用户名: 密码: 验证码:
表面偏析超滤膜的制备及其抗污染机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜污染是限制超滤过程广泛应用的瓶颈,因而研究膜污染机理和开发抑制膜污染的方法已经成为超滤领域的一个研究热点。论文以解决高分子超滤膜污染为出发点,采用蛋白质溶液为模型体系,聚醚砜(PES)为膜主体,聚氧乙烯-聚氧丙烯-聚氧乙烯(Pluronic)两亲嵌段共聚物为表面改性剂,制备了不同类型表面偏析超滤膜。
     采用DSC、XPS、FTIR、静态接触角和SEM等方法对PES-Pluronic表面偏析超滤膜进行了表征。结果表明:由于Pluronic与PES之间的部分相容性,使Pluronic在成膜过程中发生表面偏析,增大了膜表面亲水性,但并未改变膜原有的不对称结构。通过计算Pluronic在膜表面覆盖度和膜中残留率,考察了影响湿法相转化过程中Pluronic表面偏析行为的因素。结果表明:Pluronic的亲疏水链段长度之比和分子量是影响Pluronic表面偏析行为的两个重要因素。
     通过对PES-Pluronic表面偏析超滤膜分离特性和抗污染特性的系统研究,发现:Pluronic的引入增大了超滤膜的膜孔径,降低了蛋白质截留率;膜表面高密度PEO链段,使PES-Pluronic表面偏析超滤膜具有优良的抑制蛋白质吸附能力和抗污染特性,蛋白质吸附量最低可降到0,通量恢复率最高可达到89%,高于空白膜的62%。
     为了进一步提高膜表面PEO链段覆盖度,利用Pluronic P123制备一系列枝状嵌段共聚物,并将其用于表面偏析超滤膜的制备。结果表明:枝状嵌段共聚物具有较高的表面偏析能力,由其制备的表面偏析改性膜具有较高的亲水性和抗污染性能,并且增大枝状嵌段共聚物中PEO臂数可以提升表面偏析超滤膜的抗污染特性。
     测量了PES铸膜液浊点线和凝胶值,考察了Pluronic的引入对铸膜液相行为的影响,研究表明Pluronic的加入改善了铸膜液的稳定性。采用分子模拟对Pluronic表面偏析机理以及铸膜液相行为进行了初步研究,结果表明:由Pluronic结构不同引起的相互作用力差异是导致表面偏析行为差异的根本原因;加入Pluronic后,铸膜液中容易形成体积较大的反胶团,使得表面偏析超滤膜中出现较大的膜孔。最后研究了Pluronic结构和抗污染特性之间的内在关系,初步提出了表面偏析超滤膜的设计原则。
Membrane fouling constitutes a bottleneck limiting the wide application of ultrafiltration technology; therefore, investigating the antifouling mechanism and developing methods to inhibit membrane fouling have become an important research issue in ultrafiltration area. In this dissertation, we have prepared different kinds of surface segregated membranes through segregation method, using poly(ether sulfone) as membrane bulk material, different amphiphilic polymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) as membrane surface modifying agent(MSMA), and protein solutions as model system. .
     DSC, XPS, FTIR, the static contact angle, and SEM were all introduced to characterize PES-Pluronic surface segregated ultrafiltration membranes. Due to the partial compatibility between PES and Pluronic, Pluronic segregated substantially during membrane formation, which increased the hydrophicity of membrane surface. And the SEM results indicated that the addition of Pluronic did not cause remarkable change on the asymmetry structure of membrane. In order to investigate segregation behavior of Pluronic during phase inversion in a wet processs, the surface coverage and residual ratio of Pluronic were calculated basing on XPS and FTIR results. It can be concluded that the molecular weight and the length ratio of hydrophilic segments to hydrophobic segments of Pluronic were two important factors influenceing Pluronic segregation behavior.
     Separation performance and anti-fouling properties of PES-Pluronic surface segregated ultrafiltration membranes were systematically investigated, and it was found that the addition of Pluronic enlarged the membrane pores, which decreased the protein rejection ratio; and the high density PEO segments appearring at membrane surface rendered the membrane with excellent protein-resistant ability and anti-fouling property. The protein adsorption amount on membrane surface decreased to as low as zero, and the flux recovery ratio could reach as high as 89%, which was much higher than that of PES control membrane, 62%.
     In order to increase the PEO density on membrane surface, a series of novel branched block polymers were prepared by simple substitution reaction based on Pluronic P123, and the effect of chemical structure of these MSMAs on the separation performance and anti-fouling ability of membranes was studied. The experimental results revealed that the block polymer with higher PEO arms number or PEO content exhibited stronger segregation ability, which rendered the membrane better anti-fouling ability.
     In order to investigate the effect of Pluronic on the phase behavior of membrane casting solution, the cloudy point line was plotted and coagulation value was measured, the results showed that the addition of Pluronic improved the stability of membrane casting solution. The molecular simulation calculation was conducted to preliminarily invesitgate the segregation performance of Pluronic during membrane formation and the phase behavior of membrane casting solution. The simulation results indicated that the difference of interaction between different components constituted the dominant reason for the different segregation performance of Pluronic; and the addition of Pluronic in casting solution resulted in larger reverse micelle, which might correspondingly lead to larger membrane pore appearing at membrane surface. Finally, the inherent relationship between the structural characteristics of block polymers and the anti-fouling ability of the membranes was studied; the guidance for the rational design and preparation of surface segregated ultrafiltration membrane was tentatively proposed.
