用户名: 密码: 验证码:
水力劈裂条件下裂隙介质水力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的水电开发处于前所未有的黄金时期,使得一批大型、特大型的水利水电工程开始兴建。这些高坝大库坐落在裂隙岩体之上,蓄水后坝基裂隙岩体将面临很高的外水压力,那么它们能否承受这么高的水压力?这取决于坝基岩体中的裂隙在高水压下的稳定性及渗透性,它关系着整个工程的安全与否。为了解决这类问题,把水力劈裂的理论和技术引用到该领域,对这类问题进行了探索性研究;而水力劈裂理论在评价坝基岩体中裂隙的稳定性方面的研究还较薄弱。故论文的选题具有理论意义和实用价值。
     本论文以已有的水力劈裂理论为基础,以原位水力劈裂试验结果为依据,以峡谷区天然条件下的裂隙为对象,用构造地质学、岩石力学、地下水动力学及线弹性断裂力学的理论及方法来研究水力劈裂过程中裂隙的发生、发展过程,以及在该过程中裂隙的渗透性规律,并给出了水力劈裂过程的机理分析。最后结合工程实际进行应用。
     本文通过对原位水力劈裂试验结果分析发现:影响岩体劈裂压力的根本原因在于岩体内是否存在裂隙及已存在裂隙的规模。作者完善了水力劈裂过程的三阶段:裂隙起劈阶段、裂隙生长阶段和裂隙稳定阶段,指出裂隙生长阶段的结束应以流量的衰减作为标志。利用无量纲化的方法研究表明:在水力劈裂过程中的裂隙起劈阶段:裂隙宽度—水压力关系及裂隙渗透性—水压力关系均为对数关系;在水力劈裂过程中的裂隙稳定阶段:裂隙宽度—水压力关系及裂隙渗透性—水压力关系均为线性关系。论文从机理上对水力劈裂过程进行分析,通过固体力学分析得出:水力劈裂过程与裂隙的压裂过程之间在变形机理上有着本质的区别。水力劈裂过程只有弹性变形和脆性破坏,不存在裂隙压裂过程中的第三种变形机理—压缩破坏。通过流体力学分析得出:在裂隙起劈阶段,地下水流的流态为紊流,且J-v之间满足指数关系;在裂隙稳定阶段,地下水流的流态较为接近层流状态。另外,论文还分析了在应力(正应力)作用下裂隙介质中裂隙的倾角对渗流的影响,即裂隙面的倾角效应。最后,因为水电工程自身的特点:蓄水后地应力与试验条件下的地应力区别很大,再加上本次水力劈裂试验的局限性,故在进行工程应用时,只能得出近似的结果。但是该结果仍然对本文中的水利水电工程以及类似的水利水电工程具有指导意义。
Now exploitation of hydraulic electricity is at the height of power and splendour in China, and many larger-scale water power stations will be built up. The foundations of these high dams are crack rocks, after big reservoirs impounding, high hydraulic pressure will be put on the crack rocks, and can they bear the high pressure? The stability and permeability of dam foundation rock cracks determine the project's safety. In order to meet water power stations' need, the author applies hydraulic fracturing to this field and research into these problems. But, applying hydraulic fracturing to evaluation the stability and permeability of dam foundation rock cracks is a vacancy in our knowledge. So, the selected topic of thesis has important value in theory and practice.On the basis of previous hydraulic fracturing theory, according to hydraulic fracturing field experiments and with natural cracks in gorges as initial conditions, using the theories of Tectonics, Rock mechanics, Dynamics of groundwater and Fracture mechanics, the paper researches laws of the fracture initiation, fracture growth & crack stability, its permeability in the process of hydraulic fracturing, and analyzes the mechanism of hydraulic fracturing. At last, applying the theories to a project.Analyzing of the results of hydraulic fracturing field experiments, determination pressure of rock fracture initiation is the crack size. According to the injection rate and pressure in the process of hydraulic fracturing, the representative modeling of hydraulic fracturing process is designed as a process with three stages: crack initiation, fracture growth and fracture stability. The flow reduce is the symbol of fracture growth stage. Using dimensionless method, the paper concludes that at the stage of crack initiation, the relation of aperture & hydraulic pressure is log law and the relation of fracture's permeability & hydraulic pressure is log law too, and that at the stage of fracture stability, the relation of aperture & hydraulic pressure is linear law and the relation of fracture's permeability & hydraulic pressure is linear law too. The paper analyzes the process of hydraulic fracturing on mechanism, realizing the processes of hydraulic fracturing and crack initiation under normal stress have difference on deformation mechanism. There are only elastic deformation and brittle deformation on the process of hydraulic fracturing, and not compaction. At the stage of fracture initiation, the groundwater is turbulent flow, and the relation of J - v is an exponential expression. At the stage of crack stability, the groundwater is approximately laminar flow. In the paper, the seepage under stress shows the obliquity effect. Finally, because the characteristic of water power stations: the significantly difference of the principle stresses before and after reservoirs impounding, and the non-perfectly hydraulic fracturing field experiment, the paper approximately applies conclusions into a water power station. But the results still have the important value to this project and similar projects.
