment and the amount and distribution of trace elements on the homogeneity of etching pit has been studied. The main conclusions are as following:
     (1)The distribution of trace elements in pure aluminum was investigated by first principle simulation. According to the vacancy transportation principle, a model was established to describe the kinetics process of segregation of trace elements on clean surface via atomic movement through vacancies. The effect of doped trace elements on the electrochemical properties of aluminum surface was investigated, and a straightforward equation was suggested to desbribe the surface chemical potentials of metals and the electrochemical dissolution potentials of alloy surfaces. The calculation results provide a reference for the future design of high voltage aluminum foils.
     (2) The effect of heat treatment on the volume fraction of cube texture, microstructure and the pitting ability was studied. The results indicated that properiety speed of heating-up and rapid cooling at the elevated temperatures led to homogeneous dispersion of trace elements on aluminum foil surface and more corrosion pits that ensure high specific capacitance.
     (3) The surface treatment was used to improve the uniformity of pitting on the surface of the aluminum foils. The sodium hydroxide pre-treatment before pitting can remove the oxide film on the foils, and the hydrochloric acid pre-treatment can introduce Cl-ion into the surface of foils. NaOH+HCl co-pre-treatment reduces the corrosion potential and increases the corrosion current density. The area and density of the pit etching on the surface were promoted after pre-treatment, and the uniformity of pitting was also improved significantly.
     (4) The effects of In trace element on the deformation microstructure, the evolution of cold rolling texture and recrystallization texture of the high purity aluminum foils were investigated. The results demonstrated that In element can refine the grains of the aluminum foils and ensure the percentage of recrystallization cube texture in the aluminum foils higher than 95%.
     (5) The influence of the content and distribution of trace In, the final annealing and surface treatment on the homogeneity of etching pit has been investigated, and the mechanism was explored. The enrichment and the distribution of trace element In on the foil surface can be adjusted by carefully controlling the heat-treatment parameters. The mechanism of pitting behavior of trace In on aluminum surface was similar to that of Pb. Most of the enriched In was found to be near the oxide film/aluminum matrix interface. Since the potential of In is much higher than that of aluminum, a local electrochemical cell was formed between In and Al substrate. Thus the efficiency of corrosion was improved and the etched area became larger. The corrosion pits of the etched aluminum foil became more uniform.
     (6) A new method without homogenizing treatment of ingot was established to fabricate high voltage aluminum foils with high content of cube texture and excellent pitting corrosion properties. Taking advantage of three-layer-electrolysis high-purity aluminum and partial high-purity aluminum, more than 95%volume fraction of cube texture and 98% corrosion region distributed well can be obtained through special designed process. Moreover, it introduced the gallium into aluminum foils directly. It has the advantages of lower cost, higher efficiency and more economy benefits.
引文
[1]高亢之.电解电容器用铝箔概述[J].轻金属加工技术,2000,28(11):9-15.[2] Primavesi G. Aluminum electrolytic capacitors-a brief history[J]. IEE Colloquium(Digest),1997,324(4):1-46.[3]徐友龙.铝电解电容器的现状与发展[J].电子元器件应用,2002,04(06):1-3.[4]季锐.铝电解电容器的基本概念与应用[J].电子元器件应用,2002,4(6):54-58.[5]陈国光,曹婉真.电解电容器[M].西安:西安交通大学出版社,1994.[6]杨邦朝,肖占文.预处理对铝箔电蚀特性的影响[J].电子元件与材料,1997,16(03):1-9.[7] Nakamura J, Maeda T. Analysis of electrical characteristics of anodic foils with tunnel pits for electrolytic capacitors[J]. Electronics and Communications in Japan, Part 2,1996,79(9):51-62.[8]阎康平.电容器高纯铝箔的侵蚀机理及工程化研究:[博士学位论文].成都:四川大学,1999.[9] Brevnov D A. Electrochemical etching of patterned Al (100) foils in HCl[J]. J. Micromech. Microeng.,2008,18(8):7001-7005.
    [10]David G. Tunnel morphology in anodic etching of aluminum[J]. The Electrochemical Society,1997,144(6):1965-1971.
    [11]张新明,孟亚,周卓平,等.Fe杂质对高纯铝箔再结晶织构及比电容的影响[J].中国有色金属学报,1999,9(01):19-24.
    [12]Osawa N, Fukuoka K. Pit nucleation behavior of aluminium foil for electrolytic capacitors during early stage of DC etching[J]. Corros. Sci.,2000,42(3): 585-597.
