用户名: 密码: 验证码:
南海和北极海域海洋表层沉积物地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了对南海和北极海域海洋沉积物物质来源和环境质量状况进行研究,应用地球化学的基本理论和方法,采用现代分析技术手段对南海和北极海域表层沉积物的地球化学特征进行了全面、系统的研究,在此基础上,应用海洋沉积物污染元素评价方法(地质累积指数法和富集因子法)对南海和北极海域海洋沉积环境环境质量状况进行了评价。通过对南海和北极海域海洋表层沉积物地球化学的全面研究,获得如下结论和认识:
     (1)南海表层沉积物微量元素含量从深海盆区到陆架区呈由大到小的变化规律,与中国大陆沉积物接近,具有明显的“亲陆性”。
     北极楚科奇海微量元素在中间采样站位值较低,而离陆较近的周围采样站位有着较高的含量,受陆源物质输入影响明显。白令海由于水深较深,各微量元素在其海域的分布较复杂。相关系数分布结果说明沉积物的物源组成较为接近,沉积物在风化迁移过程中所受的分异作用较小,这与研究区的低温环境、化学风化作用弱相一致。
     (2)南海北部陆架区、中南半岛中东部和加里曼丹岛西北部沿大陆区域稀土元素富集,西南部巽他陆架和东南部岛礁区以及中、西沙附近区域∑REE较低。稀土元素示踪结果表现出“亲陆性”,反映出主要来自陆源。
     楚科奇海表层沉积物中∑REE的分布,高值区主要分布在海区西南侧、西侧和巴罗角以北海域,低值区重要分布在海区中部;白令海表层沉积物中∑REE的分布,南北两侧较中部采样站位值低。稀土元素物源示踪结果显示,楚科奇海与白令海表层沉积物主要来源于周边大陆;与中国黄土、地壳平均值的对比结果显示,北极地区是处于干冷气候下的以物理风化为主的环境中。
     (3)南海表层沉积物在深海区中重金属元素的富集,主要与深海盆区样品粒度较细,粘土含量较高有关,反映出“粒度控制率”的一般规律,同时也说明火山物质的加入不是深海盆区重金属富集的主要原因。背景值检验结果表明,大部分海区中污染物含量均落在污染物的背景范围之内。环境质量评价结果表明,在靠近大陆的浅海区分别受到不同程度的非自然来源影响。
     北极楚科奇海、白令海表层沉积物背景值计算结果表明,楚科奇海和白令海各重金属元素背景值比较接近。重金属评价结果表明,整体上北极楚科奇海与白令海表层沉积物中重金属没有受到人为物质的污染,仍然处于自然变动范围之内。
     (4)南海表层沉积物铂族元素(PGE)基本上富集于离陆源较近的浅海区,在深海盆区亦表现出一定的富集,尤以Au为最明显,除与深海盆区样品粒度较细,粘土含量较高有关外,幔源物质对南海表层沉积物铂族元素组成有一定的影响。利用深海沉积物对南海全区进行地质累积指数评价结果显示,污染主要分布于靠近大陆的浅海区;用中国东部地壳值进行富集因子计算结果显示,各铂族元素均有着异常高的EF值,明显指示为非陆壳来源,表现为海洋沉积物的自然特征。
     (5)南海表层沉积物铅同位素继承了扬子块体的铅同位素组成特征,其铅同位素处于红河和湄公河河流沉积物钾长石铅同位素值范围之内,并且中国香港和台湾地区气溶胶对西北部、北部浅海研究区有一定的影响。
     楚科奇海和白令海铅同位素值在太平洋北部铅同位素值变化范围之内,并且与流入北极拉普捷夫海的西伯利亚东部勒拿河铅同位素平均值接近,太平洋北部尤以对白令海的影响更为明显。
     (6)南海表层沉积物钕同位素在浅海区∈Nd较小,高值区亦与火山活动相对应,缺乏火山活动的地区存在较高的∈Nd值,可能有火山灰沉降引起。二元混合计算结果表明表层沉积物中以陆源输入为主,(硅铝组分)陆源组分占83%,(基性岩组分)幔源组分占17%,陆源组分高值区主要分布于浅海地带的陆架区,幔源组分高值区主要分布于巴拉望岛西侧深海区,沉积物中火山碎屑的理论分布特征与研究区域内火山灰的实际分布特征相一致。
For make a marine sediment research to surface sediments in the South China Sea and Arctic sea area, adopting basic theory and method of geochemistry and modem analytic technique to give a whole and systemic research for the study area.Analysing the geochemistry of contaminated elements in the study area, and then judge the environment quality condition.After those study ,obtaining some conclusion as follows:
     (1)The trace elements contents of surface sediment in shelf area are higher than those in deep sea area's in South China Sea,and they are close to the Chinese Mainland sediments'.