引文
1.孙广忠.岩体结构力学.北京:科学出版社,1988
    2.周创兵,熊文林.地应力对裂隙岩体渗透特性的影响.地震学报,1997,19(2),154~163
    3. Griffith, A. A. The Phenomenon of Rupture and Flow in Solids, Phil. Trans. Roy. Soc. A 221, 1920, 163~198
    4.王锦国,周志芳.裂隙岩体地下水溶质运移的尺度问题.水科学进展,2002,13(2),239~245
    5. G. Dagan, Statistical Theory of groundwater Flow and Transport: Pore to laboratory, laboratory to formation, and formation to Regional, Water Resour. Res., 1986, 22(9), 120~134
    6.李建林著.卸荷岩体力学.中国水利水电出版社,2003.10
    7.薛禹群主编.地下水动力学.北京:地质出版社,1997
    8.周创兵,於三大.论岩体表征单元体积REV岩体力学参数取值的一个基本问题.工程地质学报,1999,7(4),333~336
    9. F. H. Cornet, J. M. Hosanski, F. B ernaudat and E. Ledoux, Shallow Depth Experimentation on the Concept of Extraction from Deep hot dry Rocks, S. Nemat-Nasser, H. Abe. S. Hirakawa, Hydraulic fracturing and geothermal energy, Martinus Nijhoff Publishers, 1995, 75~93
    10. Ko Sato, Morihiko Takanohashi and Kunio Katagiri, Breakdown Pressure Prediction in Hydraulic Fracturing at the Nigorikawa Geothermal Field, S. Nemat-Nasser, H. Abe. S. Hirakawa, Hydraulic fracturing and geothermal energy, Martinus Nijhoff Publishers, 1995, 113~123
    11. K. Yuhara, S. Ehara and H. Kaieda, Detection of the newly Formed Fracture Zone by the Seismological Method, Ko Sato, Morihiko Takanohashi and Kunio Katagiri, Breakdown Pressure Prediction in Hydraulic Fracturing at the Nigorikawa Geothermal Field, S. Nemat-Nasser, H. Abe. S. Hirakawa, Hydraulic fracturing and geothermal energy, Martinus Nijhoff Publishers, 1995, 317~329
    12. F. Rummel and R. B. Winter, Application of Laboratory Fracture Mechanics Data to hydraulic Fracturing Field Tests, S. Nemat-Nasser, H. Abe. S. Hirakawa, Hydraulic fracturing and geothermal energy, Martinus Nijhoff Publishers, 1995, 493~527
    13. J. C. Roegiers, J. D. Mclennan and D. L. Murphy, Influence of Preexisting Discontinuities on the Hydraulic Fracturing Propagation Process, S. Nemat-Nasser, H. Abe. S. Hirakawa, Hydraulic fracturing and geothermal energy, Martinus Nijhoff Publishers, 1995, 413~427
    14. Ahmed, S. Abou-Sayed, The influence of subsurface conditions on hydraulically induced fractures in deep rocks, S. Nemat-Nasser, H. Abe. S. Hirakawa, Hydraulic fracturing and geothermal energy, Martinus Nijhoff Publishers, 1995, 125~139
    15. A. A. Daneshy, Propagation of hydraulic fracture and its conductivity in layered media, S. Nemat-Nasser, H. Abe. S. Hirakawa, Hydraulic fracturing and geothermal energy, Martinus Nijhoff Publishers, 1995, 159~173
    16. Lawrence, W. Teufel and Norman, R., Warpinski, An assessment of the factors affecting hydraulic fracture containment in layered rock: observations from a mineback experiment, S. Nemat-Nasser, H. Abe. S. Hirakawa, Hydraulic fracturing and geothermal energy, Martinus Nijhoff Publishers, 1995, 251~265
    17. Peter Valko and Michael J. Economides, Hydraulic Fracture Mechanics, John Wiley & Sons, Chichester, 1995. 9