    [13]Song J B, Mao W M, Yang H, et al. Effect of trace Sn on corrosion behaviors of high voltage anode aluminum foil[J]. T. Nonferr. Metal. Soc.,2008,18(4): 879-883.
    [14]冯哲圣.高比容铝电极箔制造技术及其机理研究:[博士学位论文].成都:电子科技大学,2003.
    [15]郭瑞,刘桂云,宛亚坤.电解电容器高压阳极用铝箔研究[J].轻合金加工技术,2002,30(04):20-23.
    [16]肖亚庆,张新明,靳丽.微观组织对电解电容器铝箔比电容的影响[J].材料导报,2003,17(6):80-83.
    [17]潘复生,张静.铝箔材料[M].北京:化学工业出版社,2005.
    [18]杨宏,毛卫民.铝电解电容器铝箔的研究现状和技术发展[J].材料导报,2005,19(09):1-4.
    [19]李念奎,叶淑芬.均匀化退火对高纯铝箔的组织和性能的影响(3)[J].轻金属,1994(02):50-54.
    [20]凌亚标,张声鹏,谭澄宇,等.高纯铝铸轧坯均匀化对其箔材组织结构的影响[J].铝加工,1996,19(3):38-42.
    [21]Suzuki T, Arai K, Shiga M, et al. Impurity effect on cube texture in pure aluminum foils[J]. Metallurgical Transactions A,1985,16(1):27-36.
    [22]李念奎.提高高纯铝箔立方织构的工艺途径[J].轻合金加工技术,1995,23(4):18-23.
    [23]Xiao Y Q, Liu C M, Jiang S, et al. Influence of high hot-rolling temperature and multistage annealing upon the cube texture of high purity aluminum capacitor foils[J]. Textures of Materials, Pts 1 and 2,2002,408-4:1449-1452.
    [24]Hjelen J, (?)rsund R, Nes E. On the origin of recrystallization textures in aluminium[J]. Acta Metall. Mater.,1991,39(7):1377-1404.
    [25]Liu C M, Zhang X M, Chen Z Y, et al. Effect of hot finishing rolling on cube texture in high purity aluminum foils[J]. T. Nonferr. Metal. Soc.,2001,11(1): 103-107.
    [26]Kajihara K, Tokuda K, Sugizaki Y, et al. Development of cube texture during industrial processing of high purity aluminum foil obtained with 99% volume fraction of cube component[M]. Textures of Materials, Pts 1 and 2,2002:408-4, 791-796.
    [27]黎勇,陈文,温庆红.热终轧温度及预先退火对高压阳极箔立方织构影响的研究[J].铝加工,2001,24(02):8-13.
    [28]Kobayashi M, Takayama Y, Kato H, et al. In-situ SEM/EBSP analysis during annealing in a pure aluminum foil for capacitor[J]. Thermec 2006, Pts 1-5,2007, 539-543:362-367.
    [29]Kobayashi M, Takayama Y, Kato H. Preferential growth of cube-oriented grains in partially annealed and additionally rolled aluminum foils for capacitors[J]. Mater. Trans.,2004,45(12):3247-3255.
    [30]Engler O, Huh M Y. Evolution of the cube texture in high purity aluminum capacitor foils by continuous recrystallization and subsequent grain growth[J]. Mat. Sci. Eng. A.-Struct,1999,271(1-2):371-381.
    [31]刘楚明,张新明,邓运来,等.中间退火对高压阳极电容铝箔织构演变的影响[J].矿冶工程,2001,21(3):72-74.
    [32]Zhang X M, Xiao Y Q, Tang J G, et al. Influence of pre-annealing and additional deformation on the recrystallization of high-purity aluminum foils [J]. Mater. Sci. Forum,2002,408-412:1443-1448.
    [33]Pan F S, Peng J, Tang A T, et al. Increasing cube texture in high purity aluminium foils for capacitors [J]. Mater. Sci. Tech.-Lond,2005,21(12): 1432-1435.
    [34]彭建.阳极铝箔工艺过程和立方织构的研究:[博士学位论文].重庆:重庆大学,2004.
    [35]刘楚明,张新明,陈志永,等.高压阳极电容铝箔生产工艺对立方织构的影响[J].材料导报,2000,14(6):19-21.
    [36]徐进,毛卫民,冯惠平,等.退火加热过程对高压电解电容器阳极铝箔立方织构的影响[J].中国有色金属学报,2001,11(S2):42-46.
