用户名: 密码: 验证码:
深海钴结壳近距离回声识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陆地资源日趋枯竭,大洋钴结壳作为一种极具商业开采价值的海生矿产资源,获得了美国、俄罗斯、德国、日本等西方发达国家的重视。随着钴结壳勘探开采技术研究逐渐深入,部分国家已经步入试开采阶段。与西方发达国家相比,我国勘探开采研究工作起步较晚。当前,国际社会对海洋资源争夺日益激烈,为维护我国海洋权益,开辟我国新的矿产资源来源,有必要研究钴结壳的探测采集技术与装备。
     钴结壳矿床底质自动识别是实现钻结壳高效开采的一个重要环节。本文在国家自然科学基金项目“深海钻结壳微地形监测技术与最佳采集深度建模研究”的资助下,对基于超声探测手段的深海钴结壳矿床底质识别的相关技术进行研究。
     作者首先从海底沉积物声学探测分类技术入手,查阅大量相关文献,并根据采矿车车载探测的特点,确定采用本文介绍的超声探测软硬件实验系统通过正入射法对钴结壳矿区内23种底质进行识别。针对钴结壳矿床底质超声探测识别关键技术,本文进一步从特征提取,特征级融合以及非线性分类识别三个方面进行了深入的研究:
     1)钴结壳矿床底质回波特征提取技术研究
     作者首先将成功用于水下沉积物有代表性的基于时频域特征提取方法:正交小波域时间子带能量特征,尺度子带能量特征,平稳小波域奇异值分解特征,模极大值边缘特征尝试用于钴结壳矿区底质回波特征提取。此外,基于信号复杂性熵度量方法,本文还引入了一种平稳小波域多分辨率奇异谱熵特征提取方法。实验结果表明,对于表面地形起伏的部分底质,上述特征出现了不同程度的退化。进一步,为消除钴结壳矿床部分底质表面地形起伏因素对特征稳定性的影响,基于信号稀疏分解技术,提出了一种样本字典域类别能量特征提取方法。在比较实验中,针对钴结壳矿床底质,类别能量特征取得了最好的识别效果。
     2)特征级融合方法研究及其在钴结壳矿床底质识别中的应用
     进一步,作者对特征级融合理论与技术进行了深入的研究,尝试利用已有的小波域特征提取方法,采用特征级融合方法提高钴结壳矿床底质的识别效果。首先介绍了三类有代表性的特征级融合方法:串行融合,并行融合和矩阵融合方法。然后,从fisher准则的角度分析了三种特征级融合方法之间的关系,发现后两种特征融合方法本质上都是特定约束条件下的串行融合方法,并指出除了串行融合方法具有融合的fisher稳定性之外,其它两种方法均不具备fisher稳定性,因此有可能出现退化。此外,从bayes最优性条件的角度对三种特征级融合方法进行了研究,指出后两种特征级融合方法要达到bayes最优所需满足的条件要比串行融合方法要更为严格。最后,在串行融合框架下,提出了一类快速串行融合方法,该方法具有fisher稳定性,且无需更为严格的bayes最优性条件。钴结壳矿床底质识别实验表明,采用串行框架下的特征级融合方法在识别效果上有较好的表现。
     3)基于核空间的非线性分类识别研究及其在钴结壳矿床底质识别中的应用
     最后,作者对基于核空间的非线性分类识别技术进行了研究,并尝试从优化分类边界和多核信息融合的角度实现更优的钻结壳矿床底质识别效果。首先,本文对高斯核参数学习进行了研究,提出了两种高斯核参数学习准则。为进一步提高非线性分类识别效果,作者从引入局部信息和多核信息融合两个方面对基于核空间的非线性分类识别技术进行研究。在现有的流形正则化最小二乘机基础上,提出了一种改进的凸优化流形正则化最小二乘机,并给出了对应的优化算法和其核化版本。对多核学习方法,作者尝试在核采样空间对多核学习方法进行研究,提出了有代表性的三种多核学习算法和基于FSM2准则的多核融合参速学习方法。钴结壳矿床底质识别实验结果表明,上述方法能够在一定程度上改善识别效果。
Along with the shortage of land resources, as a kind of important ocean resources, cobalt-rich crusts(CRC) have been drawn much focus on by western advanced countries, such as America, Russia, German, Japan, etc. Based on the early related research achievements, Some countries have stepped into the trail stage of exploitation. By contrast, the related research work in our country is still in the initial stage. In order to protect our country's ocean right and obtain CRC resource for our country, it is necessary to do research on the exploring and exploiting techniques and equipments.
     CRC recognition is an important link of realize the exploiting work highly effectively. Under the support of the project of the National Natural Science Foundation of China, "Research on detection technology of deep-ocean cobalt-rich crusts micro-terrain and best cutting-depth controlling model", the author tried to do research on the related techniques of underwater materials classification and recognition using sonar exploring method.
     The author started with underwater sediments classification. After consulting a large quantity of related research papers and technique reports, the author determined to complete the classification and recognition of 23 kinds of underwater materials using the sonar exploring experiment system. At the further step, the author tried to do research through the following three approaches.