    18.杨秀夫,刘希圣,陈勉,陈治喜.国内外水力压裂技术现状及发展趋势.钻采工艺,1998,2(4),21~25
    
    19.陈勉,庞飞.大尺寸真三轴水力压裂模拟与分析.岩石力学与工程学报,2000,19(2):868~872
    20.陈群策,安美建,李方全.水压致裂法三维地应力测量的理论探讨.地质力学学报,1998,4(1)37-44
    21.刘允芳.水压致裂法三维地应力测量.岩石力学与工程学报,1991,10(3)
    22.马国彦,林秀山.水利水电工程灌浆与地下水排水.中国水利水电出版社,2001
    23.陈治喜,陈勉,金衍等.水压致裂法测定岩石的断裂韧性.岩石力学与工程学报.1997,16(1),59~64
    24.[美]L 吉德利等著,蒋阗,单文文等译 水力压裂技术新进展 石油工业出版社
    25. F. H. Cornet. In Situ Stress Heterogeneity Identification with the HTPF Tool. Rock Mechanics, Tillerson & Wawersik (eds), 1992
    26. Y. Mizuta, O. Sano, S. Ginogino, etal. Three Dimensional Stress Determination by Hydraulic Fracturing for Underground Excavation Design. Int J Rock Mech Min Sci & Geomech Abstr. 1987, 24(1): 15~294
    27. M. Kuriyagawa, etal. Application of Hydraulic Fracturing to Three Dimensional in Situ Stress Measurement. Int J Rock Mech Min Sci & Geomech Abstr. 1989, 26(6): 587~593
    28. M. Thiercelin, K. B. Naceur, Z. R. Lemanczyk. Simulation of Three Dimensional Propagation of Avertical Hydraulic Fracture. SPE/DOE 13861, 1985
    29. G. D. Anderson. Effects of Friction on Hydraulic Fracture Growth near Unbonded Interfaces in Rocks. SPEJ8347, 1981, 21(1): 21~29
    30. L. W. Teufel, J. A. Clark. Hydraulic fracture propagation in layered rock: experimental studies of fracture containment. SPEJ9878, 1984, 24(2): 449~456
    31. A. A. Daneshy. Hydraulic fracture propagation in the presence of planes of weakness. SPE4852, 1974
    32. Warpinski, N. R. Clark, J. A., Schmidt, et al., Laboratory investigation on the effect of in-situ stress on hydraulic fracture containment [J]. SPEJ 9834, 1982, 22(3): 55~667
    33. T. K. Perkins, and L. R. Kern,: Width of Hydraulic Fractures, JPT, (Sept.), 1961, 937~949, Trans. AIME, 222
    34. W. L. Medlin, L. Masse. Laboratory experiments in fracture propagation. SPEJ10377, 1984, 22(6): 161~188
    35. S. A. Khristianovitch and Y. P. Zheltov. Formation of Vertical Fractures Highly Viscous Fluids, Proc. World Pet. Cong., Rome, 1955, 2, 579
    36. R. P. Nordgren. Propagation of a Vertical Hydraulic Fracture, SPEJ, 1972, 306~314, (Aug.) Trans. AIME, 253
    37. J. Geertsma. Two-dimensional Fracture-Propagation Models, in Recent Advances in Hydraulic Fracturing, Gidley, J. L. et al. (eds.), SPE Monograph 12, SPE, Richardson, TX, 1989
    38.杨秀夫,刘希圣,陈勉.陈治喜.国内外水压裂缝几何形态模拟研究的发展现状,西部探矿工程,1997,9(6)8~11
    39. M. P. Cleary, R. G Kerk, M. E. Mear. Microcomputer Models for the design of Hydraulic Fractures. SPE11628
    40. A. Settari. Simulation of Hydraulic Fracturing Processes. SPEJ., Dec. 1980, 487~500
    41. M. P. Carrol. Comprehensive Design Formulae for Hydraulic Fracture, SPE9295
    42. R. J. Clifton and J. J Wang.: Multiple Fluids, Prop-pant, and Thermal Effectsin Three-Dimensional Simulation of Hydraulic Fracturing, PageSPE 18198 Presented at the 1988SPE Annual Technical conference and Exhibition, Hos-ton, Oct. 2~5