    [37]Umezawa A, Inagaki H. Development of cube recrystallization textures in high-purity A1[J]. Z. Metallkd,2006,97(1):39-48.
    [38]刘楚明,张新明,陈志永,等.成品退火对高纯铝箔立方织构的影响[J].中南工业大学学报(自然科学版),2001,32(01):85-88.
    [39]Takata N, Ikeda K, Yoshida F, et al. Influence of purity on the formation of cube texture in aluminum foils for electrolytic capacitors [J]. Mater. Trans., 2004,45(5):1687-1692.
    [40]Ito K, Musick R, Lucke K. The influence of iron content and annealing temperature on the recrystallization textures of high-purity aluminium-iron alloys[J]. Acta Metallurgica,1983,31(12):2137-2149.
    [41]刘楚明,张新明,陈志永,等.微量元素对高纯铝箔立方织构的影响[J].中南工业大学学报(自然科学版),2001,32(2):176-179.
    [42]徐进,毛卫民,冯惠平,等.Cu对高压电解电容器阳极铝箔再结晶织构的影响[J].北京科技大学学报,2002,24(02):133-136.
    [43]毛卫民,杨宏,余永宁,等.微量Mg对高压电子铝箔腐蚀结构的影响[J].中国有色金属学报,2003,13(5):1057-1060.
    [44]萨丽曼.微量元素镁及表面带油对高压箔性能的影响研究:[硕士学位论文].北京:北京科技大学,2006.
    [45]邓运来,张新明,刘楚明,等.微量稀土对高压阳极电容铝箔织构演变的影响[J].功能材料,2002,33(01):60-62.
    [46]刘楚明,张新明,周鸿章.微量铍对高压阳极电容铝箔再结晶织构形成的影响[J].轻合金加工技术,2001,29(6):15-18.
    [47]刘楚明,张新明,陈志永,等.微量铍对高纯铝箔立方织构的影响[J].矿冶工程,2000,20(4):66-68.
    [48]黄丽颖.稀土电解电容器高压阳极用铝箔组织和织构研究:[硕士学位论文].包头:内蒙古科技大学,2007.
    [49]Wang H, Li W, Ren H, et al. Effect of cerium addition on microstructure and texture of aluminum foil forelectrolytic capacitors[J]. J. Rare Earth.,2010, 28(1):134-137.
    [50]王向阳.稀土电解电容器高压阳极用铝箔电解腐蚀研究:[硕士学位论文].包头:内蒙古科技大学,2008.
    [51]卓海宇.微量镉对电解电容器阳极用铝箔性能的影响[J].黄金学报,2000,2(1):34-36.
    [52]Song J B, Mao W M, Yang H, et al. Effect of trace Sn on pitting behaviors of high voltage anode aluminum foil[J]. J. Mater. Sci. Technol.,2008,24(5): 718-722.
    [53]宋婧波.微量元素锡对高压阳极铝箔再结晶织构及腐蚀性能的影响:[硕士学位论文].北京:北京科技大学,2007.
    [54]Arai K, Suzuki T, Atsumi T. Effect of trace elements on etching of aluminum electrolytic capacitor foil[J]. J. Electrochem. Soc.,1985,132(7):1667-1671.
    [55]Gundersen J T B, Ayta A, Nordlien J H, et al. Effect of heat treatment on electrochemical behaviour of binary aluminium model alloys[J]. Corros. Sci., 2004,46(3):697-714.
    [56]郭敏.影响高压铝箔发孔因素的研究:[硕士学位论文].北京:北京科技大学,2006.
    [57]Lee J, Kim J, Kim J, et al. Effects of pretreatment on the aluminium etch pit formation[J]. Corros. Sci.,2009,51(7):1501-1505.
    [58]Hung C Y, Bin Lung O, Lien L Y. Effect of acid concentration and current density on DC etching of aluminum electrolytic capacitor foil[J]. Korean J. Chem. Eng.,2007,24(5):881-887.
    [59]Caicedo-Martinez C E, Koroleva E, Skeldon P, et al. Behavior of impurity and minor alloying elements during surface treatments of aluminum[J]. J. Electrochem. Soc,2002,149(4):B139-B145.
    [60]Mao W, Jiang H, Yang P, et al. Distribution of microelements and their influence on the corrosion behavior of aluminum foil[J]. J. Mater. Sci. Technol., 2005,21(1):43-46.