引文
[1] 时钧,袁权,膜技术手册[M],北京:化学工业出版社, 2001,336-361
    [2] Baruah G.L., Nayak A., Winkelman E., Belfort G. Purification of monoclonal antibodies derived from transgenic goat milk by ultrafiltration, Biotechnology and Bioengineering, 2006, 93(4): 747-754
    [3] Food Protein R&D Center,Surfactant-enhanced ultrafiltration of heavy metals from waste streams with pilot-scale system,Hazardous Waste and Hazardous Materials,1994,11( 3):385-395
    [4] Ahmadun F.R., Ultrafiltration membrane separation for anaerobic wastewater treatment, Water Science and Technology, 1994, 30(12):321–327
    [5] Fernando G., Cristina F., Maria N. P., White wine clarification by micro/ultrafiltration: effect of removed colloids in tartaric stability, Separation and Purification Technology, 2001, 22-23: 423-429
    [6] Huang Z-Q., Guo X-P., Guo C-L., Zhang Z., Magnetization influence on the performance of ferrosoferric oxide: polyacrylonitrile membranes in ultrafiltration of pig blood solution, Bioprocess and Biosystems Engineering, 2006, 28 (6): 415-421
    [7] Bozzano A.G., Glatz C.E., Separation of proteins from polyelectrolytes by ultrafiltration, Journal of membrane science, 1991, 55(1): 181-198
    [8] Raoa S., Zydney A.L., High resolution protein separations using affinity ultrafiltration with small charged ligands, Journal of Membrane Science, 2006, 280(1-2): 781-789
    [9] Saha N.K., Balakrishnan M., Ulbricht M., Polymeric membrane fouling in sugarcane juice ultrafiltration: role of juice polysaccharides, Desalination, 2005, 189(1-3): 59-70
    [10] Susanto H., Ulbricht M., Influence of ultrafiltration membrane characteristics on adsorptive fouling with dextrans, Journal of Membrane Science, 2005, 266(1-2): 132-142
    [11] Verbych S., Bryk M., Alpatova A., Chornokur G., Ground water treatment by enhanced ultrafiltration, Desalination, 2005, 179(1-3): 237-244
    [12] Decloux M., Tatoud L., Mersad A., Removal of colorants and polysaccharides from raw cane sugar remelts by ultrafiltration, Zuckerindustrie, 2000, 125(2): 106-113
    [13] Enevoldsen A.D., Hansen E., Jonsson G., Enzyme recovery by crossflowelectro-ultrafiltration, Desalination, 2006, 199(1-3): 55-56
    [14] Rajeshwar D., Godjevargova T., Polyacrylonitrile enzyme ultrafiltration and polyamide enzyme microfiltration membranes prepared by diffusion and Convection, Macromolecular Bioscience, 2005, 5(3): 222 - 228
    [15] Ray K., Ghosh A.K., Raychowdhury U., Chakraborty R, Studies on clarification of lemon juice by ultrafiltration as a substitute for α-amylase enzyme treatment for starch removal, Journal of Food Science and Technology, 2002, 39(3): 304-306
    [16] Kerry J.H., Mark M.C., Fouling of microfiltration and ultrafiltration membranes by natural waters, Environmental Science & Technology, 2002, 36(16): 3571 - 3576
    [17] Ron S.F., Yoram C., Fouling and rejection behavior of ceramic and polymer-modified ceramic membranes for ultrafiltration of oil-in-water emulsions and microemulsions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 191(1-2): 27-40
    [18] Huisman I.H., Prádanos P., Hernández A., The effect of protein–protein and protein–membrane interactions on membrane fouling in ultrafiltration, Journal of Membrane Science, 2000, 179(1-2): 79-90
    [19] Kim K.J., Fane A.G., Fell C.J.D., Joy D.C., Fouling mechanisms of membranes during protein ultrafiltration, Journal of Membrane Science, 1992, 68(1-2): 79-91
    [20] Song L., Flux decline in crossflow microfiltration and ultrafiltration: Mechanisms and modeling of membrane fouling, Journal of Membrane Science, 1998, 139(2): 183-200
    [21] Goosen M.F.A., Sablani S.S., Al-Hinai H., Al-Obeidani S., Al-Belushi R., Jackson D., Fouling of reverse osmosis and ultrafiltration membranes: A critical review, Separation Science and Technology, 2004, 39(10): 2261-2297
    [22] Meireles M., Aimar P., Sanchez V., Albumin denaturation during ultrafiltration: Effects of operating conditions and consequences on membrane fouling, Biotechnology and Bioengineering, 1991, 38(5): 528-534
    [23] Ko M.K., Pellegrino J.J., Determination of osmotic pressure and fouling resistances and their effects on performance of ultrafiltration membranes, Journal of Membrane Science, 1992, 74(1-2): 141-157
    [24]Minegishi S., Jang N-Y., Watanabe Y., Hirata S., Ozawa G., Fouling mechanism of hollow fiber ultrafiltration membrane with pretreatment by coagulation/sedimentation process, Water Science and Technology: Water Supply, 2001, 1(4): 49-56
    [25] Katsoufidou K., Yiantsios S.G., Karabelas A.J., A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling, Journal of Membrane Science, 2005, 266(1-2): 40-50
    [26] De Bruijn J.P.F., Salazar F.N., Bórquez R., Membrane blocking in ultrafiltration: A new approach to fouling, Food and Bioproducts Processing, 2005, 83(3): 211-219