    43. M. P. Cleary, M. Kavvadas, and K. Y. Lan. A fully Three-Dimensional Hydraulic Fracture Simulator, SPE11631
    44.依同春,王鸿勋.水平裂缝压裂设计数值方法的研究,华东石油学报,1986
    45.陈治喜,陈勉.层状介质中水力压裂裂缝的垂向扩展,石油大学学报,1997,21(4):23~26
    46.陈勉,陈治喜,黄荣樽.非均质地层水力压裂研究,东北大学学报(自然科学版)1994,15:309~312
    
    47.陈勉,陈治喜,大斜度井水力压裂起裂研究[J],石油大学学报,1995,18(2)30~35
    48.陈勉,庞飞,金衍,大尺寸真三轴水力压裂模拟与分析,岩石力学与工程学报,第19卷 增刊 2000年6月868~872
    49.陈勉,中国深层岩石力学研究及在石油工程中的应用,岩石力学与工程学报,2004年7月Vol.23,No.14,2455~2462
    50. Lawrence, C. Murdoch, Analysis of an Idealized Shallow Hydraulic Fracture, J of Geotechnique and Geoenvironmental Engineering, 2000, 8
    51. Y. W. Tsang et al. Channel Model of Flow Through Fracture media. Water Resour. Res. 1987, 23(3), 467~479
    52. P. A. Witherspoon et al. Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture, Water Resour. Res. 1980, 16(6), 1016~1024
    53. N. G. W. Cook. Natural Joints in Rock: Mechanical, Hydraulic and Seismic Behaviour and Properties under normal Stress, Int. J. Rock Mech. Min. Sci. 1992, 29(3), 198~223
    54.周创兵,熊文林.岩石节理的渗流广义立方定理,岩土力学,1996,17(4):1~7
    55. N. Barton, S. Bandis, K. Bakhtar. Strength, Deformation and Conductivity Coupling of Rock Joints, Int. J. Rock Mech. Mech. Sci. Geomech. Abstr. 1985, 22, 121~140
    56. Y. W. Tsang. Usage of Equivalent Apertures for Rock Fractures as Derived from Hydraulic and Tracer Tests. Water Resour. Res. 1992, 28, 1451~1455
    57. A. Makurat. The Effect of Shear Displacementon the Permeability of Natural Rough Joints. Proc, Hydrogeology of Rocks of Low Permeability, Tucson, Arizona, 1985, 99~106
    58. W. T. Teufel. Permeability Changes during Shear Deformation of Fractured Rock. Proc., 28th U. S. Symp. Rock Mech., Tucson, Arizona, A. A. Balkema, Rotterdam, 1987, 473~480
    59. T. Esaki, H. Hoio, T. Kimura, N. Kameda. Shear-Flow Coupling Test on Rock Joints. Proc., 7th Int. Cong. Rock Mech., 1991, 389~392
    60. T. Esaki, S. Du, Y. Jiang, Y. Wada, Y. Mitani. Relation between Mechanical and Hydraulic Apertures during Shear-Flow Coupling Test. Proc. 10th Japan Symp. Rock Mech.., 1998, 91~96
    61. T. Esaki, S. Du, Y. Mitani, K. Ikusada, L. Jing. Development of a Shear-Flow Test Apparatus and Determination of Coupled Properties for a Single Rock Jjoint, Int. J. Rock Mech. Min. Sci. 199936, 641~650
    62. M. P. Ahola, S. Mohanty, Makurat. Coupled Mechanical Shear and Hydraulic Flow Behavior of Natural Rock Fractures. Coupled thermo-hydro-mechanical Process of Fractured Media. Elsevier, Amsterdam, 1996, 392~423
    63. S. Gentier, D. Billaux, van L. Vliet. Laboratory testing of the voids of a fracture, Rock Mech. Rock Engng. 1989, 22, 149~157
    64. M. Iwano, H. H. Einstein. Stochastic analysis of surface roughness, aperture and flow in a single fracture, Eurock'93, Proc., ISRM Int. Symp. Safety and Environmental Issues in Rock Engng., Lisbon, 1993, 135~141