     There is lower trace element concentration in middle sample stations than closing to continent's in Chukchi Sea.Because of deep water in Bering Sea, there is a complex distribution of trace elements.Correlation coefficient show that the sediments compositon is very near,which consist with its low temperature environment and feeble chemicial weathering.
     (2)REE enrich in north of sloping continental area, middle east of Indo-China Peninsula and northwest of Kalimantan Island in South China Sea,low content in southwest of Sunda sloping continental area, southeast of island reef area, Xisha and Pratas Islands .REE tracing results show they are mainly terrigenous.
     EREE distribution of the surface sediments in Chukchi Sea, high-values are mainly located in the southwest area adjacent to the west and north of Point Barrow area, a significant low in the area of Central. DREE distribution of surface sediments in Bering Sea, the central REE values area higher than that two sides'. REE tracing results show that the Bering Sea and Chukchi Sea surface sediments primarily from neighboring mainland . Contrasting with China loess, the average crust results show that the Arctic region is in a dry and cold climate of physical weathering to the Lord's environment.
     (3)Heavy metal enrich in the deep sea areas of surface sediments in South China Sea ,mainly because of deep basin area smaller sample size, the higher clay content, reflecting the "granularity rate control", and showing that volcanic material addition in deep basin area is not the main reason for heavy metal accumulation. Background value test results show that the majority of the content of contaminated elements are within the scope of the background. Environmental quality evaluation results show that shallow areas closing to the mainland were subject to different degrees of unnatural sources of influence.
     Background values calculated results in Arctic show that the heavy metal background values in Chukchi Sea are close to Bering Sea's.Evaluation results show that heavy metals of surface sediments in Arctic Chukchi Sea and the Bering Sea have not been artificially contaminated, remain within the scope of natural change.
     (4)Basically, the PGE enrich in the shallow water areas, some concentration in the deep basin area well, particularly for the most obvious Au, in addition to the deep basin area smaller sample size, higher clay content, PGE of the mantle material certainly affect the composition. deep-sea sediments for geologic evaluation results show that pollution mainly distributed in the shallow water near the mainland. Eastern China crust for enrichment factor values calculated results show that the platinum group elements are extremely high with EF values for non-continental crust sources and marine sediment characteristics.
     (5)Surface sediments in the South China Sea inherited the lead isotope of Yangtze block.Its lead isotope composition within the scope of the Red River and Mekong River K-feldspar lead isotopes . Aerosols Pb isotope values of Hong Kong and Taiwan affect north-west and north shallow water area.
     Pb isotope values of Chukchi Sea and the Bering Sea are within the scope of northern Pacific's, and closing to lead isotope average of Lena River's in eastern Siberia flowing into the Laptev Sea,and north Pacific especially impact on the Bering Sea.
     (6)Lower (?)Nd is in shallow water areas of surface sediments in South China Sea,and high-value areas are relative to volcanic activity areas. Higher (?)Nd values in lack of volcanic activity regions may be volcanic ash from the settlement. The dual mixed results show that surface sediments are mainly terrigenous, which (alumina components) accounted for 83%, (component-rock) mantle components accounted for 17 %.Land-based component high-value areas mainly distributed in the shallow shelf areas, high-value component of mantle-derived mainly distributed in deep sea basin of West Palawan Island, the theoretical distribution of pyroclastic sediments consist with the actual distribution of volcanic ash.