    [27] Rodgers V.G.J., Sparks R.E., Reduction of membrane fouling in the ultrafiltration of binary protein mixtures, AIChE Journal, 1991, 37(10): 1517-1528
    [28] Li J., Hallbauer D.K., Sanderson R.D., Direct monitoring of membrane fouling and cleaning during ultrafiltration using a non-invasive ultrasonic technique, Journal of Membrane Science, 2003, 215(1-2): 33-52
    [29] Al-Bastaki N. Abbas A., Use of fluid instabilities to enhance membrane performance: A review, Desalination, 2001, 136(1-3): 255-262
    [30] Pavlova St., Study on the cleaning of new ultrafiltration spiral-wound modules to prevent membrane fouling (including biological fouling), Desalination, 2005, 172(3): 267-270
    [31] Lawrence N.D., Perera J.M., Iyer M., Hickey M.W., Stevens G.W., The use of streaming potential measurements to study the fouling and cleaning of ultrafiltration membranes, Separation and Purification Technology, 2006, 48(2): 106-112
    [32] Bae T.H., Tak T.M., Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, Journal of Membrane Science, 2005, 249(1-2): 1-8
    [33] Nabe A., Staude E., Belfort, G., Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions, Journal of Membrane Science, 1997, 133(1): 57-72
    [34] Na L., Zhongzhou L., Shuguang X., Dynamically formed poly (vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristics, Journal of Membrane Science, 2000, 169(1):17-28
    [35] Hamza A., Pham V.A., Matsuura T., Santerre, J.P., Development of membranes with low surface energy to reduce the fouling in ultrafiltration applications, Journal of Membrane Science, 1997, 131(1-2): 217-227
    [36] Wang Y.Q., Wang T., Su Y.L., Peng F.B., Wu H., Jiang Z.Y., Protein-adsorption-resistance and permeation property of polyethersulfone and soybean phosphatidylcholine blend ultrafiltration membranes, Journal of Membrane Science, 2006, 270(1-2): 108-114
    [37] Ochoa N.A., Masuelli M., Marchese J., Development of charged ion exchange resin-polymer ultrafiltration membranes to reduce organic fouling, Journal of Membrane Science, 2006, 278(1-2): 457-463
    [38] Susanto H., Ulbricht M., Influence of ultrafiltration membrane characteristics on adsorptive fouling with dextrans, Journal of Membrane Science, 2005, 266(1-2): 132-142
    [39] Barnthouse K.A.,Trompeter W., Jones R.,Prasad Inampudi, Rupp R., Cramer S.M., Cation-exchange displacement chromatography for the purification of recombinant protein therapeutics from variants, Journal of Biotechnology, 1998, 66(2-3): 125-136
    [40] Sadana A., Protein inactivations during novel bioseparation techniques, Bioseparation, 1994, 4(1): 39-61
    [41] Wu M., Kusukawa N., SDS agarose gels for analysis of proteins, BioTechniques, 1998, 24(4): 676-678
    [42] Meyer A., Hansen D.B., Gomes C.S.G., Hobley T.J., Thomas O.R.T., Franzreb M., Demonstration of a strategy for product purification by high-gradient magnetic fishing: Recovery of superoxide dismutase from unconditioned whey, Biotechnology Progress, 2005, 21(1): 244-254
    [43] Michael R.S., Norm F., Lori N. Scott B., Mark B., Fred A., Theodore W.R., Brent S. K., Protein-solute interactions affect the outcome of ultrafiltration/diafiltration operations, Journal of Pharmaceutical Sciences, 2004, 93(9): 2332 - 2342
    [44] Meredith F., Kamalesh K. S., Highly selective membranes in protein ultrafiltration, Biotechnology and Bioengineering, 2004, 86(6): 603 - 611
    [45] Davey M., Landman K., Perera J.M., Stevens G.W., Lawrence N.D., Iyer M., Measurement and prediction of the ultrafiltration of whey protein, AIChE Journal, 2004, 50(7): 1431-1437
    [46] Suma R., Zydney A.L., Controlling protein transport in ultrafiltration using small charged ligands, Biotechnology and Bioengineering, 2005, 91(6): 733 – 742
    [47] Alvarez S., García A., Manolache S., Denes F., Rier F.A., álvarez R., Plasma-enhanced modification of the pore size of ceramic membranes, Desalination, 2005, 184(1-3): 99-104
    [48] Düputell D., Staude E., Heterogeneous modification of ultrafiltration membranes made from poly(vinylidene fluoride) and their characterization, Journal of Membrane Science, 1993, 78(1-2): 45-51
    [49] Bryjak M., Hodge H., Dach B.,Modification of porous polyacrylonitrile membrane,Angewandte Makromolekulare Chemie,1998, 260: 25-29
    [50] Ulbricht M., Advanced functional polymer membranes, Polymer, 2006, 47: 2217–2262
    [51] Ulbricht M., Belfort G., Surface modification of ultrafiltration membranes by low temperature plasma. I. Treatment of polyacrylonitrile, Journal of Applied Polymer Science, 1995, 56(3): 325 - 343
