用户名: 密码: 验证码:
松嫩平原天然羊草(Leymus chinensis(Trin.)Tzvel.)种群的分子遗传与表观遗传多态性及其种群遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用AFLP(amplified fargment length polymorphism)和MSAP(methylation-sensitive amplified polymorphism)两种DNA分子标记技术,对中国东北松嫩平原4个属同一个生态型(灰绿型)羊草(Leymus chinensis(Trin.)Tzvel.)天然种群48个单株,进行了遗传与表观遗传多态性和遗传结构的分析,并对这两种分子标记的结果进行了比较。主要研究结果如下:
     利用AFLP分子标记,对松嫩平原4个羊草天然种群的遗传多态性和遗传结构的3个遗传多态性指标、基因流、遗传距离、分子方差分析(AMOVA)、Jaccard相似性系数(JSI)分析、非加权分组平均法(UPGMA)聚类分析和主坐标分析(PCA)等项研究表明,羊草种群遗传多态性和遗传结构变化的趋势是一致的,羊草种群分布符合距离隔离模型。除地理距离外,其它物理和/或生物因素也是造成遗传隔离,引起种群遗传分化的主要原因。CC种群成为栖息地碎片(habitatfragmentation),个体间逐渐形成均质性就是一个典型的例子。
     松嫩平原4个羊草天然种群的MSAP分析结果表明,甲基化变异模式具有种群特异性,同时种群间也存在甲基化变异,但程度不同。甲基化敏感多态性(MSP)与甲基化不敏感多态性(MISP)有显著的相关性(r=0.8370),羊草DNA甲基化多态性变化的两种类型是相互影响和制约的,即任何一种类型变异的发生都会导致另外一种类型变异的发生。
     将AFLP与MSP和MISP进行比较发现,AFLP相似度比MSP和MISP要高出很多,说明羊草DNA甲基化多态性虽然可能受遗传变异的影响,但同时具有独立的产生和维持机制。AFLP、MSP和MISP的UPGMA聚类分析和PCA分析表明,种群CC和BT(土壤pH值均为7)以及ZL和Cb(土壤pH值均为8.5-9.5)分别被聚得比较接近,说明可能是由不同盐碱条件下的胁迫引起栖息地的异质性使其产生可遗传的表观遗传变异造成的。
Genetic diversity and genetic structure of four Leymus chinensis (Trin.) Tzvel. (Poaceae) populations (with the same ecotype, Grey-Green Leaf), which comprised of a total of 48 clones collected from the Songnen plain in northeastern China were analyzed by amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP) markers. The efficiency of the two markers was evaluated.
     Indices of genetic diversity, gene flow, genetic .distance, AMOVA, JSI analysis, the UPGMA cluster analysis and PCA generated from AFLP marker had the same trends. The spatial structure of the four populations was consistent with the stepping stone model. It can be envisioned that multiple other factors might have imposed their influence on the efficiency or effectiveness of gene flow among the L. chinensis populations. The CC population, as habitat fragmentation, was seen as being isolated due to its special predicament of its locality. Being in the midst of tall buildings seems to have raised a great barrier which is gradually isolating it from the rest. The exceptionally low level of gene flow between CL and CC populations provided a typical example to suggest that genetic isolation is not necessarily determined by geographical distance; instead, other factors could also have played a role in the differentiation of these populations although physical and/or biological isolation seem to be the most significant.
     In MSAP analysis, it was found that methylation pattern of L. chinensis populations in Songnen plain is characteristic of each population. The correlation between MSP (methylation-sensitive polymorphism) and MISP (methylation-insensitive polymorphism) influences and restricts each other, as a result, from Mental test of JSI matrices of them(r = 0.8370), they are likely affecting each other.
     Because JSI of AFLP is higher than that of MSP and MISP, the DNA methylation pattern change of L. chinensis is not only related to DNA sequence variation, but also likely being regulated by additional controlling system(s). The UPGMA cluster analysis and PCA from AFLP, MSP and MISP showed that a close link between the clones grown in the same abiotic conditions. Like CC was more closely related to BT (all grown at pH 7) and CL more closely linked to ZL which are grown in soils of pH 8.5-9.5. Thus, the possibility of habitat inducement can not be ruled out in causing heterogeneity in stressful conditions of varied salinity/alkaline which is known to cause heritable epigenetic variations in plants.
引文
[1]崔继哲,祖元刚,聂江力,等.松嫩草原羊草种群遗传分化的研究[J].植物研究,2001,21(1):116-125.
    [2]崔继哲,曲来叶,祖元刚.微生境下羊草两种生态型种群的遗传多样性及遗传分化——等位酶分析[J].生态学报,2000,20(3):434-439.
    [3]崔继哲,曲来叶,祖元刚.松嫩平原中部地区羊草种群的遗传结构研究[J].植物研究,2000,20(1):89-93.
    [4]任文伟,钱吉,郑师章.不同地理种群羊草的遗传分化研究[J].生态学报,1999,19(5):95-102.
    [5]钱吉,马玉虹,任文伟,等.不同地理种群羊草分子水平上生态型分化的研究[J].生态学报,2000,20(3):440-443.
    [6]崔继哲,祖元刚,关晓铎.羊草种群遗传分化的RAPD分析Ⅰ扩增片段频率的变化[J].植物研究,2001,21(2):272-277.
    [7]胡宝忠,刘娣,胡国富,等.羊草遗传多样性的研究[J].植物生态学报2001,25(1):83-89.
    [8]洪锐民,王昱生,杨建华,等.羊草(Leymus chinensis)等植物种群克隆表型变异和遗传变异的分子遗传——生态学分析[J].东北农业大学学报,2001,32(4):313-319.
    [9]汪恩华,刘杰,刘公社,等.形态与分子标记用于羊草种质鉴定与遗传评估的研究[J].草业学报,2002,11(4):68-75.
    [10]刘惠芬,高玉葆,阮维斌,等.内蒙古中东部不同草原地带羊草种群遗传分化[J].生态学报,2004,24(10):2157-2164.
    [11]Wang Y S,Zhao L M,Wang H.Molecular Genetic Variation in a Clonal Plant Population of Leymus chinensis(Trin.) Tzvel[J].Journal of Integrative Plant Biology,2005,47(9):1055-1064.
    [12]孔祥军,梁正伟,刘淼.羊草种质资源筛选及RAPD遗传多样性分析[J].生物技术通报,2008,6:110-114.
    [13]刘杰,朱至清,刘公社.羊草种质基因组DNA的AFLP多态性研究[J].植物学报,2002,44(7):845-851.
    [14]Xu S X,Shu Q Y,Liu G S.Genetic Relationship in Ecotypes of Leymus chinensis Revealed by Polymorphism of Amplified DNA Fragment Lengths[J].Russian Journal of Plant Physiology,2006,53(5):678-683.
    [15]Liang Y,Diao Y,Liu G,et al.AFLP variations within and among natural populations of Leymus chinensis in the northeast of China[J].Acta Pratacul Turae Sinica,2007,16:124-134.
    [16]Gong L,Song X X,Li M,et al.Extent and pattern of genetic differentiation within and between phenotypic populations of Leymus chinensis(Poaceae) revealed by AFLP analysis[J].Can J Bot,2007,85:813-821.
    [17]“中国植物志”编辑委员会.中国植物志[M].第9(3)卷.北京:科学出版社,1973.019.
    [18]陈敏.草原区旱作条件下建立羊草人工草地的初步结果[J].内蒙古草原,1985,1:38-45.
    [19]王策箴.羊草的内部构造及其细胞学的研究[J].中国草原,1981,2:41-45.
    [20]段晓刚,樊金玲.羊草染色体组型的研究[J].中国草原,1984,1:63-65.
    [21]祝廷成.羊草生物生态学[M].长春:吉林科学技术出版社,2004.
    [22]贾慎修.中国饲用植物志[M].第一卷.北京:中国农业出版社,1987.19-34.
    [23]长殿发,林年丰.松嫩平原第四纪以来生态环境演化的影响因素[J].吉林地质,2000,19:23-29.
    [24]林丰年,汤沽.松嫩平原环境演变与土地盐碱化、荒漠化的成因分析[J].第四纪研究,2005,25(4):474-483。
    [25]李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机理[M].北京科学出版社,1997.7-8.
    [26]Hamrick J L,Godt M J W.Allozyme diversity in plant species,In:Brown A H D,Clegg M T,Kahler A L,et al.eds.Plant Population Genetics,Breeding,and Genetic Resources[M].Sunderland:Sinauer Associates Inc,1989.43-63.
    [27]Karron J D.Patterns of genetic variation and breeding systems in rare plant species,Chapter 6,In:Falk D A,Holsinger K E,eds.Genetics and Conservation of Rare Plants[M].Oxford:Oxford University Press,1991.
    [28]Young A,Boyle T,Brown A.The population genetic consequences of habitat fragmentation for plants[J].Trends in Ecology and Evolution,1996,11:413-418.
    [29]Hanski I A,Gilpin M E.Metapopulation biology:ecology,genetics,and evolution[M].San Diego:Academic Press,1997.
    [30]Ellstrand N C,Elam D R.Population genetic consequences of small population size:implications for plant conservation[J].Annual Review of Ecology and Systematics,1993,24:217-242.
    [31]Holsinger K E.The evolutionary dynamics of fragmented plant populations,In:Kareiva P,Kingsolver J,Huey R,eds.Biotic Interactions and Global Change[M].Sunderland,Mass:Sinauer Associates Inc,1993.198-216.
    [32]Schaal B A,Leverich W J.Molecular variation in isolated plant populations[J].Plant Species Biology,1996,11:33-41.
    [33]D'Amato F.Role of somatic mutations in the evolution of higher plants[J].Caryologia,1997,50:1-15.
    [34]Harper J L,Population Biology of Plants[M].London:Academic Press,1977.
    [35]Mclellan A J,Prati D,Kaltz O,et al.Structure and analysis of phenotypic and genetic variation in clonal plants,In:Kroon H,eds.The Ecology and Evolution of Clonal Plants[M].Hague:SPBAcademic Press,1997.185-210.
    [36]Wolf A T,Robert W H,Hamrick J L.Genetic diversity and population structure of the serpentine endemic Calystegia collina(Convolvulaceae) in northern Californial[J].American Journal of Botany,2000,87:1138-1146.
    [37]Travis S E,Maschinski J,Keim P.An analysis of genetic variation in Astragalus cremnophylax var.cremnophylax,a critically endangered plant,using AFLP markers[J].Molecular Ecology,1996,5:735-745.
    [38]Fischer M,Matthies D.RAPD variation in relation to population size and plant fitness in the rare Gentianella germanica(Gentianaceae)[J].American Journal of Botany,1998,85:811-819.
    [39]Wang R,Gao Q,Tang H.Variations of plant life form diversity along Northeast China Transect and its direct gradient analysis[J].Journal of Enviromental Sciences,2002,14(4):547-551.
    [40]Frankham R.Relationship of genetic variation to population size in wildlife[J].Conservation Biology,1996,10:1500-1508.
    [41]Frankham R.Conservation Genetics[J].Annual Review of Genetics,1995,29:305-327.
    [42]Hartl D L,Clark A G.Principles of Population Genetics[M].Sunderland,Mass:Sinauer Associates Inc,1997.
    [43]Wang R Z,Ripley E A.Biomass and energy allocation in Leymus chinensis in semi-arid environments on the Songnen plain,northeastern China[J].International Journal of Ecology and Environmental Sciences,2000,26:107-115.
    [44]Dewey D R,Yun J F.Application of the genomic system of classification to circumscription of the perennial genora of the tribe triticeae of China[J].Grassland of China,1985,3:6-11.
    [45]Sun Z L.Cytogenetic investigation in Leymus secaline,Ⅱ Secondary association of bivalent[J].Grassland of China,1988,3:44-46.
    [46]Schoen D J,Brown A H D.Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants[C].Proceedings of the National Academy of Sciences.1991.88:4494-4497.
    [47]Ellstrand N C,Roose M L.Patterns of genotypic diversity in clonal plant species[J].American Journal of Botany,1987,74:123-131.
    [48]郭万里.中国松嫩平原短芒野大麦(Hordeum brevisubulatum(Trin)Link)天然种群的分子遗传与表观遗传多样性及其种群遗传结构的研究[D]:[博士学位论文].长春:东北师范大学遗传与细胞研究所,2006.
    [49]阮成江,何祯祥,周长芳.植物分子生态学[M].北京:化学工业出版社,2005.
    [50]Dobzhansky T.Genetics and the Origin of Species[M].3rd Ed.New York:Columbia University Press,1951.
    [S1]Kimura M.Eevolutionary rate at the molecular level[J].Nature,1968,217:624-626.
    [52]King J L,Jukes T H.Non-Darwinian evolution[J].Science,1969,164:788-798.
    [53]Wright S.Evolution in Mendelian populations[J].Genetics,1931,16:97-159.
    [54]Wright S.Isolation by distance[J].Genetics,1943,28:114-138.
    [55]Latter B D H.The island model of population differentiation:a general solution[J].Genetics,1973,73:147-157.
    [56]Wright S.Breeding structure of populations in relation to speciation[J].Amer Nat,1940,74:232-248.
    [57]Sved J A,Latter B D H.Migration and mutation in stochastic models of gone frequency change Ⅰ The island model[J].Math Boil,1977,5:61-73.
    [58]Latter B D H,Sved J A.Migration and mutation in stochastic models of gone frequency change Ⅱ Stochastic migration with a finite number of islands[J].Math Biology,1981,13:95-104.
    [59]Prout T.A note on the island model with sex dependent migration[J].Theor Appl Genet,1981,59:327-332.
    [60]Takahata N, Palumbi S R. Extranuclear differentiation and gene flow in the finite model with sex-differentiated gone flow[J]. Genetics, 1985, 109: 441-457.
    