     1) The techniques of feature abstraction of echoes
     The author tried to use the representative sediments echo feature abstraction methods in time-frequency domain:time sub-band energy feature in orthogonal wavelets domain, scale sub-band energy feature in orthogonal wavelets domain, singular value decomposition feature in stationary wavelets domain, wavelets modulus edge to abstract the features of above mentioned 23 kinds of underwater materials. Besides, a new kind of echo feature abstraction method named multi-resolution singular spectrum entropy was introduced. At the further step, in order to remove the influence of the heavily uneven surface of underwater materials, a novel kind of echo feature abstraction method named class energy feature in echo samples dictionary domain based on the theory of signal sparse decomposition is proposed. Among all above echo features, using the class energy feature the best classification and recognition results were obtained in the related experiment.
     2) The techniques of feature level fusion and its application to echo recognition of CRC deposit
     The author tried to do research on the techniques of feature level fusion in order to improve the effects of classification and recognition. Firstly, three representative feature level fusion methods:serial fusion, parallel fusion, matrix fusion method are introduced. Then the relationship among these three fusion methods was analyzed using Fisher criteria and one conclusion was drawn that the last two fusion methods are both a kind of special serial fusion methods with special restriction. Besides, the author indicated that the last two fusion methods are not of fisher stability except serial fusion method, which means using the last two methods are possible to lead to the degenerating results. At the further step, the sufficient conditions when the three fusion methods would be Bayes optimal for two-class classification are researched. And the research results show that the stricter conditions are needed for the last two fusion methods than serial fusion method. At last, a kind of fast Serial fusion technique based on discriminant space which can ensure none degenerateness was proposed.
     3) The techniques of nonlinear classification and recognition in kernel space and its application to echo recognition of CRC deposit
     The author tried to do research on the techniques of nonlinear classification and recognition in kernel space. At first, two Gaussian kernel parameters learning criteria were proposed. Then the improving techniques of nonlinear classification and recognition in kernel space were considered by using local information and multiple kernel fusion method. Based on the proposed discriminatively regularized least-squares classifier, a modified discriminatively regularized least-squares classifier mode which leads to a convex optimality problem was proposed. At the further step, the author designed the related optimality algorithm and obtained the related model in kernel space. Besides, the author tried to do research on multiple kernel learning methods in kernel sampling space. A kind of fusion parameters learning methods using FSM2 criteria and three multiple kernel learning algorithms in kernel sampling space were proposed. The experimental results of classification and recognition of the underwater materials such as CRC etc show that all above improving techniques can improve the classification and recognition results in certain extent.
引文
[1]Manheim F T. Marine Cobalt Resources[J]. Science,1986,232(4750): 600-603.
    [2]James Hein. Cobalt-rich ferromanganese crusts:global distribution, composition, origin and research activities. Polymetallic massive sulphides and cobalt-rich ferromanganese crusts:status and prospects [R]. ISA Technical study,2000:43-44.
    [3]PeterA. Rona. Resources of the Sea Floor[J]. Science,2003,299: 673-674.
    [4]Commeau R F, et al. Ferromanganese Crust Resources in the Pacific and Atlantic Oceans[C]. Oceans 1984:421-429.
    [5]Ohkubo, Satoru Yamazaki, Tetsuo. Summary of "environmental impact research on marine ecosystem for deep-sea mining" conducted by metal mining agency of Japan [C]. Proceedings of the ISOPE Ocean Mining Symposium, 2003:200-207.
    [6]Chung. Jin S. Deep-ocean mining:Technologies for manganese nodules and crusts [J]. International Journal of Offshore and Polar Engineering. 1996,6(4):244-254.
    [7]Chung. Jin S., Tsurusaki, Katsuya. Advance in deep-ocean mining systems research[C]. Proceeding of the International Offshore and Polar Engineering Conference,1994,1:18-31.
    [8]Chung. J S. Deep-Ocean Cobalt-rich Crust Mining Systems Concepts[C]. Proceeding of MTS 94,1994:95-101.
    [9]Yamazaki, T., Sharma, R. Morphological features of co-rich manganese deposits and their relation to seabed slopes[J]. Marine Georesources & Geotechnology,2000,18(1):43-76.
    [10]John E. Halkyard. Technology For Mining Cobalt Rich Manganese Crust From Seamounts[J]. John E. Halkyard & Company,1985:352-367.
    [11]Masuda Y, et al. Progress in the development of the continuous line bucket(CLB) mining on the 5th Takayou Sea Mount[C]. Proceedings of the 4th International Offshore and Polar Engineering Conference,1994: 286-293.
    [12]Paul R G. Development of metalliferous oxides from cobalt-rich manganese crust [J]. MTS Journal,1982,19(4):45-49.
    [13]Masuda Y. Crust mining plans of the Japan Resources Association[J]. Marine Mining,1991,10:95-101.