引文
1.高抒.海洋沉积物动力学的示踪物方法.沉积学报.2003,21(1):61-65
    2.高抒.示踪沉积物方法的理论框架.科学通报.2000,45(3):329-334
    3.林晓彤,李巍然.东海外源沉积物来源的判别分析.中国海洋大学(研究生学位论文).2003
    4.王为.香港地区港湾沙坝的沉积物来源-以香港大屿山岛贝澳湾为例.地理科学.2000,20(1):45-50
    5.陈志华,杨作升.北冰洋西部沉积物地球化学特征及环境指示意义.中国海洋大学(研究生学位论文).2004,6
    6.郭建卿,陈荣华等.南海北部表层沉积物中浮游有孔虫分布特征与环境意义.海洋学研究.2006,24(1):19-27
    7.王中波,杨守业,李从先.长江水系沉积物碎屑矿物组成及其示踪意义.沉积学报.2006,24(4):570-578
    8.朱赖民,杜俊民,张远辉.南黄海中部E2柱样沉积物来源的稀土元素及微量元素示踪.环境科学学报.2006,26(3):495-500
    9.杜俊民,朱赖民.南黄海中部沉积物微量元素的环境记录研究.海洋学报.2004,26(6):49-57
    10.熊应乾,刘振夏等.东海陆架EA01孔沉积物常微量元素变化及其意义.沉积学报.2006,24(3):356-364
    11.陈道华,蒋少涌,刘坚.西沙海槽表层沉积物地球化学特征及其地质意义.海洋地质与第四纪地质.2005,25(2):37-43
    12.李双林,李绍全,孟祥君.东海陆架晚第四纪沉积物化学成分及物源示踪.海洋地质与第四纪地质.2002,22(4):21-28
    13.朱赖民,陈立奇,张远辉,杨绪林.北极楚科奇海、白令海上空大气气溶胶铅浓度及同位素组成.环境科学学报.2004,24(5):846-851
    14.蒋富清,李安春.冲绳海槽南部表层沉积物地球化学特征及其物源和环境指示意义.沉积学报.2002,20(4):680-686
    15.高爱国,陈志华,刘焱光,杨守业.楚科奇海表层沉积物的稀土元素地球化学特征.中国科学(D)辑.2003,33(2):148-154
    16.李双林,李绍全.黄海YA01孔沉积物稀土元素组成与源区示踪.海洋地质与第四纪地质.2001,21(3):51-56
    17.杨守业,李从先.长江与黄河沉积物REE地球化学及示踪作用.地球化学.1999,28(4):374-380
    18.刘宝林,王亚平,王吉中.南海北部陆坡海洋沉积物稀土元素及物源和成岩环境.海洋地质与第四纪地质.2004(11):17-23
    19.古森昌,陈绍谋,吴必豪,李松筠.南海表层沉积物稀土元素的地球化学.热带海洋.1989,8(2):93-101
    20.杨守业,李从先.REE示踪沉积物物源研究进展.地球科学进展.1999,14(2):164-167
    21.庄克琳,毕世普,苏大鹏.长江水下三角洲表层沉积物稀土元素特征.海洋地质与第四纪地质.2005,25(4):15-22
    22.蓝先洪.海洋同位素示踪技术的研究进展.海洋地质动态.2001,17(11):6-9
    23.朱赖民,张海生,陈立奇.铅稳定同位素在示踪环境污染中得应用.环境科学研究.2002,15(1):27-30
    24.朱炳泉.地球科学中同位素体系理论与应用.兼论中国大陆壳幔演化[M].北京:科学出版社,1998,236-258
    25.路远发,陈好寿,陈忠大等.杭州西湖与运河沉积物铅同位素组成及其示踪意义.地球化学.2006,35(4):443-452
    26.曾志刚,秦蕴珊,翟世奎.大西洋中脊海底表层热液沉积物的铅同位素组成及其地质意义.青岛海洋大学学报.2001,31(1):103-109
    27.蓝先洪.海洋锶同位素研究进展.海洋地质动态.2001,17(10):1-3
    28.张霄宇,张富元,章伟艳.南海东部海域表层沉积物锶同位素物源示踪进展.海洋学报.2003,25(4):43-49