    [61]Berg L M, Lascoux M, Pamilo P. The infinite inland model with sex-differentiated gene flow[J]. Heredity, 1998, 81(1): 63-68.
    
    [62]Wright S. Isolation by distance under diverse systems of mating[J]. Genetics, 1946, 31: 39-59.
    
    [63]WrightS. The genetical structure of populations[J]. Ann Eugenics, 1951, 15: 323-354.
    
    [64]Malecot G. Remarks on decrease of relationship with distance[J]. following paper by M Kimura. Cold Spring Harbor Symp Quant Biol, 1955, 20: 52-53.
    
    [65]Malecot G. Le modeles stochastiques en genetique de population[J]. Pobl Inst Statist Univ Paris, 1959, 8: 173-210.
    
    [66]Kimura M, Weiss G H. The stepping stone model of population structure and decrease of genetic correlation with distance[J]. Genetics, 1964, 49: 561-576.
    
    [67]Malecot G. The Mathematics of Heredity[M]. San Francisco: Freeman, CA, USA, 1968, 2-30.
    
    [68]Maruyma T. Analysis of population structure II. Two dimensional stepping models of finite length and other geographically structured populations[J]. Ann Hum Genet, 1971, 35: 179-196.
    
    [69]Nagylaki T. The decay of genetic variability in geographically structured populations II[J]. Theor Popul Biol, 1976, 10: 70-82.
    
    [70]Morton N E. Estimation of demographic parameters from isolation by distance[J]. Hum Hered, 1982, 32: 37-41.
    
    [71]Slatkin M . Isolation by distance in equilibrium and non-equilibrium populations[J]. Evolution, 1993, 47(1): 264-279.
    
    [72]Doligez A, Baril C, Jobl H I. Fine-scale spatial genetic structure with nonuniform distribution ofindividuals[J]. Genetics, 1998, 148(2): 905-919.
    
    [73]Shiu S, Mercer D R, Martin P M V, et al. Aedes polynesiensis in the Society Islands: environmental correlates of isoenzyme differentiation[J]. Med Vet Entomol, 1997, 11(4): 349-354.
    
    [74]Pogson G H, Taggart C T, Mesa K A, et al. Isolation by distance in the Atlantic cod, Gadus morhua, at large and small geographic scales[J]. Evolution, 2001, 55(1): 131-146.
    