    [52] Ulbricht M. Belfort G., Surface modification of ultrafiltration membranes by low temperature plasma.II Graft polymerization onto polyacrylonitrile and polysulfone, Journal of Membrane Science, 1996, 111(2): 193-215
    [53] Chen H., Belfort G., Surface modification of poly(ether sulfone) ultrafiltration membranes by low-temperature plasma-induced graft polymerization, Journal of Applied Polymer Science, 1999, 72(13): 1699-1711
    [54] Ulbricht M, Matuschewski H, Oechel A, Photo-induced graft polymerization surface modification for the preparation of hydrophilic and low-protein-adsorbing ultrafiltration membrane, Journal of Membrane Science, 1996, 115(1):31-47
    [55] Ulbricht M., Oechel A., Photo-bromination and photo-induced graft polymerization as a two-step approach for surface modification of polyacrylonitrile ultrafiltration membranes, European Polymer Journal, 1996, 32( 9): 1045-1054
    [56] Pieraccia J., Crivellob J. V., Belfort G., Photochemical modification of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling, Journal of Membrane Science, 1999, 156 (2): 223-240
    [57] Taniguchi M., Belfort G., Low protein fouling synthetic membranes by UV-assisted surface grafting modification: varying monomer type, Journal of Membrane Science, 2004, 231 (1): 147-157
    [58] Thom V, Jankvoa K, Ulbricht M, Synthesis of photoreactive α-4-azidobenzoyl-ω-methoxy-poly(ethylene glycol)s and their end-on photo-grafting onto polysulfone ultrafiltration membrane, Macromolecular Chemistry and Physics, 1998, 199 (12): 2723-2729
    [59] Mok S., Worsfold D.J., Fouda A., Matsuura, T., Surface modification of polyethersulfone hollow-fiber membranes by γ-ray irradiation, Journal of Applied Polymer Science, 1994, 51(1):193-199
    [60] 陆晓峰, 汪赓华, 梁国明,聚偏氟乙烯超滤膜的辐照接枝改性研究,膜 科学与技术,1998, 18(6): 54 57
    [61] 袁晓燕, 盛京, 吕晓龙, 沈宁祥, 缪怡祥 王润宇,高分子多孔膜的表面改性与抗污染研究,化学工业与工程, 2003, 20(2): 95-99
    [62] Belfer S., Modification of ultrafiltration polyacrylonitrile membranes by sequential grafting of oppositely charged monomers: pH-dependent behavior of the modified membranes, Reactive and Functional Polymers, 2003, 54(1-3): 155-165
    [63] 陆晓峰,陈仕意,李存珍,王彬芳,表面活性剂对超滤膜表面改性的研究,1997,17(4):35-40
    [64] Randona J., Blancb P., Patersona R., Modification of ceramic membrane surfaces using phosphoric acid and alkyl phosphonic acids and its effects on ultrafiltration of BSA protein, Journal of Membrane Science, 1995, 98(1-2): 119-129
    [65] Danilenko E.E., Burban A.F., Tsapyuk E.A., Shrubovich V.A., Bryk M.T., Shevchenko V.V., Effect of modification of the ultrafiltration membranes by the surfactants on their separative properties, Khimiya i Tekhnologiya Vody, 1991, 13(3): 224-226
    [66] Harris L.G.., Tosatti S., Wieland M., Textor M., Richards R.G., Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted- poly(ethylene glycol) copolymers, Biomaterials, 2004, 25(18): 4135-4148
    [67] Lemarchand C., Gref R., Passirani C., Garcion E., Petri B., Müller R., Costantini D., Couvreur P., Influence of polysaccharide coating on the interactions of nanoparticles with biological systems, Biomaterials, 2006, 27(1): 108-118
    [68] Beyer M., Felgenhauer T., Ralf Bischoff F., Breitling F., Stadler V A , novel glass slide-based peptide array support with high functionality resisting non-specific protein adsorption,, Biomaterials, 2006, 27(18): 3505-3514.
    [69] Decher G. F., Nanoassemblies: Toward Layered polymeric Multicomposited, Science, 1997, 277(29): 1232-1237
    [70] Toutianoush A., Krasemann L., Tieke B., Polyelectrolyte multilayer membranes for pervaporation separation of alcohol/water mixtures, Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2002, 198-200: 881-889.
    [71] Suk D. E., Chowdhury G., Matsuura T., Study on the Kinetics of Surface Migration of Surface Modifying Macromolecules in Membrane Preparation, Macromolecules, 2002, 35(8): 3017-3021
    [72] Richard R. T., Douglas R. A., William F. G., Michael J. D., Bryan B. S., Katherine M. S., Dennis G. S., Preparation and surface properties of acrylic polymers containing fluorinated monomers, Macromolecules, 1997, 30(10): 2883 -2890
    [73] Chen W., McCarthy T.J., Adsorption/Migration of a Perfluorohexylated fullerene from the bulk to the polymer/air interface, Macromolecules, 1999, 32 (7):2342 -2347
    [74] Ebbens S.J., Badyal J.P.S., Surface enrichment of fluorochemical-doped polypropylene films, Langmuir, 2001, 17 (13): 4050 -4055
    [75] Yasuhiko I., Kazunari A., Highly wettable polyethylene films generated by spontaneous surface enrichment of perfluoroalkylated phosphorylcholines, Journal of Applied Polymer Science, 2006, 102(3): 2868 – 2874
    [76] Hancock L.F., Fagan S.M., Ziolo M.S., Hydrophilic semipermeable membranes fabricated with poly(ethylene oxide)-polysulfone block copolymer, Biomaterials, 2000, 21: 725-733.