    [14]Chung J S. Deep-ocean mining:Technologies for manganese nodules and crusts [J]. International Journal of Offshore and polar Engineering,1996, 6(4):244-254.
    [15]Yamazaki T, et al. Distribution characteristics of the cobalt-rich manganese deposits for the miner design[C]. International Seminar on the Deep Seabed Mining Technology,18-20.
    [16]钟祥,牛京考.日本大洋多金属结核开采试验的进展[J].国外金属矿山,2000,3:33-38.
    [17]Yamazaki, T. Park, S.-H.; Shimada, S. Yamamoto, T. Development of Technical and Economical Examination Method for Cobalt-Rich Manganese Crusts[C]. Proceedings of the International Offshore and Polar Engineering Conference,2002,12:454-461.
    [18]梁平,石海林,崔波,朱敏.洋底富钴结壳的开采方法[J].金属矿山,2002,14(2):53-60.
    [19]陈圣源,何高文,等.DY95-7航次报告[R].北京:地质出版社,1999.
    [20]张国祯,梁德华,等.DY95-7航次现场报告(内部)[R].1997.
    [21]张国祯,陈圣源,等.DY95-9航次现场报告(内部)[R].1999.
    [22]陈圣源,何高文,等.DY95-9航次报告[R].北京:地质出版社,2000.
    [23]国家海洋局科技公司,DY95-11航次现场总结报告[R].中国大洋矿产资源协会,1999.
    [24]中国大洋矿产资源勘察—DY105-11航次现场总结报告[R].中国大洋矿产资源研究开发协会,2000.
    [25]刘勇.深海钴结壳螺旋滚筒切削法采掘头设计理论与方法虚拟研究[D].长沙:中南大学,2002.
    [26]秦宣云.基于微地形重构的深海钴结壳最佳采集切削深度控制模型研究[D].长沙:中南大学,2005.
    [27]夏毅敏.深海钴结壳螺旋切削采集过程仿真和螺旋采集头工作参数优化研究[D].长沙:中南大学,2006.
    [28]罗柏文.深海钴结壳采集之微地形探测技术浅水试验阶段研究[D].长沙:中南大学,2008.
    [29]潘国富.声学方法进行海底沉积物遥测分类:综述[J].海洋技术,1997,16(1):14-19.
    [30]王润田.海底声学探测与底质识别技术的新进展[J].声学技术,2002,21(1-2):96-98.
    [31]吴自银,郑玉龙,初凤友等.海底浅表层信息声探测技术研究现状及发展[J].地球科学进展,2005,20(11):1210-1217.
    [32]R. H.Bennett. Geoacoustic and Geological Characterization of Surficial Marine Sediments by Insitu Probe and Remote Sensing Techniques[M]. Boca Raton:CRC Press,1992:295-350.
    [33]C. Moustier. Seafloor Acoustic Remote Sensing with Multibeam Echo-sounders and Bathymetric Sidescan Sonar Systems[J]. Marine Geophysical Researches,1993,15(1):27-42.
    [34]J. H. Clarke. Toward Remote Seafloor Classification Using the Angular Response of Acoustic Back scattering:A Case Study from Multiple Overlapping GLORIA Data[J]. IEEE Journal of Oceanic Engineering,1994, 19(1):112-127.
    [35]国家海洋局第二海洋研究所,中国大洋矿产资源勘查航次调查报告(DY95-6,DY95-8)[R].杭州,1999.
    [36]M. A. Biot.Theory of propagation of elastic waves in a fluid-saturated porous solid, I Low frequency range [J]. Acoust. Soc. Am. Vol,1956,28(1):168-178.
    [37]E. L. Hamilton, George Shumway. Acoustic and Other Physical Properties of Shallow-Water Sediments off San Diego [J]. Acoust. Soc. Am. Vol,1956, 28(1):1-15.
    [38]Breslau L. Classification of Sea Floor Sediments with a Shipborne Acoustical System[J]. Le Petroleet la Mer,1965,132:1-9.
    [39]Chesterman W. D. Sea-floor Sediment Mapping by Sonar Methods[C]. Proceeding Royal Society of Edinburgh(B),1972,72:155-162.
    [40]Bell D. L, Porter W. J. Remote Sediment classification Potential of Reflected Acoustic Signal[J]. Physics of Sound in Marine Sediments, 1974:319-336.
    [41]Danbom S. H. Sediment Classification by Seismic Reflectivity[C]. OCEANS'76,16:1-6.
    [42]Milligan S. D, et al. Statistical Grouping of Acoustic Reflection Profiles[J]. J. A. S. A,1978,64:795-807.
    [43]Simpkin P. G. Evaluation of Broadband, High Resolution Seismic data for sea Floor Sediment classification[C]. Proceedings Oceanology International 78,25-30.
    [44]Macisaac R. R. Ocean Sediment Properties using Acoustic Sensing[C]. Proceedings of 4th International Conference on POAC 77,1074-1086.
    [45]Dodds D. J. Application of Pattern Classification Technique to Ocean Bottom Echoes of Broadband[M]. Acoustical Signals.