    [75]De Matthaeis E, Davolos D, Cobolli M, et al. Isolation by distance in equilibrium and nonequilibrium populations of four talitrid species in the Mediterranean Sea[J]. Evolution, 2000, 54(5): 1606-1613.
    
    [76]Kyle C J, Davis C S, Strobeck C. Microsatellite analysis of North American pine marten (Martes americana) populations from the Yukon and Northwest Territories[J]. Can J Zool -Rev Can Zool, 2000, 78(7): 1150-1157.
    
    [77]Keyshobadi N, Roland J, Strobeck C. Influence of landscape on the population genetic structure of the alpine butterfly Parnass smintheus (Papilionidae)[J]. Molecular Ecology, 1999,8(9): 1481-1495.
    
    [78]Burland T M, Barratt E M, Beaumont M A, et al. Population genetic structure and gene flow in a gleaning bat, Plecotus auritus[i].Proc R Soc LondSer B-Biol Sci, 1999,266(1422): 975-980.
    [79]Palumbi S R, Grabowsky G, Duda T, et al. Speciation and population genetic structure in tropical Pacific sea urchins[J]. Evolution, 1997, 51(5): 1506-1517.
    
    [80]Viard F, Justy F, Jarne P. The influence of self-fertilization and population dynamics on the genetic structure of subdivided populations: a case study using microsatellite markers in the freshwater snail Bulinus peliomphala[J]. Evolution, 1997, 51(5): 1518-1528.
    
    [81]Shimizu Y, Ueshima R. Historical biogeography and interspecific mtDNA introgression in Euhadra peliomphala (the Japanese land snail)[J]. Heredity, 2000, 85(1): 84-96.
    
    [82]Mahy G, Vekemans X, Jacquemart A, et al. Allozyme diversity and genetic structure in South-Western populations of heather, Calluna vulgari[J]. New Phytol, 1997, 137(2): 325-334.
    
    [83]Kimura M. "Stepping stone" model of population[J]. Ann Rept Nat Inst Genetics, Japan, 1953, 3: 62-63.
    
    [84]Kimura M, Weiss G H. The stepping model of population structure and the decrease of genetic correlation with distance[J]. Genetics, 1964, 49: 561-576.
    
    [85]Weiss G H, Kimura M. A mathematical analysis of the stepping stone model of genetic correlation[J]. J Appl Prob, 1965, 2: 129-149.
    
    [86]Ibrahim K M, Nichols R A, Hewitt G M. Satial patterns of genetic variation generated by different forms of dispersal during range expansion[J]. Heredity, 1996, 77(3): 282-291.
    
    [87]Stewart W A, Dallas J F, Piertney S B, et al. Metapopulation genetic structure in the water vole,Arvicola terrestris, in N E Scotland[J]. Biol J Linnean Soc, 1999, 68(1-2): 159-171.
    
    [88]Pope L C, Estoup A, Moritz C. Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellites[J]. Molecular Ecologly, 2000, 9(12): 2041-2053.
    
    [89]Gavin T A, Sherman P W, Yensen E, et al. Population genetic structure of the Northern Idaho ground squirrel (Spermophilus brunneus)[J]. J Mammal., 1999, 80(1): 156-168.
    
    [90]Nicholson A J, BaileyVA. The balance of animal populations[J]. Proc Zool Lond, 1935,3: 551-598.
    
    [91]Levins R. Extinction[J]. Lect Math Life Sci, 1970, 2: 75-107.
    
    [92]Hastings A, Harrison S. Metapopulation dynamics and generics[J]. Ann Rev Ecol Syst, 1994, 25: 167-188.
    
    [93]Quinn J F, Hastings A. Extinction in subdivided habitats[J]. Conserv Biol, 1987, 1:198-208.
    
    [94]Opdam P. Metapopolation theory and habitat fragmentation: a review of holarctic breeding bird studies[J]. Landscape Evol, 1991, 5: 93-106.
    
    [95]Harrison S, Murphy D D, Ehrlich P R. Distribution of the bay checkspot butterfly, Euphydras editha bayensis: evidence for a metapopulation model [J]. Am Nat, 1988, 132: 360-382.
    
    [96]Merriam G. Landscape dynamics in farmland[J]. Tree, 1988, 3: 16-20.
    
    [97]Hanski I. Metapopulation dynamics: does it help to have more of the same?[J]. Tree, 1989, 4: 113-114.
    
    [98]Hanski I. Single-species metapopolation dynamicsxoccepts, models and observations[J]. Biol J Linnean Soc, 1991, 42: 17-38.
    
    [99]WuJ. The theory of island biogeography: models and applications[J], 生态学杂志, 1989, 8: 34-39.
    [100]WuJ. Nature conservation theory and MacArthur-Wilson model[J]. 生态学杂志, 1990, 10:187-191.
    
    [101]Hanski I, Gilpin M. Metapopulation dynamics: brief history and conceptual domain[J]. Biol J LinneanSoc, 1991, 42: 3-16.
    
    [102]Hanski I . Dymamics of regional distributioa: the core and satellite species hypothesis[J]. Oikos, 1982, 38: 210-221.
    
    [103]Hanski I. Single species populatioa dynamics may contribute to long-term rarity and commoness[J]. Ecology, 1985, 66: 335-343.
    
    [104]Hastings A, Wolin C. Within-patch dynamics in a metapopulation[J]. Ecology, 1989, 70: 1261-1266.
    
    [105]Gyllenberg M , Hanski I. Single species metapopulation dyaamics: a structured model[J]. Theor Pop Bidl, 1992, 42: 35-61.
    
    [106]Hanski I, Gyllenberg M. Two general metapopulation models and the core-satellite hypothesis[J]. Am Nat, 1993, 142: 17-41.
    
    [107]Horn H S, MacArthur R H. Competition among fugitive species in a harliquin environment[J]. Ecology, 1972, 53: 749-752.
    
    [108]Slatkin M. Competition and regional coexistence[J]. Ecology, 1974, 55: 128-134.
    
    [109]Hanski I. Coexistence of competitors in patchy environment[J]. Ecoloy, 1983, 64: 493-500.
    
    [110]Sabelis M W, Diekmann O, Jansen V A A. Metapopultion persistence despite local extinction: Predator-prey patch models of the Lotha-Volterra type[J]. Biol J Linnean Soc, 1991,42: 267-283.
    
    [111]Bowers M, Harris L C. A large-scale metapopulation model of interspecific competition and environmental change[J]. Ecological Modelling, 1994, 72: 251-273.
    
    [112] Levins R. Some demographic and genetic consequences of environmental heterogeneity for biological control[J]. Bull Entomol Soc A, 1969, 15: 237-240.
    
    [113]Hanski I, Kuusari M, Nieminen M. Metapopulation structure and migration in the butterfly Melitaea cinxia[J]. Ecololgy, 1994, 75(3): 747-762.
    
    [114]Jollivet D, Chevaldonne P, Planque B. Hydrothermal-vent alvinellid polychaete dispersal in the eastern Pacific 2. A metapopulation model based on habitat shifts[J]. Evolution, 1999, 53(4): 1128-1142.
    
    [115]Harrison S , Quinn J F . Correlated environments and the persistence of metapopulations[J]. Oikos, 1989, 56: 293-298.
    
    [116]Mangel M, Tier C. Dynamics of metapopulations with demographic stochasticity and environmental catastrophes[J]. Theor Pop Biol, 1993, 44: 1-31.
    
    [117]Hastings A . A metapopulation model with population jumps of varying sizes[J]. Mathematical Biosciences, 1995, 128: 285-298.
    
    [118]Soule M E. Thresholds for survival: maintaining fitness and evolutionary potential. In: Conservation biology: an evolutionary -ecological perspective[M]. Sunderland, Massachusetts: Sinauer Associates Inc, 1980. 151-169.
    