    [77] Kim Y.W., Ahh W.S., Kim J., Kim Y.H., In situ fabrication of self-transformable and hydrophilic poly(ethylene glycol) derivative-modified polysulfone membranes, Biomaterials, 2005, 26: 2867-2875
    [78] Hester J.F., Mayes A.M., Design and performance of foul-resistant poly(vinylidene fluoride) membranes prepared in a single step by surface segregation, Journal of Membrane Science, 2002, 202: 119-135
    [79] Park Y., Acar M.H., Akthakul A., Kuhlman W., Mayes A.M., Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes, Biomaterials, 2006, 27; 856-865
    [80] Taniguchi I., Kuhlman W.A., Griffith L.G., Mayes A.M., Macromonomer purification strategy for well-defined polymer amphiphiles incorporating poly(ethylene glycol) monomethacrylate, Macromol. Rapid Commun., 2006, 27: 631-636
    [81] Kuhlman W.A., Olivetti E.A., Griffith L.G., Mayes A.M., Chain conformations at the surface of a polydisperse amphiphilic comb copolymer film, Macromolecules, 2006, 39: 5122-5126
    [82] Deng L., Mrksich M., Whitesides G.M., Self-assembled monolayers of alkanethiolates presenting tri(propylene sulfoxide) groups resist the adsorption of protein, Journal of the American Chemical Society, 1996, 118(21): 5136-5137
    [83] Holmlin R.E., Chen X., Chapman R.G., Takayama S., Whitesides G.M, .Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer, Langmuir, 2001, 17(9): 2841-2850
    [84] Ostuni E., Chapman R.G., Holmlin R.E., Takayama S., Whitesides G.M., A survey of structure-property relationships of surfaces that resist the adsorption of protein, Langmuir, 2001, 17 (18): 5605-5620
    [85] Ostuni E., Chapman R.G., Liang M.N., Meluleni G., Pier G., Ingber D.E., Whitesides, G.M., Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells, Langmuir, 2001, 17(20): 6336-6343
    [86] Iwasaki Y., Ishihara K., Phosphorycholine-containing polymers for biomedical applications, Analytical and bioanalytical chemistry, 2005, 381 (12): 534-546
    [87] Ishihara K., Nakabayashi N., Fukumoto K., Improvement of blood compatibility on cellulose dialysis membrane, Biomaterials, 1992, 13(3):145-149
    [88] Ye S. H., Watanabe J., Iwasaki Y., Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system, Journal of Membrane Science, 2002, 210(2): 411-421
    [89] Ishihara K., Fukumoto K., Iwasaki Y., Nakabayashi N., Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 1. Surface characterization, Biomaterials, 1999, 20(17): 1545-1551
    [90] Hasegawa T., Iwasaki Y., K. Ishihara, Preparation of blood-compatible hollow fibers from a polymer alloy composed of polysulfone and 2-methacryloyloxyethyl phosphorylcholine polymer, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2002, 63(3): 333-341
    [91] Wang T., Wang Y.Q., Su Y.L., Jiang Z.Y., Improved protein-adsorption-resistant property of PES/SPC surface segregated membrane by adjustment of coagulation bath composition. Colloid surface B, 2005, 46: 233-239
    [92] Holmlin R.E., Chen X., Whitesides G.M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer, Langmuir, 2001, 17(9): 2841-2850
    [93] Westa S.L., Salvagea J.P., Lobbb E.J., The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines, Biomaterials, 2004, 25 (10): 1195-1204
    [94] Kitano H., Kawasaki A., Kawasaki H., Resistance of zwitterionic telomers accumulated on metal surfaces against nonspecific adsorption of proteins, Journal of Colloid and Interface Science, 2005, 282 (2): 340-348
    [95] Wang T., Wang Y.Q., Su Y.L., Jiang Z.Y., Antifouling ultrafiltration membrane composed of polyethersulfone and sulfobetaine copolymer. Journal of Membrane Science, 2006, 280: 343-350
    [96] Lee J.H., Lee H.B., Andrades J.D., Blood compatibility of piluethylene oxide surface, Progress of Polymer Science, 1995, 20(6): 1043-1079
    [97] Hermans J., Excluded-volume theory of polymer–protein interactions based on polymer chain statistics, Journal of Chemical Physics, 1982, 77(4): 2193–2203
    [98] Atha D.H., Ingham K.C., Mechanism of precipitation of proteins by polyethylene glycols. analysis in terms of excluded volume. Journal of biological chemistry, 1981, 256(23):12108–12117.
    [99] Jeon S.I., Andrade J.D., Protein-surface interactions in the presence of polyethylene oxide. II. Effect of protein size, Journal of Colloid and Interface Science, 1991, 142(1): 159-166
    [100] Gombotz W.R., Guanghui W., Horbett T.A., Hoffman, A.S., Protein adsorption to poly(ethylene oxide) surfaces, Journal of Biomedical Materials Research, 1991, 25(12): 1547-1562
    [101] Bergstr?m K., Osterberg E., Holmberg K., Hoffman A.S., Schuman T.P., Kozlowski,A., Harris J.H., Effects of branching and molecular weight of surface-bound poly(ethylene oxide) on protein rejection, Journal of biomaterials science. Polymer edition, 1994, 6(2): 123-132
    [102] Lyman D.J., Loo B.H., Crawford RW., New synthetic membranes for dialysis. I a copolyether-ester membrane system, Biochemistry. 1964, 3: 985-990.
    [103] Lyman D.J, Loo B.H., New synthetic membranes for dialysis. IV. A copolyether-urethane membrane system., Journal of biomedical materials research, 1967, 1(1):17-26.
    [104] Merrill E.A., Salzman E.W., Polyethylene oxide as a. biomaterial, ASAIO J 1983, 6: 60-64
    [105] Furasawa K., Shimura Y., Otobe K., Atsumi K., Tsuda K., The. relation between the properties of surface and the blood compatibility. of. polyurethape, Kobunshi Ronbunshu, 1977, 34(5): 309-316.