    65. M. Iwano, H. H. Einstein. Laboratory experiments on geometric and hydro-mechanical Characteristics of three different fractures in granodiorite, Proc., Cong. 8th ISRM, Tokvo, 1995, 743~750
    66. I. W. Yeo, M. H. de Freitas, R. W. Zimmerman. Effect of shear displacement on the aperture and permeability of a rock fracture. Int. J. Rock. Mech. Min. Sci. 1998, 35, 1051~1070
    67. N. Barton et al. Strength, Deformation and Conductivity Coupling of Rock Joints. Int. J. Rock Mech. Min. Sci. 1985, 22(3), 121~140
    68. T. S. Nguyen, A. P. S. Selvadurai. A model for coupled mechanical and hydraulic behaviour of a rock joint. Int. J. Numer. Anal. Meth. Geomech. 1998, 22, 29~48
    
    69. M. E. Plesha. Constitutive models for rock discontinuities with dilatancy and surface degradation. Int. J. Numer. Anal. Meth. Geomech. 1987, 11, 345~362
    70. S. C. Bandis, A. C. Lumsden, N. Barton. Fundamentals of joint deformation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1983, 20. 249~268
    71. RE. Goodman. The Mechanical Properties of Joints. Proceedings of the Third Congress on ISRM, Denver, Vol 1A, 1974, Washington, DC, National Academy of Sciences, 127
    72. RE. Goodman. In: Methods of Geological Engineering in Discontinuous Rock. New York, West, 1976, 172
    73. G. Swan. Determination of stiffness and other joint properties from roughness measurements. Rock Mech. Rock Engng. 1983, 16, 19~38
    74. B. Malama, P. H. S. W. Kulatilake., Models for normal fractures deformation under compressive loading. international Journal of Rock Mechanics and Mining Sciences. 2003, 40: 893~901
    75. A. F. Gangi. Variation of Whole and fractured porous rock permeability with confining pressure. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15: 249~257
    76. J. E. Gale. The effects of fracture type (induced-versus natural on the stress-fracture closure~fracture permeability relationships. Proc., 23nd U. S. Symp. on Rock Mechanics, Univ. of Calif, Berkeley, 1982, 290~298
    77. Z. Chen, S. P. Narayan, Z. Yang, S. S. Rahman. An experimental investigation of hydraulic behavior of fractures and joints in granitic rock, International Journal of Rock Mechanics and Mining Sciences. 2000, 37: 1061~1071
    78. N. Barton, V. Choubey. The Shear Strength of Rock and Rock Joints in Theory and Practice. Rock Mechanics, 1977, 10, 1~54
    79. J. Willis-Richards, K. Watanabe, H. Takahashi. Progress toward a Stochastic Rock Mechanics Model of Engineered Geothermal System. J Geophys Res. 1996, 101, 17481~17496
    80. Z. Jing, J. Willis-Richards, K. Watanabe, H. Takahashi. A new 3-D Stochastic Model for HDR Geothermal Reservoir in Fractured Crystalline Rock, Fourth Int. HDR Forum, Strabourg, France, 1998, 38~30
    81. R. Olsson, N. Barton. An improved model for hydromechanical coupling during shearing of rock joints. International Journal of Rock Mechanics and Mining Sciences. 2001, 38: 317~329