    29.孙志国,刘宝柱,蓝先洪.西沙珊瑚礁锶同位素特征及其古环境意义.科学通报.1996,41(5):434-437
    30.张霄宇,张富元,章伟艳.南海东部柱样沉积物锶同位素变化特征及其地质意义.浙江大学学报(理学版).2003,30(6):703-708
    31.王中良,刘丛良.长江河口区水体的锶同位素地球化学-对水与沉积物相互作用过程的反映.Earth and Environment.2004,32(2):26-30
    32.蓝先洪.钕同位素在海洋地球化学研究中的意义.海洋地质动态.1998,4:1-3
    33.符亚洲,彭建堂.海洋环境中的锇同位素研究现状.地球科学进展.2004,19(2):237-244
    34.张远辉,杜俊民.南海沉积物中主要污染物的环境背景值.海洋学报.2005,27(4):161-166
    35.李淑媛,刘国贤.渤海沉积物中重金属分布及环境背景值.中国环境科学.1994,14(5):370-376
    36.王晓军,潘恒健,杨丽原.南四湖表层沉积物重金属元素的污染分析.海洋湖沼通报.2005,2:22-29
    37.杨蕾,李春初等.珠江磨刀门河口表层沉积物中重金属含量及其分布特征.生态环境.2006,15(3):490-494
    38.杨慧辉.台湾海峡南部沉积物中某些重金属元素的背景值.台湾海峡.1997,16(1):28-36
    39.甘居利,贾晓平等.南海北部陆架区表层沉积物中重金属分布和污染状况.热带海洋学报.2003,22(1):36-42
    40.秦延文,孟伟等.渤海湾天津段潮间带沉积物柱状样重金属污染特征.环境科学.2006,27(2):268-273
    41.李玉,俞志明等.重金属在胶州湾表层沉积物中的分布与富集.海洋与湖沼.2005,36(6):580-589
    42.李淑媛,郝静.渤海湾及其附近海域沉积物中Cu,Pb,Zn,Cd环境背景值的研究.海洋与湖沼.1992,23(1):39-48
    43.杨杰东,陈骏等.黄土高原黄土和太平洋沉积物Nd,Sr同位素变化的比较.地球学报(增刊).2005,(26):192-194
    44.张秀芝,鲍征宇,唐俊红.富集因子在环境地球化学重金属污染评价中的应用.地质科技情报.2006,25(1):65-72
    45.韦刚健,陈毓蔚等.NS93-5钻孔沉积物不活泼微量元素记录与陆源输入变化探讨.地球化学.2001,30(3):208-216
    46.卢博.东沙群岛海域沉积物及其物理学性质的研究.海洋学报.1996,18(6):82-99
    47.赵一阳,何丽娟.论黄海沉积物元素区域分布格局.海洋科学.1989,1:1-5
    48.刘岩,张祖麟等.珠江口伶仃洋海区表层沉积物稀土元素分布特征及配分模式.海洋地质与第四纪地质.1999,19(1):103-108
    49.漆亮,胡静.等离子体质谱仪法快速测定地质样品中的痕量铂族元素和金.岩矿测试.1999, 18(4):267-270
    50.许成,黄智龙等.铂族元素地球化学研究评述.地学前缘.2003,10(4):520-528
    51.曹志敏,安伟等.马里亚纳海槽扩张轴(中心)玄武岩铂族元素特征.海洋学报.2006,28(5):69-75
    52.邱燕,姚伯初,李唐根等.南海西沙西南海域表层沉积物特征.海洋地质与第四纪地质.1997,17(4):41-53
    53.姚伯初,蓝先洪,邱燕.西沙西南海域表层沉积物的地球化学特征.海洋地质与第四纪地质.1998,18(1):23-35
    54.朱赖民,高志友,尹观等.南海表层沉积物的稀土和微量元素的丰度及其空间变化.岩石学报.2007,23(11):2963-2980
    55.赵一阳.中国海大陆架沉积物地球化学的若干模式.地质学报.1983,(4)307-314
    56.刘昭蜀,赵焕庭,范时清等.南海地质.北京:科学出版社.2002,P315-P410