    [106] Grainger D. W., Nojiri C., Okano T., Kim S. W., In vitro and ex vivo platelet interactions with hydrophilic-hydrophobic poly(ethylene oxide)-polystyrene multiblock copolymers, Journal of biomedical materials research, 1989, 23(9): 979-1005
    [107] Grainger D.W., Okano T., Kim S.W., Protein adsorption from buffer and plasma onto hydrophilic-hydrophobic poly(ethylene oxide)-polystyrene multiblock copolymers, Journal of Colloid and Interface Science, 1989, 132(1):161-175
    [108] Vulic I., Okano T., Kim S. W., Feijen J., Synthesis and characterization of polystyrene-poly(ethy1ene oxide)-heparin block copolymers, Journal of polymer science: A, 1988, 26(2): 381-391
    [109] Akizawa T, Kino K, Koshikawa S, Ikada Y, Kishida A, Yamashita M, Imamura K., Efficiency and biocompatibility of a polyethylene glycol grafted cellulosic membrane during hemodialysis, ASAIO Trans. 1989, 35(3): 333-335
    [110] Kishida A., Mishima K., Corretge E., Konishi H., Ikada Y., Interaction of poly(ethy1ene glycol)-grafted cellulose membranes with proteins and. platelets, Biomaterials, 1992, 13(2): 113-118
    [111] Desai N.P., Hubbell J.A., Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces, Journal of biomedical materials research, 1991,25(7): 829-843
    [112]. Desai N.P., Hubbell J.A., Surface modifications of polymeric biomaterials for reduced thrombogenicity, Polymer Material Science & Engineer, 1990, 62(6): 731–735
    [113] Bergstrom K., Holmberg K., Safranj A., Hoffman A. S., Edggell M. J., Hovanes B. A., Harris J. M., Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces, Journal of biomedical materials research, 1992, 26(6): 779–790
    [114] Bergstrom K., Osterberg E., Holmberg K., Hoffman A.S., Schuman T.P., Kozlowski A., Harris J.M., Effects of branching and molecular weight of surface-bound poly(ethylene oxide) on protein rejection, Journal of biomaterials science. Polymer edition, 1994, 6(2): 123–132
    [115] Mori Y., Nagaoka S., Takiuchi H., Kikuchi T., Noguchi N., Tanzawa H., Noishiki Y., A new antithrombogenic material with long polyethyleneoxide chains, Trans Am Soc Artif Intern Organs. 1982, 28:459–463
    [116] Brinkman E., Poot A., van der Does L., Bantjes A., Platelet deposition studies on copolyether urethanes modified with poly(ethy1ene. oxide), Biomaterials, 1990, 11(1): 200-205
    [117] Brinkman E., Poot A., Beugeling T., van der Does L., Bantjes A., Surface modification of copolyetherurethane catheters with poly(ethylene oxide), Int. J. Artif. Org., 1989, 12: 390-394
    [118] Golander C.G., Jonsson S., Vladkova T., Stenius P., Eriksson J.C., Preparation and protein adsorption properties of photopolymerized hydrophilic films containing N-vinyl pyrrolidone (NVP), acrylic acid (AA) or ethylene oxide (EO) units as studied by ESCA, Colloids and Surfaces, 1986, 21(1):149-165
    [119] Hiatt C.W., Shelokov A., Rosenthal E.J., Galimore J.M., Treatment of controlled pore glass with poly(ethylene oxide) to prevent adsorption of rabies virus. Journal of Chromatography, 1971, 56(2): 362–364
    [120] Hawk G.L., Cameron J.A., Dufault L.B., Chromatography of biological materials on polyethylene glycol-treated controlled-pore glass. Preparative Biochemistry & Biotechnology ,1972, 2(2):193–203
    [121] Cheng Y.L., Darst S.A., Robertson C.R., Bovine serum albumin adsorption and desorption rates on solid surfaces with varying surface properties, Journal of Colloid and Interface Science,1987, 118 (1): 212-223
    [122] Tan J. S., Butterfield D. E., Voycheck C.L., Caldwell K.D., Lic J.T., Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats, Biomaterials,1993, 14(11), 823-833
    [123] Mansoor M.A., Kinam P., Analysis on the surface adsorption of PEO/PPO/PEO triblock copolymers by radiolabelling and fluorescence techniques, Journal of applied polymer science, 1994, 52(44): 539-544
    [124] Ng C.L., Lee H. K., Li S.F.Y., Prevention of protein adsorption on surfaces by polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymers in capillary electrophoresis, Journal of Chromatography A., 1994, 659: 427-434
    [125] Beng W., Maria K., Christina F.L., ?sa L., Marianne P., Protein adsorption of poly(ether methane) surfaces modified by amphiphilic and hydrophilic polymers, Biomaterials, 1994, 15 (4): 278-284
    [126] Lee J.H., Kopecek J., Andrade J.D. Protein-resistant surfaces prepared by PEO-containing block copolymer surfactants, Journal of Biomedical Materials Research, 1989, 23(3): 351-368
    [127] Lee J.H., Kopeckova P., Kopecek J., Andrade J.D. Surface properties of copolymers of alkyl methacrylates with methoxy (polyethylene oxide) methacrylates and their application as protein-resistant coatings, Biomaterials, 1990, 11(7): 455-464
    [128] Green R.J., Davies M.C., Roberts C.J., Tendler,S.J.B., A surface plasmon resonance study of albumin adsorption to PEO-PPO-PEO triblock copolymers, Journal of Biomedical Materials Research, 1998, 42(2): 165-171