    [119]Goodman D . The demography of chance extinction . In : Viable populations for conservation[M]. Cambridge: Cambridge University Press, 1987. 11-34.
    [120]Lande R.Genetics and demography in biological conservation[J].Science,1988,241:1455-1460.
    [121]Hanski I,Mollanen A,Gyllenberg M.Minimum viable metapopulation size[J].Am Nat,1996,147:527-541.
    [122]Wu J,Vankat J L,Barlas Y.Effects of patch connectivity and arrangement on animal motapopulation dynamics:a simulation study[J].Ecological Madellings,1993,65:221-254.
    [123]Gyllenberg M,Soderback,Stefan E.Does migration stabilize local population dynamics?Analysis of a discrete metapopulation model[J].Mathematical Biosciences,1993,118:25-49.
    [124]Gotelli N J,Kelley W G.A general model of metapopulation dynamics[J].Oikos,1993,68:36-44.
    [125]Fagan W F.Weak influences of initial conditions on metapopulation persistence times[J].EcolAppl,1999,9(4):1430-1438.
    [126]Heino M,Hanski I.Evolution of migration rate in a spatially realistic metapopulation model[J].Am Nat,2001,157(5):495-511.
    [127]Rowe G,Beebee T J C,Burke T.A microsatellite analysis of natterjack toad,Bufo calamita,metapopulations[J].Oikos,2000,88(3):641-651.
    [128]Garant D,Bernatchez L,Dodson J J.Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon(Salmo salar L.)[J].Molecular ecology,2000,9(5):615-628.
    [129]Freeland J R,Nobie L R,Okamura B.Genetic consequences of the metapopulation biology of facultatively sexual freshwater invertebrate[J].J Evol Biol,2000,13(3):383-395.
    [130]Storch I,SegeLbacher G.Genetic correlates of spatial population structure in central European capercaillie Teteao urogallus and black grouse T.terix:a project in progress[J].Wildlife Biol,2000,6(4):305-310.
    [131]张爱兵,谭声江,陈建,等.空间分子生态学——分子生态学与空间生态学相结合的新领域[J].生态学报,2002,22(5):752-769.
    [132]Barrett S C H,Kohnj K.Genetic and evolutionary consequence of small population size in plants:implication for conservation,In:Falk D A,Holsinger K E,eds.Genetics and conservation of rare plants[M].New York:Oxford University Press,1991.3-30.
    [133]Powers D A,Ropson I,Brown D C,et al.Genetic variation in Fundulus heterocltics:Geographics distribution[J].American Zoologist,1986,26:13-144.
    [134]Botstein D,White R L,Skolnick M,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J].Am J Hum Genet,1980,32:314-331.
    [135]Williams J G K,Kubelik A R,Livak K J,et al.DNA polymorphism amplified by arbitrary primers are useful as genetic markers[J].Nucleic Acids Res,1990,18:6531-6535.
    [136]Vos P,Hogers R,Bleeker M,et al.AFLP:a new technique for DNA fingerprinting[J].Nuc Acids Res,1995,23(21):4407-4414.
    [137]Jeffreys A J,Wilson V,Thein S L.Individual specific fingerprints of human DNA[J].Nature,1985,316:76-79.
    [138]Burke T.DNA fingerprinting and other methods for the study of mating success[J].Trends in Ecology and Evolution,1989,4:139-144.
    [139]Hadrys H M,Balick M,Schierwater B.Applications of random amplified polymorphic DNA(RAPD) in molecular ecology[J].Molecular Ecology,1992,1:55-63.
    [140]Scott P,Haymes K M,Williams S M.Parentage analysis using RAPD PCR[J].Nucleic Acids Research,1992,20:5493.
    [141]Turpeinen T,Vanhala T,Nevo E,et al.AFLP genetic polymorphism in wild barley(Hordeum spontaneum)populations in Israel[J].Theor Appl Genet,2003,106:1333-1339.
    [142]Muller LA H,Lambaerts M,Vangronsveld J,et al.AFLP-based assessment of the effects of environmental heavy metal pollution on the genetic structure of pioneer populations of Suillus luteus[J].New Phytologist,2004,164:297-303.
    [143]He T,Frauss S L,Lamont B B,et al.Long distance seed dispersal in a metapopulation of Banksia hookeriana inferred from a population allocation analysis of amplified fragment length polymorphism data[J].Molecular Ecology,2004,13:1099-1109.
    [144]Juan A,Crespo M B,Cowan R S,et al.Patterns of variability and gene-flow in Medicago citrina,an endangered endenmic of islands in the western Mediterranean,as revealed by amplified fragment length polymorphism(AFLP)[J].Molecular Ecology,2004,13:2679-2690.
    [145]Tautz D.Hypervariable of simple sequences as a general source for polymorphic DNA markers[J].Nucleic Acids Research,1989,17:6463-6471.
    [146]Queller D C,Strassman J E,Hughes C R.Microsatallites and kinship[J].Trends in Ecology and Evolution,1993,8:285-288.
    [147]Rongwen J,Akkaya M S,Bhagwat A A,et al.The use of microsatellite DNA markers for soybean genotype identification[J].Theo Appl Genet,1995,90:43-48.
    [148]Gueritaine G,Sester M,Fber F,et al.Fitness components of progeny of hybrids between transgenic oilseed rape(Brassica napus) and wild radish(Raphanus raphanistrum)[J].Molecular Ecology,2002,11:1419-1426.
    [149]Pimentel D,Hunter M S,LaGro J A,et al.Benefits and risks of genetic engineering in agriculture[J].BioScience,1989,39:606-614.
    [150]张美善.高粱(Sorghum bicolor L.)叶片和胚乳DNA甲基化水平和模式的遗传与变异研究[D]:[博十学位论文].长春:东北师范大学遗传与细胞研究所,2007.
    [151]Wu C,Morris J R.Genes,genetics,and epigenetics:a correspondence[J].Science,2001,293:1103-1105.
    [152]Razin A,Cedar H,Riggs A D.DNA methylation:biochemistry and biological significance[M].New York:Springer Verlag,1984.
    [153]Flavell R B.Inactivation of gene expression in plants as a on sequence of specific sequence duplication[J].Proc Natl Acid Sci USA,1994,91(9):3490-3496.
    [154]Grnenbaum Y,Naveh-Many T,Cedar H,et al.Sequence specificity of methylation in higher plant DNA[J].Nature,1981,292:860-862.
    [155]Bezdek M,Koukalova B,Kuhrova V,et al.Differential sensitivity of CG and CCG DNA sequences to ethionine-induced hypomethylation of the Nicotiana tabacum genome[J].FEBS Lett,1992,300(3):268-270.
    [156]Jeddeloh J A,Richards E J.mCCG methylation in angiosperms[J].Plant J,1996,9(5):579-586.
    [157]Wagner I , Capesius I . Determination of 5-methylcytosine from plant DNA by high-performance liquid chromatography[J]. Biochim Biophys Acta, 1981, 654(1): 52-56.
    
    [158]Montero L M, Filipski J, Gil P, et al. The distribution of 5-methylcytosine in the nuclear genome of plants[J]. Nucleic Acids Res, 1992, 20(12): 3207-3210.
    
    [159]Leutwiler L S, Hough-Evans B R, Meyerowitz E.M. The DNA of Arabidopsis thaliana[J]. Mol Gen Genet, 1984, 194: 15-23.
    
    [160]Chan S W, Henderson I R, Jacobsen S E. Gardening the genome: DNA methylation in Arabidopsis thaliana[J]. Nat Rev Genet, 2005, 6: 351-360.
    
    [161]Zilberman D, Gehring M, Tran R K, et al. Genomewide analysis of Arabidopsis DNA methylation uncovers an interdependence between methylation and transcription[J]. Nat Genet, 2007, 39: 61-69.
    
    [162]Zhang X, Yazaki J, Sundaresan A, et al. Genomewide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126: 1189-1201
    
    [163]Kapoor A, Agius F, Zhu J K. Preventing transcriptional gene silencing by active DNA demethylation[J]. FEBS Lett, 2005, 579: 889-5898.
    
    [164]Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16: 6-21.
    
    [165]Kress C, Thomassin H, Grange T. Local DNA demethylation in vertebrates: how could it be performed and targeted[J]. FEBS Lett, 2001, 494: 135-140.
    
    [166]Mayer W, Niveleau A, Walter J, et al. Embryogenesis-demethylation of the zygotic paternal genome[J]. Nature, 2000, 403: 501-502.
    