    [46]Dunsiger A.D. Broadband Seismic Data used for Seafloor Sediment Classification[C]. OCEANS'78,521-526.
    [47]孟金生,关定华.海底沉积物的声学方法分类[J].声学学报,1982,7(6):337-343.
    [48]孟金生,关定华.正入射声脉冲法估测海底表层沉积物衰减系数[J].海洋学报,1984,6(6):867-873.
    [49]陶春辉,金翔龙,许枫等.海底声学底质分类技术的研究现状与前景[J].东海海洋,2004,22(3):28-33.
    [50]Daubechies. Orthonormal Bases of Compactly Supported Wavelet[J]. Common Pure and Appl Math,1988,41:809-996.
    [51]崔锦泰.小波分析导论(第1版)[M].程正兴,白居宪译.西安:西安交通大学出版社,1995.
    [52]Mallat, S. G., A Theory for Multiresolution signal Decomposition:the Wavelet Representation[J], IEEE Trans On Pattern Analysis and Machine Intelligence.1989,11(7):674-693.
    [53]Mallat, S. G., Multiresolution Approximations and Wavelet Orthonormal Bases of L2(R) [J],Trans Of the American Mathematical Society,1989, 315(1):68-87.
    [54]Daubechies I.Ten Lectures on wavelets[M], Philadelphia:SIMA Press, 1992.
    [55]Hunag N. E, Shen Z, Long S. R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-station time series analysis[J].Proc R Soc,1998, A454:903-995.
    [56]Huang N. E, Steven R.L, et al. A New View of Nonlinear water waves: the Hilbert Spectrum[J]. Annual Review of Fluid Mechanics,1999,417-457.
    [57]盖强.局域波时域分析方法的理论研究与应用[D].大连理工大学博士学位论文.2001.
    [58]科恩.时-频分析:理论与应用[M].白居宪译.西安:西安交通大学出 版社,1998.114-128.
    [59]Choi H.I, Williams W. J. Improved time-frequency representation of multicomponent signals using exponential kernels [J]. IEEE Trans on Acoust Speech Signal Processing,1989,37:862-871.
    [60]Zhao Y, Atlas L.E, Marks R. J. The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals [J]. IEEE Trans Acoust Speech Signal Processing,1990,38:1084-1091.
    [61]Boashash B, Sucic V. A Resolution performance measure for quadratic time-frequency distributions [C]. Statistical Signal and Array Processing 2000, Proceedings of the Tenth IEEE Workshop on 2000,584-588.
    [62]Barkat B, Boashash B. A High-resolution quadratic time-frequency distribution for multicomponent signals analysis [J]. IEEE Transaction on Signal Processing,2001,49(10):2232-2239.
    [63]Baraniuk R. G, Jones D. L. Signal-dependent time-frequency analysis using a radially Gaussian Kernel[J]. Signal Processing,1993,41(4):589-602.
    [64]Gzerwinski R. N, Jones D. L. Adaptive short-time Fourier analysis [J]. IEEE Signal Processing Letters,1997,4(2):42-45.
    [65]李亚安,王军,雷粉霞.自适应核时频分布在抑制交叉项中的应用[J].系统工程与电子技术,2004,26(11):1567-1569.
    [66]Dizaji R. L and Kirlin R. L. Seabottom Classifier Using Novel Wavelet Entropy Features[C].ECE Dept, Univ. Victoria, NORSIG 2000,1999.
    [67]Azimi-Sadjadi M. R, De Y, Qiang H, Dobeck G. J. Underwater target classification using wavelet packets and neuralnetworks[J]. IEEE Transaction on Neural Networks,2000,11 (3):784-794.
    [68]Jaroslaw Tegowski. Acoustical classification of the bottom sediments in the southern Baltic Sea[J]. Quaternary International,2005, 130:153-161.
    [69]J. Tegowski and Z. Lubniewski. Acoustical classification of bottom sediments in southern Baltic using fractal dimension[C]. In Proceeding if the 4th European Conference on Underwater Acoustics, Rome,1998, 179-184.
    [70]HJ. Kim, JK. Chang, HT. Jou, etal. Seabed classification from acoustic profiling data using the similarity index[J]. J.Acoust. Soc. Am,2002, Vol 111(2):794-799.
    [71]J. Tegowski, Z. Lubniewski. Seabed characterisation using spectral moments of the echo signal[J]. Acta Acustica united with Acustica, 2002,88(5):623-626.
    [72]Pace N. G., Gao H.. Swathe seabed classification [J]. Journal of Oceanic Engineering,1988,13(2):83-90.
    [73]Delachartre P, Vray D, Gimenez G..Classification of lake bottom echo signals using a wideband sonar system[C].14th ICA,1992, (1)B2-2.
    [74]赵建平,黄建国,谢一清等.用小波变换进行水下回波边缘特征提取与分类识别[J].声学学报,1998,23(1):31-37.
    [75]黄海宁.水下宽频带信号处理的理论与技术研究[D].西安:西北工业大学,1999.