    [129] Kiss é., Erdélyi K., Szendr? I., Vargha-Butler E.I., Adsorption and wetting properties of pluronic block copolymers on hydrophobic surfaces studied by optical waveguide lightmode spectroscopy and dynamic tensiometric method, Journal of Adhesion, 2004, 80(9): 815-829
    [130] Higuchia A., Sugiyama K., Yoon B.O., Sakurai M., Hara M., Sumita M., Sugawara S., Shirai T., Serum protein adsorption and platelet adhesion on pluronict-adsorbed polysulfone membranes, Biomaterials, 2003, 24(19):3235–3245
    [131] Wang Y.Q., Wang T., Su Y.L. Peng F.B., Wu H., Jiang Z.Y., Remarkable reduction of irreversible fouling and improvement of permeation properties of polyethersulfone ultrafiltration membrane by blending with F127, Langmuir,2005, 21: 11856-11862
    [132] Hu W., Molecular segregation in polymer melt crystallization: simulation evidence and unified-schemeinterpretation, Macromolecules, 2005, 38(21): 8712-8718
    [133] Liu S., Chan C., Weng L., Jiang M., Surface Segregation in Polymer Blends and Interpolymer Complexes with Increasing Hydrogen Bonding Interactions, Journal of Polymer Science B: Polymer Physics, 2005, 43(14): 1924–1930
    [134] Zheng S., Huang J., Li Y., Guo, Q.A DSC study of miscibility and phase separation in crystalline polymer blends of phenolphthalein poly (ether ether sulfone) and poly(ethylene oxide), Journal of Polymer Science, Part B: Polymer Physics, 1997, 35( 9): 1383-1392
    [135] Su Y., Liu H., Wang J., Chen J., Study of salt effects on the micellization of PEO-PPO-PEO block copolymer in aqueous solution by FTIR spectroscopy, Langmuir, 2002,18(3): 865-871
    [136] Belfer S., Fainchtain R., Purinson Y., Kedem O., Surface characterization by FTIR-ATR spectroscopy of polyethersulfone membranes-unmodified, modified and protein fouled, Journal of Membrane Science, 2000, 172(1-2): 113-124
    [137] Gu, Y., Experimental determination of the Hamaker constants for solid-water-oil systems, Journal of Adhesion Science and Technology, 2001, 15(11): 1263-1283
    [138] Boom R.M., Wienk I.M., Van Den Boomgaard T., Smolders C.A., Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive, Journal of Membrane Science, 1992, 73(2-3): 277-292
    [139] Smolders C.A., Reuvers A.J., Boom R.M., Wienk I.M. Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids, Journal of Membrane Science, 1992, 73(2-3): 259-275
    [140] Termonia, Y., Molecular modeling of phase-inversion membranes: Effect of additives in the coagulant, Journal of Membrane Science, 1995, 104(1-2): 173-179
    [141] Dongman C., Wenchun H., Jeffrey T. K., Segregation dynamics of block copolymers to immiscible polymer blend interfaces, Macromolecules, 2000, 33(14): 5245-5251
    [142] Guido M., Rossana M., Phase segregation and interface dynamics in kinetic systems, Nonlinearity, 2006, 19(1): 115–147
    [143] Yiu-Ting R. L., Zhou H., Chan C., Weng L., Li L., Onset of surface segregation controlled by the segment length of the low-energy component of polymers, Surface and interface analysis, 2006, 38(8): 1223–1229
    [144] Jansson J., Schillén K., Olofsson G., Da Silva R.C., Loh W., Interaction between PEO-PPO-PEO triblock copolymers and ionic surfactants in aqueous solution studied using light scattering and calorimetry, Journal of Physical Chemistry B, 2004, 108(1): 82-92
    [145] Budkowski A., Rysz J., Sche¤old F., Klein J., Bernasik A., Jedlinski J., Surface segregation in the minority component of the binary polymer mixture, Vacuum, 1999, 54(1-4): 273-277
    [146] Matsen M. W., Bates F. S., Unifying weak- and strong-segregation block copolymer theories, Macromolecules, 1996, 29(4): 1091-1098
    [147] Lee J.H., Kim S.K., Plasma protein adsorption and platelet adhesion onto PEO-entrapped PMMA film surfaces prepared by photo-induced polymerization, Polymer, 1997, 21(2): 332-341
    [148] McPherson T., Kidane A., Szleifer I., Park K., Prevention of protein adsorption by tethered poly(ethylene oxide) layers: Experiments and single-chain mean-field analysis, Langmuir, 1998, 14 (1): 176-186
    [149] Mayes A.M., Irvine D.J., Griffith L.G. Tailoring polymer surfaces for controlled cell behavior, Materials Research Society Symposium – Proceedings, 1998, 530: 73-84
    [150] Sofia S.J., Premnath V., Merrill E.W., Poly(ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption, Macromolecules, 1998, 31(15): 5059-5070
    [151] Currie E.P.K., Van Der Gucht J., Borisov O.V., Cohen Stuart M.A, Stuffed brushes: Theory and experiment, Pure and Applied Chemistry, 1999, 71(7): 1227-1241
    [152] Stubenrauch K., Moitzi C., Fritz G., Glatter O., Trimmel G., Stelzer F., Precise tuning of micelle, core, and shell size by the composition of amphiphilic block copolymers derived from ROMP investigated by DLS and SAXS , Macromolecules,2006, 39(17): 5865-5874