    [167]Kakutani T, Jeddeloh J A, Flowers S K, et al. Developmental abnormalities and epimutations associated with DNA hypomethylation mutations[J]. Proc Natl Acad Sci, 1996,93: 12406-12411.
    
    [168]Finnegan E J, Genger R K, Peacock WJ, et al. DNA methylation in plants[J]. Ann Rev Plant Physiol Plant Mol Biol, 1998, 49: 223-247.
    
    [169] Schwartz D, Dennis E. Transposase activity of the Ac controlling element in maize is regulated by its degree of methylation[J]. Mol Gen Genet, 1986, 205: 476-482.
    
    [170]Banks JA, Masson P, FedoroffN. Molecular mechanisms in the developmental regulation of the maize Suppressor-mutator transposable elementfJ]. Genes Dev, 1988, 2: 1364-1380.
    
    [171]Matzke M A, Primig M, Trnovsky J, et al. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants[J]. EMBO J, 1989, 8: 643-649.
    
    [172]Takeda S, Paszkowski J. DNA methylation and epigenetic inheritance during plant gametogenesis[J]. Chromosoma, 2006, 115: 27-35.
    
    [173]Oakeley E J, Podesta A, Jost J P. Developmental changes in DNA methylation of the two tobacco pollen nuclei during maturation. Proc Natl Acad Sci, 1997, 94: 11721-11725.
    
    [174]Finnegan E J, Peacock W J, Dennis E S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development[J]. Proc Natl Acad Sci, 1996, 93(16): 8449-8454.
    
    [175]Ronemus M J, Galbiati M, Ticknor C, et al. Demethylation-induced developmental pleiotropy in Arabidopsis[J]. Science, 1996, 273: 654-657.
    
    [176]Vongs A, Kakutani T, Martienssen R A, et al. Arabidopsis thaliana DNA methylation mutants[J]. Science, 1993, 260: 1926-1928.
    
    [177]Kakutani T, Munakata K, Richards E J, et al. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddm1 mutation of Arabidopsis thaliana[J]. Genetics, 1999, 151: 831-838.
    
    [178]Messegure R, Ganal M W, Steffens J C, et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA[J]. Plant Mol Biol, 1991, 16: 753-770.
    
    [179]Riddle N C, Richards E J. The control of natural variation in cytosine methylation in Arabidopsis[J]. Genetics, 2002, 162: 355-363.
    
    [180]Sano H, Kamada I, Youssefian S, et al. A single treatment of rice seedling with 5-azacytidine induces heritable dwarfism and undermethylation of genomic DNA[J]. Mol Gener Genet, 1990, 220: 441-447.
    
    [181]King G J. Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine[J]. JHortSci, 1995, 70(2): 333-342.
    
    [182]Amado L, Abranches R, Neves N, et al. Development-dependent inheritance of 5-azacytidine-induced epimutations in triticale: analysis of rDNA expression patterns[J]. Chromosome Research, 1997, 5: 445-450.
    
    [183]Heslop-Harrison J S . Gene expression and parental dominance in hybrid plants[J]. Development, 1990, 108: 21-28.
    
    [184]Brettell R I, Dennis E S. Reactivation of a silent Ac following tissue culture is associated with heritable lteration in its methylation pattern[J]. Mol Gen Genet, 1991, 229: 365-372.
    
    [185]Finnegan E J, Genger R K, Kovac K, et al. DNA methylation and the promotion by vernalization[J]. Proc Natl Acad Sci, 1998, 95: 5824-5829.
    
    [186]Burn J E, Bagnall D J, Metzger J D, et al. DNA methylation, vernalization, and the initiation of flowering[J]. Proc Natl Acad Sci, 1993, 90: 287-291.
    
    [187]Madlung A, Masuelli R W, Watson B, et al. Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids[J]. Plant Physiol, 2002, 129: 733-746.
    
    [188]Levy A A, Feldman M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization[J]. Biol J Linn Soc, 2004, 82: 607-613.
    
    [189]Liu B , Wendel J F . Epigenetic phenomena and the evolution of plant allopolyploids[J]. Molecular Phylogenetics and Evolution, 2003, 29: 365-379.
    
    [190]Liu Z L, Wang Y M, Shen Y, et al. Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia[J]. Plant Mol Biol, 2004, 54:571-582.
    
    [191]Salmon A, Ainouche M L, Wendel J F. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae)[J]. Mol Ecol, 2005, 14: 1163-1175.
    
    [192]Lukens L N, Pires J C, Leon E, et al. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids[J]. Plant Physiol, 2006, 140: 336-348.
    
    [193]Marfil C F, Masuelli R W, Davison J, et al. Genomic instability in Solanum tuberosum x Solanum kurtzianum interspecific hybrids[J]. Genome, 2006, 49: 104-113.
    
    [194] Kinoshita T, Miura A, Choi Y, et al. One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation[J].Science,2004,303:521-523.
    [195]Lauria M,Rupe M,Guo M,et al.Extensive matemal DNA hypomethylation in the endosperm of Zea mays[J].The Plant Cell,2004,16:510-522.
    [196]Matzke M A,Matzke A J M.How and why do plants inactivate homologous (trans)genes[J].Plant Physiol,1995,107:679-685.
    [197]Tanaka H,Masuta C,Uehara K,et al.Morphological changes and hypomethylation of DNA in transgenic tobacco expressing antisense RNA of the S-adenosyl-L-homocysteine hydrolase gene[J].Plant Mol Biol,1997,35(6):981-986.
    [198]Phillips R L,Kaeppler S M,Olhoft P.Genetic instability of plant tissue cultures:breakdown of normal controls[J].PNAS,1994,91:5222-5226.
    [199]刁现民,孙敬三.植物体细胞无性系变异的细胞学和分子生物学研究进展[J].植物学通报,1999,16(4):372-377.
    [200]Groose R W,Talbert L E,Kojis W P,et al.Progressive heterosis in autotetraploid alfalfa:studies using two types of inbreds[J].Crop Sci,1989,29:1173-1177.
    [201]Bingham E T,Groose R W,Woodfield D R,et al.Complementary gene interactions in alfalfa are greater in autotetraploids than diploids[J].Crop Sci,1994,34:823-829.
    [202]Xiong L Z,Xu C G,Saghai-Maroof M A,et al.Patterns of cytosine methyaltion in an elite rice hybrid and its parental lines,detected by a methylation-sensitive amplification polymorphism technique[J].Mol Gen Genet,1999,261:439-446.
    [203]Liu B,Piao H M,Zhao F S,et al.DNA methylation changes in rice induced by Zizania latifolia(Griseb.)DNA introgression[J].Hereditas,1999,131:75-78.
    [204]Scheid O M,Jakovleva L,Afsar K,et al.A change of ploidy can modify epigenetic silencing[J].Genetics,1996,93(14):7114-7119.
    [205]Liu B,Hu B,Dong Y Z,et al.Speciation-induced heritable cytosine methylation changes in polyploidy wheat[J].Progress In Natural Science,2000,10(8):601-606.
    [206]Steward N,Ito M,Yamaguchi Y,et al.DNA methylation in maize nucleosomes and demethylation by environmental stress[J].J Biol Chem,2002,277(40):37741-37746.
    [207]Long L,Lin X,Zhai J,et al.Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization[J].Biochem Biophys Res Commun,2006,340(2):369-376.
    [208]Ashikawa I.Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars[J].Plant Molecular Biology,2001,45:31-39.
    [209]Wang Y M,Lin X Y,Dong B,et al.DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression[J].Cellular and Molecular Biology Letters,2004,9:543-556.
    [210]Cervera M T,Ruiz-Garcia L,Martinez-Zapater J M.Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers[J].Mol Genet Genomics,2002,268:543-552.
    [211]Schmitt F E,Oakeley J,Jost J P.Antibiotic induces genome- wide hypermethylation in cultured Nicotiana tabacum plants[J].J Biol Chem,1997,272:534-1540.
    [212]Sharma S,Balyan H S,Gupta P K.Adaptive methylation pattern of ribosomal DNA in wild barley from Israel[J]. Barley Genetics Newsletter, 2005, 35: 27-35.
    