    [61]大泽伸夫.电解电容器电极用铝箔制造方法[P]:日本发明专利,特开平10-30 832.1998-11-17.
    [62]Tsubakino H, Nogami A, Yamanoi T. Segregation of lead in oxide film of high-purity aluminum containing 100 ppm lead[J]. Appl. Surf. Sci.,2002, 185(3-4):298-302.
    [63]Chen H C, Ou B L. Effects of trace lead on the etching of aluminum foils for high voltage electrolytic capacitors[J]. J. Mater. Sci.-Mater. El.,2004,15(12): 819-823.
    [64]Lin W, Tu G C, Lin C F, et al. The effect of lead impurity on the DC-etching behaviour of aluminum foil for electrolytic capacitor usage[J]. Corros. Sci., 1996,38(6):889-907.
    [65]杨宏.非铬酸系电解电容器用高压阳极铝箔的研究:[博士学位论文].北京:北京科技大学,2007.
    [66]左宏,毛卫民.微量铅和铬酸盐对高压铝箔腐蚀行为的影响[J].材料科学与工程学报,2005,23(04):604-606.
    [67]李东,毛卫民,将恒.表面划痕对高纯铝腐蚀发孔的影响[J].电子元件与材料,2009,28(3):16-18.
    [68]Scherer J, Magnussen O M, Ebel T, et al. Initial stages of the anodic etching of aluminum foils studied by atomic force microscopy[J]. Corros. Sci.,1999, 41(1):35-55.
    [69]Buytaert G, Kernig B, Brinkman H J, et al. Influence of surface pre-treatments on disturbed rolled-in subsurface layers of aluminium alloys[J]. Surf. Coat. Tech.,2006,201(6):2587-2598.
    [70]班朝磊.酸碱预处理对阳极铝箔电蚀特征的影响[J].轻合金加工技术,2010,38(5):39-41.
    [71]王辉.高压电子铝箔的发孔与扩孔技术研究:[硕士学位论文].北京:北京科技大学,2005.
    [72]Chiu Y H, Ou B L, Lee Y L. Effect of thermo-process on anodic capacitor foil manufacturing for AC etching[J], J. Mater. Sci.-Mater. El.,2007,18(12): 1239-1245.
    [73]刘楚明,张新明,周鸿章,等.铁含量及退火对高纯铝箔再结晶织构的影响[J].金属热处理,2002,27(3):21-23.
    [74]毛卫民,蒋恒,杨平,等.微观结构和微量元素对铝箔腐蚀结构的影响[J].中国有色金属学报,2004,14(10):1627-1631.
    [75]毛卫民,杨宏,杨平,等.退火对高压电解电容器铝箔微量元素分布和腐蚀性能的影响[J].金属热处理,2004,29(09):3-6.
    [76]Altenpohl D, Post W. Hydrated oxide films on aluminum-their growth and their importance in electrolytic capactiors[J]. Journal of the electrochemical socity, 1961,108(17):628-631.
    [77]Nishio K, Fukushima T, Masuda H. Control of pitting sites on Al for electrolytic capacitors using patterned masking film[J]. Electrochem. Solid St., 2006,9(9):B39-B41.
    [78]陈义庆.电子铝箔的高比容化成技术研究:[硕士学位论文].北京:北京科技大学,2005.
    [79]Lin W, Tu G C, Lin C F, et al. The effect of indium impurity on the DC-etching behaviour of aluminum foil for electrolytic capacitor usage[J]. Corros. Sci., 1997,39(9):1531-1543.
    [80]Lee W J, Pyun S I. Role of prior cathodic polarization in the pitting corrosion of pure aluminium in acidic chloride solution[J]. Mat. Sci. Eng. A.-Struct.,2000, 279(1-2):130-137.
    [81]Lin C F, Hebert K R. The effect of prior cathodic polarization on the initiation of pitting on aluminum[J]. J. Electrochem. Soc.,1990,137(12):3723-3730.
    [82]Oh H J, Lee J H, Ahn H J, et al. Etching characteristics of high-purity aluminum in hydrochloric acid solutions[J]. Mat. Sci. Eng. A.-Struct.,2007,449:348-351.
    [83]Ryu J H, Seo J H, Jeong J H, et al. The effect of aluminum ions on the DC etching of aluminum foil[J]. J. Appl. Electrochem.,2004,34(9):879-884.