    [76]黄海宁,李志舜.湖底沉积物分类的新方法研究[J].西北工业大学学报,1998,16(3):421-426.
    [77]马艳,李志舜.基于正交小波包的水下宽带回波特征提取与识别[J].系统工程与电子技术,2003,21(1):54-57.
    [78]马艳,李志舜.基于连续小波变换的水下目标特征提取与分类[J].系统工程与电子技术,2003,25(3):375-378.
    [79]李霞.基于连续小波变换的水下信号处理技术研究[D].西安:西北工业大学,2003.
    [80]余秋星.水下目标识别的相关技术研究[D].西安:西北工业大学,2004.刘建国,李志舜.基于连续小波变换的湖底回波特征提取[J].西北工业大学学报,2006,24(1):111-114.
    [81]刘建国,李志舜.湖底回波的包络特征提取[J].计算机仿真,2005,22(10):151-154.
    [82]刘建国,李志舜,刘东.基于平稳小波变换及奇异值分解的湖底回波分类[J]声学学报,2006,31(2):167-172.
    [83]张静远,张冰,蒋兴舟.基于小波变换的特征提取方法分析[J].信号处理,2000,16(2):156-162.
    [84]高大治,王宁,林俊轩.基于相平面轨迹方法的海底底质分类研究[J].声学学报,2005,30(5):447-451.
    [85]任新敏,徐铭.基于相空间方法的海底底质分类[J].声学技术,2007,26(4):574-578.
    [86]Bernhard M.Riegla,Ryan P.Mover,Lori J. Morris. Distribution and seasonal biomass of drift macroalgae in the Indian River Lagoon (Florida, USA)estimated with acoustic seafloor classification (QTCView, Echoplus) [J]. Journal of Experimental Marine Biology and Ecology 326(2005):89-104.
    [87]Morrison M. A, Thrush S. F. and Budd R. Detection of acoustic class boundaries in soft sediment systems using the seafloor acoustic discrimination system QTC VIEW[J]. Journal of Sea Research,2001, 46:233-243.
    [88]Claudia Wienberg, Alexander Bartholoma. Acoustic seabed classification in a coastal environment (outer Weser Estuary, German Bight)-a new approach to monitor dredging and dredge spoil disposal [J]. Continental Shelf Research,2005 (25):1143-1156.
    [89]Rosa Freitas, Ana Maria Rodrigues, Victor Quintino. Benthic biotopes remote sensing using acoustics [J]. Journal of Experimental Marine Biology and Ecology,2003,339-353.
    [90]AKari E. Ellingsen, John S. Gray, Erik Bjornbom. Acoustic classification of seabed habitats using the QTC VIEWsystem[J]. ICES Journal of Marine Science,2002(59):825-835.
    [91]刘胜旋.海底底质分类与多波束测深:多学科绘图工具[J].海洋地质.2001,(3):31-38.
    [92]Riegl B. M, Halfar J, Purkis S. J, et al. Sedimentary facies of the eastern Pacific's northernmost reef-like setting(Cabo Pulmo, Mexico) [J]. Marine Geology,2007,236:61-77.
    [93]L. J. Hamilton, P. J. Mulhearn, R. Poeckert.Comparison of RoxAnn and QTC-View acoustic bottom classification system performance for theCairns area, Great Barrier Reef, Australia[J]. Continental Shelf Research,1999 19:1577-1597.
    [94]边肇祺.模式识别(第二版).北京:清华大学出版社,2000.
    [95]Theodoridis S, Koutroumbas K模式识别 (第三版).北京:电子工业出版社,2006.
    [96]李允武.研究海底物理特性的声学方法[J].海洋技术,1982,01(02):10-17.
    [97]李月,刘立,李玉梅.地基层状岩石纵波波速与密度相关性试验研究[J].四川建筑科学研究,2009:1(35):125-127.
    [98]范秋雁,吴起星,周国贵.广西第三系泥岩桩端承载力确定方法[J].工程地质 学报,2004,12(04):408-411.
    [99]周知进,卜英勇.海底富钴结壳物理特性的试验研究[J].地球物理学进展,2008,23(5):1456-1459.
    [100]王中波,杨守业,张志峋.两种碎屑沉积物分类方法的比较[J].海洋地质动态,2007,23(3):36-40.
    [101]Folk R L.碎屑沉积物的分类及其命名在新泽西的应用[J].海洋地质动态,2007,23(1):31-34.
    [102]胡广舒.数字信号处理:理论算法与实现[M],北京:清华大学出版社,2003.
    [103]赵海鸣,卜英勇,王纪婵,罗柏文.摆动式单波束超声波水下微地形探测[J],中南大学学报(自然科学版),2007,38(5):932-936.
    [104]赵海鸣, 卜英勇.一种高精度超声波测距方法的研究[J],湖南科技大学学报(自然科学版),2006,21(3):35-38.
    [105]Gabor D. Theory of communication[J]. Journal of Inst Elec Eng,1946, 93:429-457.