    82.黄润秋等.金沙江溪洛渡水电工程岩体结构模型及其工程应用研究,成都理工学院,1997,12
    83.任自民等.三峡工程坝基岩体工程研究,中国地质大学出版社,1997.9
    84.戚筱俊.工程地质及水文地质,北京:中国水利水电出版社,1997.5
    85.周志芳,王锦国.裂隙介质水动力学,北京:中国水利水电出版社,2004.1
    86.周志芳.岩体地下水运动模拟的理论与应用研究.南京大学博士论文.1998
    87. S.A.Holditch. Personal Communication, 1993
    88. Juncai Fan, Computer modeling of SCC in gas pipe steel and hydraulic fracture in stratified poro-elastic media. Doctoral thesis, University of Illinois at Chicago, 2001
    89.肖树芳,杨淑碧,岩体力学,北京:地质出版社,1993.2
    90. Peter Valko and Michael J. Economides, Hydraulic Fracture Mechanics, John Wiley & Sons, Chichester, 1995. 9
    91. Katsuto Nakatsuka, Hideaki Takahashi and Morihiko Takanohashi. Hydraulic fracturing experiment at Nigorikawa and fracture mechanics evaluation.
    92. J. A. Greenwood, J. B. P. Williamso. Contact of Nominaally Flat Surface. Proc. R. Soc. London, A, 1996, 295, 300~319
    93. D. L. Hopkins. The Effect of Surface Roughness on Joint Stiffness, Aperture and Acoustic Wave Propagation. Ph. D. thesis, University of California, Berkeley, 1990
    
    94. L. J. Pyrak-Nolte, J. P. Morris., Single fracture under normal stress: the relation between fracture specific stiffness and fluid flow. International Journal of Rock Mechanics and Mining Sciences. 2000, 37: 245~262
    95. C. C. Xia, Z. Q. Yue, L. G. Tham, C. F. Lee, Z. Q. sun., Quantifying topography and closure deformation of rock joints. International Journal of Rock Mechanics and Mining Sciences. 2003, 40: 197~220
    96. H. S. Lee, T. F. Cho. Hydraulic characteristics of rough fractures in linear flow under normal and shear load. Rock Mechanics and Rock Engineering. 2002, 35(4); 299~318
    97. Y. W. Tsang and P. A. Witherspoon., Hydromechanical Behavior of a Derformable Rock Fracture Subject to Normal Stress. Journal of Geophysical Research. 1981, 86(B10): 9287~9298
    98.刘才华,沉从新,付少兰.二维应力作用下岩石单裂隙渗流规律的实验研究.岩石力学与工程学报,2002,21(8),1194~1194
    99. J. G. Williams. Fracture Mechanics of Polymers, Ellis Horwood, Chichester, 1984
    100. E. Z. Lajtai. Microscopic Fracture Processes in a Granite, Rock Mech. Rock Engng, 1998, 31(4), 237~250,
    101. E. Sahouryeh, M. Andruszkiz., Anomalies of Flow in Fracture Networks Under Compression. International Journal of Fracture. 2002, 115: L63~68
    102.赵阳升,杨栋,郑少河,胡耀青,三维应力作用下岩石裂缝水渗流物性规律的实验研究,中国科学,29(E1)1999,82~86
    103.郑少河,赵阳升,段康廉,三维应力作用下天然裂隙渗流规律的实验研究,岩石力学与工程学报,18(2),1999,133~136
    104.杜景灿,汪小刚,陈祖煜,结构面倾角对节理岩体的连通特性和综合抗剪强度的影响,水利学报,2002,No.5
    105.曾纪全,杨宗才.岩体抗剪强度参数的结构面倾角效应,岩石力学与工程学报,2004,23(20)3418~3425
    106.唐红侠,周志芳.一种求解岩体裂隙开度的简便方法及其应用,水力发电,2003,29(9)
    107.徐尚璧.压水试验求测渗透系数的射渗理论与方法.水利水运科学研究.1996,1,24~33
    108. J. Liu, D. Elsworth, B. H. Brady and H. B. Muhlhans. Strain-dependent Fluid Flow Defined Through Rock Mass Classification Schemes. Rock Mechanics and Rock Engineering, 2000, 33(2), 75~92.