    [84]Van Gheem E, Vereecken J, Le Pen C. Influence of different anions on the behaviour of aluminium in aqueous solutions[J]. J. Appl. Electrochem.,2002, 32(11):1193-1200.
    [85]Zhou Y, Hebert K R. A mathematical model for the initiation of aluminum etch tunnels[J]. J. Electrochem. Soc.,1998,145(9):3100-3109.
    [86]Bakish R, Borders E Z, Kornhaas R. On the fundamentals of etching high-purity aluminum foil for capacitor use[J]. J. Electrochem. Soc.,1962,109(9): 791-795.
    [87]Lee Y L, Ou B L, Chiu Y H. Effect of frequency and current density on AC etching of aluminum electrolytic capacitor foil[J]. J. Mater. Sci.-Mater. El., 2007,18(6):627-634.
    [88]肖占文.电容器铝箔交流腐蚀面机理研究:[博士学位论文].成都:电子科技大学,1999.
    [89]Matsumoto M, Fukutani K, Okano T, et al. Study of the adsorption structure of NO on Pt(111)by scanning tunneling microscopy and high-esolution electron energy-loss spectroscopy[J]. Surf. Sci.,2000,454:101-105.
    [90]邓辉球.二元合金系表面聚集的计算机模拟研究:[博士学位论文].长沙:湖南大学,2001.
    [91]Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys. Rev. B,1990,41(11):7892.
    [92]Gonze X, Beuken J M, Caracas R, et al. First-principles computation of material properties:the abinit software project.[J]. Comp. Mater. Sci.,2002,25(3): 478-492.
    [93]Bockstedte M, Kley A, Neugebauer J, et al. Density-functional theory calculations for poly-atomic systems electronic structure, static and elastic properties and ab initio molecular dynamics[J]. Comput. Phys. Commun.,1997, 107(1-3):187-222.
    [94]Clark S J, Segall M D, Pickard C J, et al. First principles methods using CASTEP[J]. Z. Kristallogr.,2005,220(5-6):567-570.
    [95]Segall M D, Lindan P, Probert M J. First-principles simulation: ideas, illustrations and the castep code[J]. J.Phys.:Condense Matter,2002(14): 2717-2744.
    [96]Hammer B, Hansen L B, K N J. Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals[J]. Phys. Rev. B,1999,59(11):7413-7421.
    [97]Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B,1996,54(16): 11169-11186.
    [98]Blaha P, Schwarz K, Madsen G, et al. Wien2k, an augmented plane wave+local orbitals program for calculating crystal properties[M]. Wien:Karlheinz Schwarz: Techn.Universitat,2001.
    [99]Aloni S, Polak M. Lead segregation at clean and oxygen-covered surfaces of al-0.01%Pb solid solution[J]. Surf. Sci.,1996,349(1):L123-L127.
    [100]Ashitaka Z, Thompson G E, Skeldon P, et al. Influence of thermal and surface treatments on distributions of lead in Al-Pb foils[J]. J. Electrochem. Soc.,2000, 147(1):132-139.
    [101]L(?)vvik O M. Surface segregation in palladium based alloys from density-functional calculations [J]. Surf. Sci.,2005,583(1):100-106.
    [102]Deng H, Hu W, Shu X, et al. Analytic embedded-atom method approach to studying the surface segregation of Al-Mg alloys[J]. Appl. Surf. Sci.,2004, 221(1-4):408-414.
    [103]Andreev Y Y, Goncharov A V. Thermodynamic calculation and experimental investigation of the surface enrichment of electrochemically activated Al-Me (Sn, In, Zn) alloys[J]. Electrochim. Acta,2005,50(13):2629-2637.
    [104]Good B, Bozzolo G. Surface composition of alloys via BFS atomistic monte carlo simulation[J]. Surf. Sci.,2002,507:730-735.
    [105]Honecy F S, Bozzolo G, Good B. Surface segregation in ternary alloys:A BFS study of Ni-Al-Cu(100) surface composition[J]. Appl. Surf. Sci.,1999, 137(1-4):157-162.
    [106]Ma Y, Balbuena P B. Pt surface segregation in bimetallic Pt3M alloys:a density functional theory study[J]. Surf. Sci.,2008,602(1):107-113.
    [107]Lanzani G, Kangas T, Laasonen K. Copper passivation by metal doping[J]. J. Alloy. Compd,2009,482(1-2):33-42.