    [213]Richards E J. DNA methylation and plant development[J]. Trends Genet, 1997, 13(8): 319-322.
    
    [214]Wassenegger M. RNA directed DNA methylation[J]. Plant Mol Biol, 2000, 43: 203-220.
    
    [215]Kass S U , Pruss D , Wolffe A P . How does DNA methylation repress transcription?[J]. Trends Genet, 1997, 13: 444-449.
    
    [216]Meyer P. Transcriptional transgene silencing and chromatin components[J]. Plant Mol Biol, 2000, 43: 221-234.
    
    [217]Geiman T M, Robertson K D. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together?[J]. J Cell Biochem, 2002, 87: 117-125.
    
    [218]LiE. The mojo of methylation[J]. Nature Genet, 1999, 23: 5-6.
    
    [219]Finnegan E J. Is plant gene expression regulated globally[J]. Trends Genet, 2001, 17: 361-365.
    
    [220]Finnegan E J, Kovac K A. Plant DNA methyltransferases[J]. Plant Mol Biol, 2000, 43:189-201.
    
    [221]Ng H H, Bird A. DNA methylation and chromatin modification[J]. Curr Opin Genet Dev, 1999,9: 158-163.
    
    [222]Martienessen R A, Colot V. DNA methylation and epigenetic ingeritance in plants and filamentous fungi[J]. Science, 2001, 293: 1070-1074.
    
    [223]Pennisi E. Chemical shackles for genes?[J]. Science, 1996, 273: 574-575.
    
    [224]Nakano Y, Steward N, Sekine M, et al. A tobacco NtMETl cDNA encoding a DNA methyltransferase: molecular characterization and abnormal phenotypes of transgenic tobacco plants[J]. Plant Cell Physiol, 2000, 41(4): 448-457.
    
    [225]Xiao W, Custard K D, Brown R C, et al. DNA methylation is critical for Arabidopsis embryogenesis and seed viability[J]. Plant Cell, 2006, 18: 805-814.
    
    [226]Ruiz-Garcia L, Cervera M T, Martinez-Zapater J M. DNA methylation increases throughout Arabidopsis development[J]. Planta, 2005, 222: 301-306.
    
    [227]Sha A H, Lin X H, Huang J B, et al. Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis[J]. Mol Genet Genomics, 2005, 273: 484-490.
    
    [228]Xu M, Li X, Korban S S. DNA-methylation alterations and exchanges during in vitro cellular differentiation in rose (Rosa hybrida L.)[J]. Theor Appl Genet, 2004, 109: 899-910.
    
    [229]Jacobsen S E, Meyerowitz E M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis[J]. Science, 1997, 277: 1100-1103.
    
    [230]Soppe W J, Jacobsen S E, Alonso-Blanco C, et al. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene[J]. Mol Cell, 2000,6: 791-802.
    
    [231]Cubas P, Vincent C, Coen E. An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401: 157-161.
    
    [232]Burn J E, Smyth D R, Peacock W J, et al. Gene conferring late flowering in Arabidopsis thaliana[J]. Genet, 1993, 90: 147-155.
    [233]Sheldon C C, Burn J E, Perez P P, et al. The FLF MADS box gene : a repressor of flowering in Arabidopsis regulated by vernalization and methylation[J]. Plant Cell, 1999, 11: 445-458.
    
    [234]MatzkeM A, Mette M F, Mazke A J M. Transgene silencing by the host Genome defense: implification for the evolution of epigenetic control mechanisms in plants and vertebrates[J]. Plant MolBiol, 2000, 43: 401-415.
    
    [235]Peerbolte R, LeenhoutsK, Hooykaas-van Slogteren G M S, et al. Clones from a shooty tobacco crown gall tumor II: irregular T-DNA structures and organization, T-DNA methylation and conditional expression of opines genes[J]. Plant Mol Biol, 1986, 7: 285-299.
    
    [236]Martienssen R A, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi[J]. Science, 2001, 293: 1070-1074.
    
    [237]Fu X, Kohli A, Twyman R M, et al. Alternative silencing effect involve distinct types of non-spreading cytosine methylation at a three-gene, Single-copy transgenic locus in rice[J]. Mol Gen Genet, 2000, 263: 106-118.
    
    [238]Shan G H, Jose L M J, Antonio G J. Mitotic stability of infection-induced resistance to plum pox potyvirus with transgene silencing and DNA methylation[J]. Mol Plant Microb Interactions, 1999, 12(2): 103-111.
    
    [239]Louise J A, Thomas C L, Andrew M. De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus[J]. Euro Mol Biol Organi J, 1998, 17(21): 6385-6393.
    
    [240]Bocharst A, Hodal L, Palmgren G, et al. DNA methylation is involved in maintenance of an unusual expression pattern of an introduced gene[J]. Plant Physiol, 1992, 99: 409-414.
    
    [241]Buschhausen G, Wittig B, Graessmann M, et al. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene[J]. Proc Natl Acad Sci, 1987, 84: 1177-1181.
    
    [242]Van H H, Ingelbrecht I, Van M M, et al. Post-transcriptional of a neomycin phosphotransferase II transgene correlates with the accumulation of unproductive RNAs and with increased cytosine methylation of 3' Flanking regions[J]. Plant J, 1997, 12: 379-392.
    
    [243]Wassenegger M, Pelissier T. A model for RNA-mediated gene silencing in higher plants[J]. Plant Mol Biol, 1998, 37: 349-362.
    
    [244]Steimer A, Amedeo P, Afsar K, et al. Endogenous targets oftranscriptional gene silencing in Arabidopsis[J]. The Plant Cell, 2000, 12: 1165-1178.
    
    [245]Chandler V L, Rivin C, Walbot V. Stable non-mutator stocks of maize have sequences homologous to the Mul transposable element[J]. Genetics, 1986, 114: 1007-1021.
    
    [246]Fedoroff N , Schlappi M , Raina R . Epigenetic regulation of the maize Spm transposon[J]. Bioessays, 1995, 17: 291-297.
    
    [247]McClintock B. The significance of responses of the genome to challenge[J]. Science, 1984,226: 92-801.
    
    [248]Wendel J F, Wessler S R. Retrotransposon-mediated genome evolution on a local ecological scale[J]. Proc Natl Acad Sci, 2000, 97: 6250-6252.
    
    [249]Comai L, Tyagi A P, Winter K, et al. Phenotypic in stability and rapid gene silencing in newly formed Arabidopsis allotetraploids[J]. The Plant Cell, 2000, 12: 1551-1568.
    [250] Liu B, Vega J M, Feldman M. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. changes in low-copy coding DNA sequences[J]. Genome, 1998, 41:535-542.
    
    [251]Liu B, Vega J M, Segal G, et al. Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. changes in low-copy noncoding DNA sequences[J]. Genome, 1998, 41: 272-277.
    
    [252]Lee H S, Chen Z J. Protein coding gene are epigenetically regulated in Arabidopsis polyploids[J]. Proc Natl Acad Sci, 2001, 98: 6753-6758.
    
    [253]Madlung A, Watson B, Masuelli R, et al. Genetic and epigenetic changes in synthetic allopolyploids of Arabidopsis thaliana[C]. Plant & Animal Genomes XI Conference, 2003. 1: 11-15.
    
    [254]Lewis N, Lukens J, Pires C, et al. Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids[J]. Plant Physiology, 2006, 140: 336-348.
    
    [255]Madlung A, Tyagi A P, Watson B, et al. Genomic changes in synthetic Arabidopsis polyploids[J]. Plant J, 2005, 41: 221-230.
    
    [256]Liu B, Brubaker C L, Mergeai G, et al. Polyploid formation in cotton is not accompanied by rapid genomic changes[J]. Genome, 2001, 44: 321-330.
    
    [257]Liu B, Wendel J F. Retrotransposon activation followed by rapid repression in introgressed rice plants[J]. Genome, 2000, 43: 874-880.
    
    [258]Rapp R A, Wendel J F. Epigenetics and plant evolution[J]. New Phytologist, 2005, 168: 81-91.
    