    [106]Michael Unser. Fast Gabor-like windowed Fourier and continuous wavelet transforms [J]. IEEE SIGNAL PROCESSING LETTERS,1994,1 (5):76-79.
    [107]Portnoff M. R. Time-frequency representation of digital signals and systems based on short-time Fourier analysis[J]. IEEE Transaction of Acoustic speech and Signal processing,1980,28(1):55-69.
    [108]Hlawatsch F, Bourdeaux-Bartels G.F. Linear and quadratic time-frequency signal representations[J]. IEEE Signal Processing Magazine,1992,9(2):21-67.
    [109]Ljubisa Stankovic, Tatiana Alieva, Martin J. Time-frequency signal analysis based on the windowed fractional Fourier Transform[J]. Signal Processing,2003,83:2459-2468.
    [110]程正兴.小波分析算法与应用[M].西安:西安电子科技大学出版社,1998.
    [111]李建平.小波分析方法的应用[M].重庆:重庆大学出版社,1999.
    [112]Portilla J, Strela V, et al. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing,2003,12(11):1338-1351.
    [113]Jerome M. Shapiro. Embedded Image Coding Using Zerotrees of Wavelet Coefficients[J]. IKEE TRANSACTIONS ON SIGNAL PROCESSING,1993, 41(12):3445-3462.
    [114]Tse P. W, Yang W, Tam H. Y. Machine fault diagnosis through an effective exact wavelet analysis[J], Journal of Sound and Vibration, 2004,277:1005-1024.
    [115]Lin J, Gu L. SH. Feature extraction based on Morlet wavelet and its application for mechanical fault diagnosis[J]. Journal of sound and vibration,2000,1(234):135-148.
    [116]Gurley K, Kareem A. Applications of wavelet transforms in earthquake, wind and ocean engineering [J]. Engineering Structures,1999,21:149-167.
    [117]Luciano T, Vincenzo L, Nikos A. Multiresolution wavelet analysis of earthquakes[J]. Chaos, Solitons & Fractals,2004,22(3):741-748.
    [118]Bakshi B. R, Stephanopoulos G. Compression of chemical process data by functional approximation and feature extraction[J]. ALCHE J,1996, 477-492.
    [119]Li J. H, Mooson K. Exploring complex systems in chemical engineering-the multi-scale methodology[J]. Chemical Engineering Science,2003, 58(3-6):521-535.
    [120]Mallat S. G. A Theory for Multiresolution Signal decomposition:The Wavelet Representation[J]. IEEE TRANSACTION ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,1989,11 (7):674-693.
    [121]飞思科技产品研发中心.小波分析理论与mat lab 7实现[M].北京:电子工业出版社,2006.
    [122]史荣昌,魏丰.矩阵分析[M],北京:北京理工大学出版社,2005.
    [123]曹雪虹,张宗橙.信息论与编码[M],北京:清华大学出版社,2007.
    [124]Hosokawa. Singular spectrum of the velocity in isotropic turbulence[J]. Physic Review,1995,51:781-783.
    [125]谢平,刘彬.多分辨率奇异谱熵及其在振动信号监测中的应用研究[J].传感技术学报,2004,17(4):548-550.
    [126]谢平.故障诊断中信息熵特征提取及融合方法研究[D].燕山大学博士学位论文,2006.
    [127]Mallat S, Zhang Z. Matching pursuit with time-frequency dictionaries[J]. IEEE TRANSACTION ON SIGNAL PROCESSING,1993, 41(12):3397-3415.
    [128]Chen S, Donoho D, Saunders M. Atomic decomposition by basis pursuit[J], SIAM Journal of Science computation,1999,20:31-61.
    [129]Candes E. J, Romberg J. Practical signal recovery from random projections [Z].2005-01.
    [130]Coifman R, wickerhauser M. Wicherhauser, Entropy-based algorithms for best-basis selection [J]. IEEE TRANSACTION ON INFORMATION THEORY,1992, 38:713-718.
    [131]Donoho D. For Most Large Underdetermined Systems of Linear Equations the Minimal 11-Norm Solution Is Also the Sparsest Solution[J] Comm Pure and Applied Math,2006,59(6):797-829.
    [132]Candes E, Romberg J, Tao T. Stable Signal Recovery from Incomplete and Inaccurate Measurements[J]. Comm Pure and Applied Math,2006, 59(8):1207-1223.
    [133]Candes E, Tao T. Near-Optimal Signal Recovery from Random Projections:Universal Encoding Strategies[J]. IEEE Transaction on Information Theory,2006,52(12):5406-5425.
    [134]Chen S, Donoho D, Saunders M. Atomic Decomposition by Basis Pursuit[J]. SIAM Review,2001,43(1):129-159.
    [135]陆波,尉询楷等.支持向量机在分类中的应用[J].中国图象图形学报,2005,10(8):1029-1035.
    [136]Linas J, Walts E. Multisensor Data Fusion[M]. Artch House, Norwood, Massachusetts,1990.
    [137]Hall D. L. Mathematical Technique in Multisensor data fusion[M]. Rrtecch House, Boston, London,1992.