    [108]任云鹏,鲁玉祥,娄琦.CO在Pt低指数面上吸附行为的理论研究[J].物理化学学报,2007,23(11):1728-1732.
    [109]刘奕新,郑定山,张怡,等.LaNi5(111)表面结构及吸氢机理的第一性原理研究[J].中国有色金属学报,2008,18(9):1692-1698.
    [110]赵巍,汪家道,刘峰斌,等.H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究[J].物理学报,2009,58(5):3352-3358.
    [111]许桂贵,吴青云,张健敏,等.第一性原理研究氧在Ni(111)表面上的吸附能及功函数[J].物理学报,2009,58(3):1924-1930.
    [112]Choi H, Yi S C, Chung Y C. Electronic structures and atomic surface diffusion in Cr/Fe(001) and Fe/Cr(001) systems:first-principles study[J]. Japanese Journal of Applied Physics,2008,47(6):5076-5078.
    [113]Dianat A, Zimmermann J, Seriani N, et al. Ab initio study of element segregation and oxygen adsorption on PtPd and CoCr binary alloy surfaces[J]. Surf. Sci.,2008,602(4):876-884.
    [114]Sa'Adi H, Hamad B. First-principles investigations of iridium low index surfaces[J]. J. Phys. Chem. Solids,2008,69(10):2457-2464.
    [115]Ji Z, Jalbout A F, Li J. Adsorption and diffusion of OH on Mo modified Pt(111) surface:first-principles theory[J]. Solid State Commun.,2007,142(3): 148-153.
    [116]刘以良,杨缤维,蒋刚.Ni(111)表面上N原子对C原子电子结构的影响(英文)[J].物理化学学报,2009,25(3):435-440.
    [117]Greeley J, N(?)rskoy J K. Electrochemical dissolution of surface alloys in acids: thermodynamic trends from first-principles calculations[J]. Electrochim. Acta, 2007,52(19):5829-5836.
    [118]Ma Y G, Balbuena P B. Surface properties and dissolution trends of Pt3M alloys in the presence of adsorbates[J]. J. Phys. Chem. C.,2008,112(37): 14520-14528.
    [119]Taylor C D, Neurock M, Scully J R. First-principles investigation of the fundamental corrosion properties of a model CU38 nanoparticle and the (111), (113) surfaces[J]. J. Electrochem. Soc.,2008,155(8):C407-C414.
    [120]Greeley J. First-principles investigations of electrocatalysis and corrosion[J]. ECS Transactions,2008,16(2):209-213.
    [121]杨宏,毛卫民,钮震霖.国内外高压电解电容器用铝箔的性能比较[J].电子元件与材料,2005,24(11):62-65.
    [122]黄丽颖,李文学.Ce含量和再结晶退火温度对稀土铝箔再结晶组织与硬度的影响[J].轻合金加工技术,2007,35(4):49-52.
    [123]Tsubakino H, Nogami A, Yamamoto A, et al. Effect of heat-treatment in different environments on surface segregation phenomena of lead in aluminum-100 ppm lead alloy[M]. Aluminum Alloys 2002:Their Physical and Mechanical Properties Pts 1-3, Zurich-Uetikon:Trans Tech Publications Ltd, 2002:396-4,435-440.
    [124]Ashitaka Z, Skeldon P, Thompson G E, et al. Enrichment behaviour of gallium in heat and surface treatments of Al-Ga foils[J]. Corros. Sci.,2002,44(12): 2725-2735.
    [125]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett.,1996,77(18):3865-3868.
    [126]Simonovic D, Sluiter M H F. Impurity diffusion activation energies in Al from first principles[J]. Phys. Rev. B,2009,79(5):54304-54312.
    [127]Tashlykova-Bushkevich I I, Shepelevich V G. Dope depth distribution in rapidly solidified Al-Ge and Al-Me (Me=Fe, Cu, Sb) alloys[J]. J. Alloy. Compd,2000,299(1-2):205-207.
    [128]Graver B, van Helvoort A, Walmsley J C, et al. Surface segregation of indium by heat treatment of aluminium[M]. Aluminium Alloys 2006, Pts 1 and 2, Zurich-Uetikon:Trans Tech Publications Ltd,2006:519-521,673-678.
    [129]Ashitaka Z, Thompson G E, Skeldon P, et al. Behaviour of bismuth during simulated processing of model aluminium capacitor foils[J]. J. Mater. Sci., 2001,36(9):2237-2243.