    109.唐红侠,周志芳,王文远.水劈裂过程中岩体渗透性规律及机理分析,岩土力学,2004,25(8),1320~1322
    110.唐红侠,周志芳,周玉新.岩体软弱夹层的渗透性对水压力响应的研究,金属矿山,2004,9,7~9
    111. M. D. Zoback and D. D. Pollard. Hydraulic Fracture Propagation and the Interpretation of Pressure Time Records for In situ Stress Determination. Proceedings of 19th US Rock Mechanics Symposium, Mackay School of Mines, Reno, Nevada, 1978, 14~22.
    112. Z. T. Bueniawski. Mechanism of brittle fracture of rock. International Journal of Rock Mechanics and Mining Sciences. 1967, 4(4): 407~423
    113. S. Paterson. Expermental deformaton of rock: the brittle field. Berlin: Springer, 1978
    114. M. Souley, F. Homand, S. Pepa, D. Hoxha. Damage-induced permeability changes in granite: a case example at the URL in Canada. International Journal of Rock Mechanics and Mining Sciences. 2001, 38: 297~310
    115.唐红侠.关于“非均质岩石破裂过程渗透率演化规律研究”的探讨.岩石力学与工程学报,2004,23(24)
    116. J. F. Shao, D. Hoxha, M. Bart, F. Homand, G. Duveau, M. Souley, N. Hoteit., Modelling of induced anisotropic damage in granites. International Journal of Rock Mechanics and Mining Sciences. 1999, 36: 1001~1012
    117. Wittke W. Leonhards G A. Modified hypothesis for failure of Malpasset Dam. Engineering Geology, 1987, 24: 367-394.
    
    118.张有天.从岩石水力学观点看几个重大工程事故,水利学报,2003年5月,1-10
    119.张有天.论有压水工隧洞最小覆盖厚度,水利学报,2002年9月,1-13
    120.水利水电工程钻孔压水试验规程,SL25—92,主编部门:东北勘测设计院,批准部门:水利部、能源部,1992
    121.张发明,汪小刚,贾志欣,陈祖煜.三维结构面连通率的随机模拟计算,岩石力学与工程学报,2004,23(9),1486~1490
    122.黄国明,黄润秋.用窗口法估计不连续面的连通率,水文地质工程地质,1998,第6期,27~30
    123.柴军瑞,仵彦卿.工程岩体渗透特性分类的多指标体系模糊数学方法,西安理工大学学报,2000,Vol.16 No.1,80-83
    124.张辉,周创兵,易珍莲.水力耦合条件下岩体的损伤渗透张量,岩土工程界,2000,第3卷,第3期,11—14
    125.张辉.裂隙孔隙岩体非饱和渗透率的探讨,云南水力发电,2002,第18卷第1期,54~62
    126.刘中,张有天.有自由面三维裂隙网络渗流分析,水利学报,1996,第6期,34—38
    127.黄勇.多尺度裂隙介质中的水流和溶质运移随机模拟研究,河海大学博士学位论文,2004,12
    128. Sait I. Ozkayaa, Joerg Mattner, Fracture connectivity from fracture intersections in bore hole image logs, Computers & Geosciences, 2003, 29, 143~153
    129. Hestir, K., Long, J. C., Analytical expressions for the permeability of random two-dimensional Poisson fracture networks based on regular lattice percolation and equivalent media theories. Journal of Geophysical Research 1990; 95 (B13), 21565-21581.
    130.陈国荣,弹性力学,河海大学出版社,2002.1
    131.徐志英主编,岩石力学,河海大学,第三版

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700