    [138]何友, 王国宏等.多传感器信息融合及应用[M].北京:电子工业出版社,2000.
    [139]刘同明,夏祖勋等.数据融合技术及其应用[M].北京:国防工业出版社,1998.
    [140]李圣怡,吴原忠等.多传感器数据融合理论与在智能制造系统中的应用[M].长沙:国防科技大学出版社,1996.
    [141]Cheng Jun-Liu, Harry Wechsler. A shape-and texture-basedenhanced Fisher classifier for face recognition [J]. IEEE Trans Image processing, 2001,10 (4):598-608.
    [142]Yang J, Yangjin Y, Zhang D, Luj F. Feature fusion:parallel strategy vs. serial strategy [J]. Pattern Recognition,2003,36(6):1369-1381.
    [143]Yang J, Yangjin Y. Generalized K-L transform based combined feature extraction J. Pattern Recognition,2002,35(1):295-297.
    [144]杨健,杨静宇,王正群等.一种组合特征抽取的新方法[J].计算机学报,2002,25(6):570-575.
    [145]杨健,杨静宇,高建贞.基于并行特征组合与广义K_L变换的字符识别[J].软件学报,2003,14(3):490-495.
    [146]何国辉,甘俊英,李春芝等.人脸与虹膜特征层融合模型的研究[J].电子学报,2007,35(7):1365-1371.
    [147]YANG J, Zhang D, Frangi A. F, YANG J. Y, Two-Dimensional PCA:a new approach to appearance-based face representation and recognition[J]. IEEE Trans Pattern Anal. Mach. Intell,2004,26(1):131-137.
    [148]XIONG H.I, Swamy M. N. S, Ahmad M.0. Two-dimensional FLD for face recognition[J]. Pattern Recognition,2005,38(7):1121-1124.
    [149]YANG J, Zhang D, YANG J. Y, Two-dimensional discriminant transform for face recognition[J]. Pattern Recognition,2005,38(7):1125-1129.
    [150]Noushatha S, Hemantha Kumar G, Shivakumara P. (2D2) LDA:an efficient approach for face recognition[J]. Pattern Recognition,2006, 39(7):1396-1400.
    [151]王松桂,贾忠贞.矩阵论中的不等式[M].合肥:安徽教育出版社,1994.
    [152]Tsuda K, Ratsch R, Mika S, et al. Learning to predict the leave-one-out error of kernel based classifier. In:proceeding international conference on aritificial neural networks,2001.
    [153]Cristianini N, Shawe-Yaylor J, Elisseeff A, Kandola J. On kernel-target alignment[C], Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA,2001.
    [154]Cristianini N, Elisseeff A, Shawe-Taylor J. Optimizing Kernel Alignment over Combinations of Kernels[R], Technical Report NC-TR-02-121,NeuroCOLT,2002.
    [155]Shawe-Taylor J, Cristianini N模式分析的核方法[M],北京:机械工业出版社,2006.
    [156]Nguyen C. H, Ho T. B. An efficient kernel matrix evaluation measure [J], Pattern Recognition,2008,11:3366-3372.
    [157]Xiong H, Swamy M, Ahmad M, Optimizing the Kernel in the Empirical Feature Space [J]. IEEE Transcat ion on Neural Network,2005,16(2):460-474.
    [158]Zhang D. Q, Chen S. C, Zhou Z. H. Learning the kernel parameters in kernel minimum distance classifier[J]. Pattern Recognition,2006, 39(1):133-135.
    [158]Huang J, Chen X. M, Yuen P. C, et al. Kernel parameter optimization for kernel-based LDA methods[C]. IEEE international joint conference on neural networks 2008,3840-3846.
    [160]Wu K. P, Wang S. D. Choosing the Kernel parametes of Support Vector Machines According to the Inter-cluster Distance[C]. Proceeding of International Joint Conference on Neural Networks,2006.
    [161]Wang L, Chan K. L, Xue P, Zhou L. P. A Kernel-Induced Space Selection Approach to Model Selection in KLDA[J]. IEEE Transaction on Neural Network, 2008,19(12):2116-2131.
    [162]Wang L, Feature selection with kernel class separability, IEEE Transaction on Pattern Analysis and Machine Intelligence,2008, 30(9):1534-1546.
    [163]Wang L, Chan K.L.Learning kernel parameters by using class separability measure[C], the 6th Annual Workshop Kernel Machine, Whistler, Canada,2002.
    [164]Leski J. Ho-Kashyap classifier with generalization control[J]. Pattern Recognition Letters,2003,24(14):2281-2290.
    [165]Leski J. Kernel Ho-Kashyap classifier with generalization control[J]. International Journal of applied mathematics and computer science,2004,14(1):53-61.
    [166]Bach F, Lanckriet G. R. G, Jordan M. I. Multiple kernel learning, conic duality, and the SMO algorithm[C]. In Proceedings of the 21s International Conference on Machine Learning,2004.
    [167]Bennett K. P, Momma M, Embrechts M. J. MARK:A boosting algorithm for heterogeneous kernel models[C].In SIGKDD,2002,24-31.