    [130]Lay T T, Yoshitake M, Bera S. Surface segregation of Al substrate metal on Zr film surface[J]. Appl. Surf. Sci.,2003,220(1-4):113-116.
    [131]Kovacs K, Perczel I V, Josepovits V K, et al. In situ surface analytical investigation of the thermal oxidation of Ti-Al intermetallics up to 1000 ℃[J]. Appl. Surf. Sci.,2002,200(1-4):185-195.
    [132]Moison J M, Houzay F, Barthe F, et al. Surface segregation inⅢ-V alloys[J]. J. Cryst. Growth,1991,111(1-4):141-150.
    [133]Bera S, Lay T T, Yoshitake M. Surface segregation of substrate Al in the Cr/Al/Al system[J]. Journal of Surface Analysis,2002,9(3):392-395.
    [134]Tashlykova-Bushkevich I I. Effects of thermal treatment on microstructure of rapidly solidified Al-2.1at.% Mn alloy studied by RBS technique[J]. J. Alloy. Compd,2009,478(1-2):229-231.
    [135]Graupner H, Hammer L, Muller K, et al. Composition and structure of the (100) and (110) surfaces of FeAl[J]. Surf. Sci.,1995,322(1-3):103-115.
    [136]Hammer L, Blum V, Schmidt C, et al. Role of Co antisite segregation in the CoAl(111) surface[J]. Phys. Rev. B,2005,71(7):11.
    [137]Stefanov P, Stanchev A. Surface segregation and preferential sputtering in thin Al-Ni alloy films[J]. Mater. Chem. Phys.,1997,50(3):209-212.
    [138]Wang P, Murarka S P, Kaminski D A, et al. Surface segregation of Al of the bilayers of pure Cu and Cu-Al alloy films [J]. J. Electrochem. Soc.,2001, 148(9):G481-G486.
    [139]Edgar E L. Periodic table of the elements version 1.1[DB/CD].1993.
    [140]Tyson W R, Miller W A. Surface free energies of solid metals:estimation from liquid surface tension measurements [J]. Surf. Sci.,1977,62(1):267-276.
    [141]De Boer F R, Boom R, Mattens W C M, et al. Cohesion in metals [M]. Amsterdam:North-Holland,1988.
    [142]Zhang X M, Liu S D, Tang J G, et al. Mechanism of strengthening of cube texture for high purity aluminum foils by additional-annealing[J]. T. Nonferr. Metal. Soc,2003,13(3):499-503.
    [143]Govind N, Petersen M, Fitzgerald G, et al. A generalized synchronous transit method for transition state location[J]. Computational materials science proceedings of the symposium on software development for process and materials design,2003,28(2):250-258.
    [144]Porter D A, Easterling K E. Phase transformations in metals and alloys [M]. Cheltenham:Stanley Thornes,2000.
    [145]Fradin F Y, Rowland T J. Nmr measurement of the diffusion coefficient of pure aluminum[J]. Appl. Phys. Lett.,1967,11(6):207-209.
    [146]Mantina M, Wang Y, Arroyave R, et al. First-principles calculation of self-diffusion coefficients [J]. Phys. Rev. Lett.,2008,100(21):215901-215904.
    [147]Saevik O, Yu Y D, Nordlien J H, et al. Characterization of lead enrichment on electrochemically active AlPb model alloy[J]. J. Electrochem. Soc,2005, 152(9):B334-B341.
    [148]Jia Z H, Graver B, Walmsley J C, et al. Effect of magnesium on segregation of trace element lead and anodic activation in aluminum alloys [J]. J. Electrochem. Soc,2008,155(1):C1-C7.
    [149]Keuong Y W, Nordlien J H, Ono S, et al. Electrochemical activation of aluminum by trace element lead[J]. J. Electrochem. Soc.,2003,150(11): B547-B551.
    [150]Tsubakino H, Nogami A, Yamamoto Y, et al. Surface segregation phenomena of solute elements in Al-Pb and Al-Fe dilute binary alloys[J]. Appl. Surf. Sci., 2004,238(1-4):464-468.
    [151]Ashitaka Z, Thompson G E, Skeldon P, et al. The behavior of copper and lead during heat-treatment and surface treatment of aluminium capacitor [J]. J. Electrochem. Soc.,1999,146(4):1380-1385.
    [152]Pulay P. ab initio calculation of force constants and equilibrium geometries in polyatomic molecules-i. Theory[J]. Mol. Phys.,1969,17(2):197-204.