    [259]Grandbastien M A. Activation of plant retrotransposons under stress conditions[J]. Trends in Plant Science, 1998, 3: 181-187.
    
    [260]Takeda S, Sugimoto K, Otsuki H, et al. A 13-bp cis-regulatory element in the LTR promoter of the tobacco retrotransposonTtol is involved in responsiveness to tissue culture, wounding, methyl jasmonate and fungal elicitors[J]. Plant Journal, 1999, 18: 383-393.
    
    [261]Hirochika H. Activation of tobacco retrotransposons during tissue culture[J]. EMBO Journal, 1993, 12: 2521-2528.
    
    [262]Hirochika H, Sugimoto K, Otsuki Y, et al. Retrotransposons of rice involved in mutations induced by tissue culture[J]. Proc Natl Acad Sci, 1996, 93: 7783-7788.
    
    [263]Kikuchi K, Terauchi K, Wada M, et al. The plant MITE mPing is mobilized in anther culture[J]. Nature, 2003, 421: 167-170.
    
    [264]Kaeppler S M, Phillips R L. Tissue culture-induced DNA methylation variation in maize[J]. Proc Natl Acad Sci, 1993, 90: 8773-8776.
    
    [265]Kubis S E, Castilho A M, Vershinin A V, et al. Retroelements, transposons and methylation status in the genome of oil palm (Elaeis guineensis) and the relationship to somaclonal variation[J]. Plant Molecular Biology, 2003, 52: 69-79.
    
    [266]Liu Z L, Wang Y M, Shen Y, et al. Extensive alterations in DNA methylation and transcription in rice caused by introgression from Zizania latifolia[i]. Plant Molecular Biology, 2004, 54: 571-582.
    [267]Ashikawa I . Surveying CpG methylation at 5'-CCGG in the genomes of rice cultivars[J]. Plant Molecular Biology, 2001, 45: 31-39.
    
    [268]Finnegan E J, Peacock W J, Dennis E S. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development[J]. Proc Natl Acad Sci, 1996, 93: 8449-8454.
    
    [269]Ronemus M J, Massimo G, Christine T, et al. Demethylation-induced developmental pleiotropy in Arabidopsis[J]. Science, 1996, 273: 654-657.
    
    [270]Kakutani T, Munakataa K, Richards E J, et al. Meiotically and mitotically stable inheritance of DNA hypomethylation induced by ddml mutation of Arabidopsis thaliana[J]. Genetics, 1999, 151: 831-838.
    
    [271]Wang Y M, Lin X Y, Dong B , et al. DNA methylation polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression[J]. Cellular and Molecular Biology Letters, 2004, 9: 543-556.
    
    [272]Burn J E, Bagnall D J, Metzger J D, et al. DNA methylation, vernalization, and the initiation of flowering[J]. Proc Natl Acad Sci, 1993, 90: 287-291.
    
    [273]Schmitt F E, Oakeley J, Jost J P. Antibiotic induces genome-wide hypermethylation in cultured Nicotiana tabacum plants[J]. J Biol Chem, 1997, 272: 534-1540.
    
    [274]Hashida S N, Kitamura K, Mikami T, et al. Temperature shift coordinately changes the activity and the methylation state of transposon Tam3 in Antirrhinum majus[J]. Plant Physiology,2003, 132: 1207-1216.
    
    [275]Hashida S N, Uchiyamab T, Martinc C, et al. The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase[J]. The Plant Cell, 2006, 18: 104-118.
    
    [276]Kalisz S, Purugganan M D. Epialleles via DNA methylation: consequences for plant evolution[J]. Trends in Ecology and Evolution, 2004, 19: 309-314.
    
    [277]Reyna-L6pez G E, Simpsonand J, Ruiz-Herrera J. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphism[J]. Mol Gen Genet, 1997, 253: 703-710.
    
    [278]McClelland M, Nelson M, Raschke E. Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases[J]. Nucleic Acid Res, 1994, 22: 3640-3659.
    
    [279]Xu M, Li X, Korban S S. AFLP-based detection of DNA methylation[J]. Plant Mol Biol Rep, 2000, 18: 361-368.
    
    [280]Portis E, Acquadro A, Comino C, et al. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP)[J]. Plant Science, 2004, 166: 169-178.
    
    [281]Noyer J L, Causse S, Tomekpe K, et al. A new image of plantain diversity assessed by SSR, AFLP and MSAP markers[J]. Genetica, 2005, 124: 61-69.
    
    [282]Peraza-Echeverria S, Herrera-Valencia V, Andrew-James K. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP)[J]. Plant Sci, 2001, 161: 359-367.
    
    [283]Matthes M, Singh R, Cheah S C, et al. Variation in oil palm (Elaeis guineensis Jacq.) tissue culture-derived regenerants revealed by AFLPs with methylation- sensitive enzymes[J]. Theor Appl Genet, 2001, 102: 971-979.
    
    [284]Law R D, Suttle J C. Transient decreases in methylation at 5'-CCGG-3' sequences in potato (Solarium tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth[J]. Plant Mol Biol, 2002, 51: 437-447.
    
    [285]Joyce S M, Cassells A C. Variation in potato microplant morphology in vitro and DNA methylation[J]. Plant Cell Tiss Org, 2002, 70: 125-137.
    
    [286]Popescu C F, Falk A, Glimelius K. Application of AFLPs to characterize somaclonal variation in anther-derived grapevines[J]. Vitis, Siebeldingen, 2002, 41: 177-182.
    
    [287]Li X Q, Xu M L, Korban S S. DNA methylation profiles differ between field- and in vitro-grown leaves of apple[J]. J Plant Physiol, 2002, 159: 1229-1234.
    
    [288]Bardini M, Labra M, Winfield M, et al. Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana[J]. Plant Cell Tiss Org, 2003, 72: 157-162.
    
    [289]Hao Y J, You C, Deng X X. Analysis of ploidy and the patterns of amplified fragment length polymorphism and methylation-sensitive amplified polymorphism in strawberry plants recovered from cryopreservation[J]. Cryo Lett, 2002, 23: 7-46.
    
    [290]Chakrabarty D, Yu K W, Paek K Y. Detection of DNA methylation changes during somatic embryogenesis of Siberian ginseng (Eleuterococcus senticosus)[J]. Plant Science, 2003, 165: 61-68.
    
    [291]Hao Y J, Deng X X. Genetically stable regeneration of apple plants from slow growth[J]. Plant Cell Tiss Org, 2003, 72: 253-260.
    
    [292]Imazio S, LabraM, Grassi F, et al. Molecular tools for clone identification: the case of the grapevine cultivar 'Traminer'[J]. PlantBreed, 2002, 121: 531-535.
    
    [293]Sherman J D, Talbert L E. Vernalization-induced changes of the DNA methylation pattern in winter wheat[J]. Genome, 2002, 45: 253-260.
    
    [294]Wolffe A P, Matzke M A. Epigenetics: regulation through repression[J]. Science, 1999, 286: 481-486.
    
    [295]Richards E J. Inherited epigenetic variation-Revisiting soft inheritance[J]. Nature Reviews Genetics, 2006, 7: 395-401.
    
    [296]Cao X, Jacobsen S E. Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes[J]. Proc Natl Acad Sci, 2002, 99: 16491-16498.
    
    [297]Cao X, Jacobsen S E. Role of the Arabidopsis DRM methyltransferases in de novo DNA methylation and gene silencing[J]. Current Biology, 2002, 12: 1138-1144.
    
    [298]Martin C, Zhang Y. Mechanisms of epigenetic inheritance[J]. Current Opinion in Cell Biology, 2007, 19: 266-272.
    
    [299]Zilberman D , Henikoff S . Epigenetic inheritance in Arabidopsis: Selective silence[J]. Current Opinion in Genetics and Development, 2005, 15: 557-562.
    
    [300]Henderson I R, Jacobsen S E. Epigenetic inheritance in plants[J]. Nature, 2007, 447:418-424.
    
    [301]Akimoto K, Katakami H, Kim H J, et al. Epigenetic inheritance in rice plants[J]. Annals of Botany, 2007, 100: 205-217.
    [302]Mathieu O, Reinders J, Caikovski M, et al. Transgenerational stability of the arabidopsis epigenome is coordinated by CG methylation[J]. Cell, 2007, 130: 851-862.
    