    [153] Prachur B., Zheng J. X., Li P., Quirk R. P., Harris F.W., Stephen Z. D., Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution, Macromolecules, 2006, 39(14): 4880 – 4888
    [154] Fütterer T., Hellweg T., Findenegg G.H., Frahn J., Schlüter A.D., Aggregation of an amphiphilic poly(p-phenylene) in micellar surfactant solutions. Small-angle neutron scattering, Macromolecules, 2005, 38(17): 7451-7455
    [155] Hussain H., Busse K., Kressler J., Poly(ethylene oxide)- and poly (perfluorohexylethyl methacrylate)-containing amphiphilic block copolymers: Association properties in aqueous solution, Macromolecular Chemistry and Physics, 2003, 204(7): 936-946
    [156] Rai P., Rai C., Majumdar G.C, DasGupta S., De S., Resistance in series model for ultrafiltration of mosambi (Citrus sinensis (L.) Osbeck) juice in a stirred continuous mode, Journal of Membrane Science, 2006, 283(1-2): 116-122
    [157] Jonsson A.S., Tragardh, G., Fundamental principles of ultrafiltration, Chemical Engineering and Processing, 1990, 27(2): 67-81
    [158] Viadero.R.C., Vaughan R.L., Reed B.E., Study of series resistances in high-shear rotary ultrafiltration,Journal of Membrane Science,1999, 162(1-2)1: 199-211
    [159] Siegers C., Biesalski M., Haag R., Self-assembled monolayers of dendritic polyglycerol derivatives on gold that resist the adsorption of proteins. Chemsitry-A European Journal, 2004, 10(11): 2831-2838.
    [160] Irvine D., Mayes A., Griffith-Cima L., Self-consistent field analysis of grafted star polymers. Macromolecules, 1996, 29(18): 6037-6043.
    [161] Walton D., Soo P., Mayes A., Creation of stable Poly(ethylene oxide) surfaces on poly(methyl methacrylate) using blends of branched and linear polymers. Macromolecules. 1997, 30(22): 6947-6956.
    [162] Ma H., Hyun J., Stiller P., Chilkoti A., Non-fouling oligo(ethylene glycol)- functionalized polymer brushes synthesized by surface-Initiated atom transfer radical polymerization. Advanced Material. 2004, 16(4): 338-341.
    [163] Walton D. G., Mayes A. M., Entropically driven segregation in blends of branched and linear polymers, Physiccal review E, 1996, 54(3): 2811-2815
    [164] Yethiraj A., Entropic and Enthalpic Surface Segregation from Blends of Branched and Linear Polymers, Physiccal review letters, 1995, 74(11): 2018-2021
    [165] Yethiraj A. Integral equation theory for the surface segregation from blends of linear and star polymers, Computational and Theoretical Polymer Science, 2000,10(1-2):115–123
    [166] Xu Z.L., Qusay F.A., Polyethersulfone (PES) hollow fiber ultrafiltration membranes prepared by PES/non-solvent/NMP solution, Journal of Membrane Science, 2004, 233(1-2 ): 101-111
    [167] Kim I.C., Choi J.G., Tak T.M., Sulfonated polyethersulfone by heterogeneous method and its membrane performances, Journal of Applied Polymer Science, 1999, 74(8): 2046-2055
    [168] Khayet M., Feng C.Y., Khulbe K.C., Matsuura T. Study on the effect of a non-solvent additive on the morphology and performance of ultrafiltration hollow-fiber membranes, Desalination, 2002, 148(1-3): 321-327
    [169] Chuang W Y, Young T H, Chiu W Y. The effect of acetic acid on the structure and filtration properties of poly(vinyl alcohol) membranes, Journal of Membrane Science, 2000,172(1 一 2): 241-251
    [170] Chuang W.Y., Young T.H., Chiu W.Y., Lin C.Y., The effect of polymeric additives on the strcture and permeability of poly(vinyl alcohol) asymmetric membranes. Polymer, 2000, 41(15): 5633-5641
    [171] Wang D.M, Lin F.C, Chiang J.C, Lai J.Y. Control of the porosity of asymmetric TPX membranes, Journal of Membrane Science, 1998,141(1): 1-12
    [172] Wang D.M, Lin F.C, Wu T.T, Lai J.Y Formation mechanism of the macrovoids induced by surfactant additives, Journal of Membrane Science, 1998,142(2): 191-204
    [173] Stein R.S., Beaucage G., Berard M.T., Koningsveld R., Polymer blend miscibility and phase separation kinetics analyzed using flory-huggins-staverman theory, American Chemical Society, Polymer Preprints, Division of Polymer Chemistry, 1991, 32(1): 475-476
    [174] Xia J., Zhong C., Dissipative particle dynamics study of the formation of multicompartment micelles from ABC star triblock copolymers in water, Macromolecular Rapid Communications, 2006, 27(14): 1110-1114
    [175] Yang H., Li Z.-S., Lu Z.-Y., Sun C.-C, Computer simulation studies of the miscibility of poly(3-hydroxybutyrate)- based blends, European Polymer Journal, 2005, 41( 12): 2956-2962.
    [176] Guo H., Kremer K., Molecular dynamics simulation of the phase behavior of lamellar amphiphilic model systems, Journal of Chemical Physics, 2003, 119(17) :9308-9320
    [177] Soddemann T., Dünweg B., Kremer K. Dissipative particle dynamics: A useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2003, 68(4): 467021-467028

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700