    [153]Mutasa B, Farkas D. Atomistic structure of high-index surfaces in metals and alloys[J]. Surf. Sci.,1998(415):312-319.
    [154]Da Silva J L F. All-electron first-principles calculations of clean surface properties of low-miller-index Al surfaces[J]. Phys. Rev. B,2005,71(19): 195416.
    [155]Pasti I, Mentus S. Electronic properties of the PtxMe1-x/Pt(111) (Me=Au, Bi, In, Pb, Pd, Sn and Cu) surface alloys:DFT study[J]. Mater. Chem. Phys.,2009, 116(1):94-101.
    [156]Segall M D, Pickard C J, Shah R, et al. Population analysis in plane wave electronic structure calculations[J]. Mol. Phys.,1996,89(2):571-577.
    [157]Felhosi I, Habazaki H, Shimizu K, et al. Void formation and alloy enrichment during anodizing of aluminium alloys containing cadmium, indium and tin[J]. Corros. Sci.,1998,40(12):2125-2139.
    [158]Gundersen J T B, Ayta A, Ono S, et al. Effect of trace elements on electrochemical properties and corrosion of aluminium alloy AA3102[J]. Corros. Sci.,2004,46(2):265-283.
    [159]Ono S, Habazaki H. Effect of sulfuric acid on pit propagation behaviour of aluminium under AC etch process[J]. Corros. Sci.,2009,51(10):2364-2370.
    [160]毛卫民,杨宏,宋婧波.一种无铅合金化设计的电解电容器铝箔[P]:中国发明专利,200610113611.2.
    [161]Tak Y, Sinha N, Hebert K R. Metal dissolution kinetics in aluminum etch tunnels[J]. J. Electrochem. Soc,2000,147(11):4103-4110.
    [162]Mao W M, Li D, Yu Y N. Influence of surface oxide films on elastic behaviors of straight screw dislocations parallel to the surface of pure aluminum[J]. J. Mater. Sci. Technol,2007,23(3):392-394.
    [163]Feliu S, Bartolome M J. Influence of alloying elements and etching treatment on the passivating films formed on aluminium alloys[J]. Surf. Interface Anal., 2007,39(4):304-316.
    [164]郑子樵.材料科学基础[M].长沙:中南大学出版社,2005:305-316.
    [165]孙建林,孙艳伟,马艳丽,等.轧制油对铝箔退火表面质量的影响[J].北京科技大学学报,2008,30(2):137-140.
    [166]Pyun S I, Lee W J. The effect of prior Cl" ion incorporation into native oxide film on pure aluminium in neutral chloride solution on pit initiation[J]. Corros. Sci.,2001,43(2):353-363.
    [167]吕亚平,毛卫民.退火工艺对低压铝箔氧化膜和比电容的影响[J].材料热处理学报,2007,28(5):78-81.
    [168]张新明,肖亚庆,刘胜胆,等.电解电容器用高纯铝箔立方织构比例的测定方法[P]:中国发明专利,200410023071.X.
    [169]刘楚明,张新明,陈志永,等.中间退火对高纯铝箔立方织构的影响[J].金属热处理,2001,26(3):28-30.
    [170]刘楚明,张新明,周鸿章,等.预变形及退火对高纯铝箔立方织构的影响[J].金属热处理,2001(05):12-14.
    [171]Ikeda K, Takata N, Yoshida F, et al. Influence of partial annealing temperature on cube texture in high purity aluminum foils [M]. Aluminum alloys 2002: Their physical and mechanical properties Pts 1-3, Gregson P J, Harris S J, Zurich-Uetikon:Trans Tech Publications Ltd,2002:396-4,569-574.
    [172]刘楚明,张新明,周鸿章,等.分级退火对高纯铝箔再结晶织构的影响[J].金属热处理,2001,26(9):38-41.
    [173]毛卫民,何业东.国产电解电容器用铝箔的发展与展望[J].世界有色金属,2004(8):23-27.
    [174]张华,唐伟,梁延彬.热终轧温度对纯铝板组织与性能的影响[J].轻合金加工技术,1997,25(10):21-22.
    [175]王轶农,蒋奇武,赵骧.冷轧高纯铝板再结晶织构的演变特征[J].东北大学学报(自然科学版),2000,21(1):84-87.
    [176]孟亚秋.腐蚀条件对高纯铝箔直流电解腐蚀的影响[J].安徽化工,2005(04):36-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700