    [303]Rando O J, Verstrepen K J. Timescales of Genetic and Epigenetic Inheritance[J]. Cell, 2007, 128: 655-668.
    
    [304]Bond D M, Finnegan E J. Passing the message on: inheritance of epigenetic traits[J]. Trends in Plant Science, 2007, 12(5): 211-216.
    
    [305]Zhu J, Kapoor A, Sridhar V V, et al. The DNA Glycosylase/Lyase ROS1 Functions in Pruning DNA Methylation Patterns in Arabidopsis[J]. Current Biology, 2007, 17: 54-59.
    
    [306]Miura A, Yonebayashi S, WatanabeK, etal. Mobilization of transposons by a mutation abolishing full DNA methylation in ArabidopsisfJ]. Nature, 2001, 411: 212-214.
    
    [307]Feschotte C, Jiang N, Wessler S R. Plant transposable elements: where genetics meets genomics[J]. Nat Rev Genet, 2002, 3: 329-341.
    
    [308]Kato M, Miura A, Bender J, et al. Role of CG and non-CG methylation in immobilization of transposons in Arabidopsis[J]. Curr Biol., 2003, 13: 421-426.
    
    [309]Rangwala S H, Richards E J. Differential epigenetic regulation within an Arabidopsis retroposon family [J]. Genetics, 2007, 176: 151-160.
    
    [310]DingY, Wang X, Su L, et al. SDG714, a histone H3K9 methyltransferase, is involved in Tos 17 DNA methylation and transposition in rice[J]. Plant Cell, 2007, 19(1): 9-22.
    
    [311]Bossdorf O, Richards C L, PigliucciM. Epigenetics for ecologists[J]. Ecology Letters, 2008, 11: 106-115.
    
    [312]Riddle N C, Richards E J. Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in ArabidopsisfJ]. Plant Journal, 2005, 41: 524-532.
    
    [313]Takata M, Kishima Y, Sano Y. DNA methylation polymorphisms in rice and wild rice strains: Detection of epigenetic markers[J]. Breeding Science, 2005, 55: 57-63.
    
    [314] Salmon A, Clotault J, Jenczewski E, et al. Brassica oleracea displays a high level of DNA methylation polymorphism[J]. Plant Science, 2008, 174: 61-70.
    
    [315]Lucht J M, Mauch-Mani B, Steiner H Y, et al. Pathogen stress increases somatic recombination frequency in ArabidopsisfJ]. Nature Genetics, 2002, 30: 311-314.
    
    [316]Molinier J, Ries G, Zipfel C, et al. Transgeneration memory of stress in plants[J]. Nature, 2006, 442(7106): 1046-1049.
    
    [317]Bruce T J A, Matthes M C, Napier JA, etal. Stressful "memories" of plants: Evidence and possible mechanisms [J]. Plant Science, 2007, 173: 603-608.
    
    [318]Boyko A, Kathiria P, Zemp F J, et al. Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (Virus-induced plant genome instability)[J]. Nucleic Acids Research, 2007, 35: 1714-1725.
    
    [319]Lukens L N, Zhan S. The plant genome's methylation status and response to stress: implications for plant improvement[J]. Current Opinion in Plant Biology, 2007, 10: 317-322.
    
    [320]Grant-Downton R T, Dickinson H G. Epigenetics and its implications for plant biology 2. The'epigenetic epiphany': Epigenetics, evolution and beyondfJ]. Annals of Botany, 2006, 97: 11-27.
    
    [321]Pigliucci M. Do we need an extended evolutionary synthesis[J]. Evolution, 2007, 61: 2743-2749.
    
    [322]Kidwell K K. Simple plant DNA isolation procedures, In: Plant genomes: methods for genetic and physical mapping Amsterdam[M]. The Netherlands: Kluwer Academic Publishers, 1992. 1-13.
    
    [323]Hollander M, WolfeDA. Nonparametric Statistical Methods[M]. New York: Wiley, 1973.
    
    [324]Nei M. Analysis of gene diversity in subdivided populations[J]. Proc Natl Acad Sci, 1973, 70: 3321-3323.
    
    [325]Lewontin R C. Testing the theory of natural selection[J]. Nature, 1972, 236: 181-182.
    
    [326]Slatkin M, Barton N H. A comparison of three indirect methods for estimating average levels of gene flow[J]. Evolution, 1989, 43: 1349-1368.
    
    [327]Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals[J]. Genetics, 1978, 89: 583-590.
    
    [328]Yeh F C, Yang R C, Boyle T B J, et al. POPGENE, the user-friendly shareware for population genetic analysis[CP]. Molecular Biology and Biotechnology Centre, University of Alberta, 1997.
    
    [329]Page R D M. Tree View: An application to display phylogenetic trees on personal computers[J]. Computer Applications in the Biosciences, 1996, 12: 357-358.
    
    [330]Excoffier L, Laval G, Schneider S. Arlequin ver 3.0: An integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
    
    [33 l]Excoffier L, Smouse P E, Quattro J M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data[J]. Genetics, 1992, 131: 479-491.
    
    [332]Rohlf F J. NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.1. Exeter software[CP]. Setauket, New York, 2000.
    
    [333]Jaccard P. Nouvelles rescherches sur la distribution florale[J]. Bull Soc Vaud Sci Nat, 1908, 44: 223-270.
    
    [334]Rohlf F J. NTSYS-pc: Numerical taxonomy and multivariate analysis system, Version 2.0.[CP]. Exeter Publications, New York, 1993.
    
    [335]Mantel N A . The detection of disease clustering and a generalized regression approach[J]. Cancer Res, 1967, 27: 209-220.
    
    [336]Gower J C. Some distance properties of latent root and vector methods used in multivariate analysis[J]. Biometrika, 1966, 53: 325-338.
    
    [337]Anderson J A, Churchill G A, Autrique J E, et al. Optimizing parental selection for genetic-linkage maps[J]. Genome, 1993, 36: 181-186.
    
    [338]Nei M, Takezaki N, Sitnikova T. Assessing molecular phylogenies[J]. Science, 1995, 267: 53-254.
    
    [339]Wright S. The interpretation of population structure by F-Statistics with special regard to system of mating[J]. Evolution, 1965, 19: 395-420.
    
    [340]Nei M. Molecular Evolutionary Genetics[M]. New York: Columbia University Press, 1987. 176-187.
    
    [341]Hamrick J L, Loveless M D. The genetic structure of tropical tree populations: Associations with reproductive biology, In: Bock J H , Linhart Y B , eds. Plant Evolutionary Ecology[M]. Boulder: Westview Press, 1989. 131-146.
    
    [342]Badr A, Sch R, Rabey H E, et al. On the Origin and Domestication History of Barley (Hordeum vulgare)[J]. Molecular Biology and Evolution, 2000, 17: 499-510.
    
    [343]Brown A H D. The case for core collection, In: Brown AHDetal, eds. The use of plant genetic resources[M]. Cambridge: Cambridge University Press, 1989. 136-156.
    
    [344]Frankel O H , Brown A H D , Burdon J J . The conservation of plant biodiversity[M]. Cambridge: Cambridge Univ Press, 1995.
    
    [345]Hamrick J L. Gene flow and distribution of genetic variation in plant populations, In: Urbanska K M, eds. Differentiation Patterns in Higher Plants[M]. New York: Academic Press, 1987. 63-67.
    
    [346]Reisch C, Anke A, Rohl M. Molecular variation within and between ten population of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps[J]. Basic Appl Ecol, 2005, 6: 35-45.
    
    [347]Li M, Gong L, Tian Q, et al. Clonal genetic diversity and populational genetic differentiation in Phragmites australis distributed in the Songnen Prairie in northeast China as revealed by amplified fragment length polymorphism and sequence-specific amplification polymorphism molecular markers[J]. Annals of Applied Biology, 2009, 154: 43-55.
    
    [348]Messeguer R, Ganal M W, Steffens J C, et al. Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA[J]. Plant Mol Biol, 1991, 16: 753-770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700