    [168]Bi J, Zhang T, Bennett K. Column-generation boosting methods for mixture of kernels[C].In KDD,2004,521-526.
    [169]Chapelle 0, Vapnik V, Bousquet 0. Choosing multiple parameters for support vector machines[J]. Machine Learning,2002,46(1-3):131-159.
    [170]Diego I.M, Moguerza J. M, Munoz A. Combining kernel information for support vector classification[C],In MCS, LNCS,2004,102-111.
    [171]G. Lanckriet, N. Cristianini, P. Bartlett et al. Learning the Kernel Matrix with Semi-Definite Programming [J], The Journal of Machine Learning,2004,5(1):27-72.
    [172]N. Cristianini, A. Elisseeff, J. Shawe-Taylor, Optimizing Kernel Alignment over Combinations of Kernels[A], Technical Report NC-TR-02-121,NeuroCOLT,2002.
    [173]Moguerza J. M, Munoz A, Diego I. M. Fusion of Gaussian kernels within support vector classification[C]. In CIARP, LNCS,2006,945-953.
    [174]Sonnenburg S, Ratsch G. A general and efficient multiple kernel learning algorithm[C]. In Neural Information Processing Systems,2005.
    [175]Sonnenburg S, Ratsch G, Schafer C, Scholkopf B. Large scale multiple kernel learning[J]. Journal of Machine Learning Research,2006.
    [176]Diego I. M, Moguerza J. M, Munoz A. Combining Kernel Information for Support Vector Classification [A]. In MCS, LNCS,2004,102-111.
    [177]Wang Z, Chen S. C, Sun T. K, MultiK-MHKS:A Novel Multiple Kernel Learning Algorithm [J]. IEEE Transaction on Pattern analysis and Machine Inteligence,2008,30(2):348-353.
    [178]Kim S. J, Magnani A, Boyd S. Optimal Kernel Selection in Kernel Fisher Discriminant[C], Proceedings of the 23rd International Conference on Machine Learning,2006,465-472.
    [179]Ye J, Ji S, Chen J. Multi-class discriminant kernel learning via convex programming[J]. The Journal of Machine Learning Research,2008.
    [180]Blake C, Keogh E, MerzC. J. UCI repository of machine Learning databases. University of California, http://www.ics.uci.edu/~mlearn /MLRepository. html,1998.
    [181]Tenenbaum J. B, Silva D. V, Langford J. C. A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000,290(12):2319 2323.
    [182]Sam T, Roweis L. K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science,2000,290 (12):2323-2326.
    [183]Lia B, Zheng C. H, Huang D. S. Locally linear discriminant embedding: An efficient method for face recognition[J]. Pattern Recognition 2008, 41(12):3813-3821.
    [184]Zhang W, Xue X. Y, Lu H. Discriminant neighborhood embedding for classification[J]. Pattern Recognition,2006,39(11):2240-2243.
    [185]Yu W. W, Teng X. L, Liu C. Q. Face recognition using discriminant locality preserving projections[J]. Image and Vision Computing,2006, 24(3):239-248.
    [186]Li X, Lin S, Yan S, Xu D. Discriminant locally linear embedding with high-order tensor data[J], IEEE Transactions on Systems Man and Cybernetics,2008.
    [187]Yan S, Hu Y, Xu D, et at. Nonlinear Discriminant Analysis on Embedded Manifold[J]. IEEE Transactions on circuits and systems for video technology,2007,17(4):468-477.
    [188]Fu Y, Yan S. C, Huang T. S. Classification and Feature Extraction by Simplexization[J], IEEE Transactions on information forensics and security,2008,3(1):91-100.
    [189]You Q. B, Zheng N. N, Du S. Y, Wu Y. Neighborhood discriminant projection for face recognition[J]. Pattern Recognition Letters,2007, 30(10):902-907.
    [190]Yan Y, Zhang Y. J. Discriminant projection embedding for face and palmprint recognition[J], Neurocomputing,2008,71(16-18):3534-3543.
    [191]Zheng Z. L, Yang J. Supervised locality pursuit embedding for pattern classification[J], Image and Vision Computing,2006,24(8):819-826.
    [192]Song Y. Q, Nie F. P, Zhang C. S. Semi-supervised sub-manifold discriminant analysis[J], Pattern Recognition Letter,2008, 29(13):1806-1813.
    [193]Yang L. P, Gong W. G, Gu X. H, et al. Null space discriminant locality preserving projections for face recognition[J], Neurocomputing,2008, 71(16-18):3644-3649.
    [194]Xue H, Chen S. C, Yang Q, Discriminatively regularized least-squares classification[J]. Pattern Recognition,2009,42(1):93-104.
    [195]郭雷.控制理论导论—从基本概念到研究前沿[M],北京:科学出版社,2005.
    [196]Tsang I, Kocsor A, Kwok J. Efficient Kernel Feature Extraction for Massive Data Sets[C], In International Conference on Knowledge Discovery and Data Mining,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700