    57.赵一阳,鄢明才.中国浅海沉积物化学元素丰度.北京:科学出版社,1994,P130-P150
    58.高志友.南海表层沉积物地球化学特征及物源指示.成都理工大学博士论文,2005
    59.王金土.黄海表层沉积物稀土元素地球化学.地球化学.1990,(1):44-53
    60.朱赖民,杜俊民,张远辉等.南黄海中部E2柱样沉积物来源的稀土元素及微量元素示踪.环境科学学报.2006,26(3):496-501
    61.刘岩,张祖麟,洪华生.珠江口伶仃洋海区表层沉积物稀土元素分布特征及配分模式.海洋地质与第四纪地质.1999,19(1):103-108
    62.陈忠,古森昌,颜文等.南沙海槽南部及邻近海区表层沉积物中的碎屑矿物特征.热带海洋学报.2002,21(2):84-90
    63.陈忠,夏斌,颜文等.南海火山玻璃的分布特征、化学成分及源区探讨.海洋学报.2005,27(5):73-81
    64.陈志华,石学法,韩贻兵等.北冰洋西部表层沉积物粘土矿物分布及环境指示意义.海洋科学进展.2004,22(4):446-454
    65.杨守业,李从先,Lee CB等.黄海周边河流的稀土元素地球化学及沉积物物源示踪.科学通报.2003,48(11):1233-1236
    66.刘娜,孟宪伟.冲绳海槽中段表层表层沉积物稀土元素组成及其物源指示意义.海洋地质与第四纪地质.2004,24(4):37-45
    67.刘英俊,曹励明.元素地球化学导论.北京:科学出版社.1987,P57-P80
    68.王中刚,于学元,赵振华.稀土元素地球化学.北京:科学出版社.1989,P1-P535
    69.周秀艳,王恩德,刘秀云等.辽东湾河口底质重金属环境地球化学.地球化学.2004,33(3):286-290
    70.刘恩峰,沈吉,朱育新.沉积物金属元素变化的粒度效应-以太湖沉积物岩芯为例.湖泊科学.2006,18(4):363-368
    71.李粹中.南海中部沉积物的元素地球化学.东海海洋.1987,5(1-2):77-91
    72.赵一阳,鄢明才.中国浅海沉积物元素化学丰度冲国科学(B辑).1993,23(10):1084-1090
    73.袁旭音,王爱华,许乃政.太湖沉积物中重金属的地球化学形态及特征分析.地球化学.2004,33(6):611-618
    74.刘国伟,伊洪宗,何锡文等.不确定度评定中离群值的检验及计算机编程.冶金分析.2004,24(4):63-66
    75.曲庆军,赵晓梅,阮桂海.统计分析方法-SAS实例精选.北京:科学出版社.2004,P56-P63
    76.郭炳火,黄振宗,李培英等.中国近海及邻近海域海洋环境.北京:海洋出版社.2004,P311-P319
    77.陈绍谋等.南海北部沉积物作用地球化学的初步研究.南海海洋科学集刊.北京:科学出版社.1984,6:P17-P31
    78.丁喜桂,叶思源,高宗军.近海沉积物重金属污染研究方法.海洋地质动态.2005,21(8):31-36
    79.弓晓峰,陈春丽,周文斌等.鄱阳湖底泥中重金属污染现状评价.环境科学.2006,27(4):732-736
    80.苏春利,王焰新.武汉市墨水湖沉积物重金属污染特征与防治对策.矿物岩石.2006,26(2):111-116
    81.皮道会,邓海琳,李朝阳等.铂族元素的表生地球化学研究进展.矿物岩石地球化学通报.2004,4(23):355-361
    82.赵广涛,彭俊,田丽艳等.大洋铁锰结核的地球化学与古海洋环境示踪.中国海洋大学学报.2004,34(5):886-892
    83.迟清华,鄢明才.铂族元素在地壳、岩石和沉积物中的分布.地球化学.2006,35(5):461-471
    84.鄢明才,迟清华,顾铁新等.中国火成岩化学元素的丰度与分布.地球化学.1996,25(5):409-424
    85.成杭新,谢学锦,严光生等.中国泛滥平原沉积物中铂、钯丰度值及地球化学省的初步研究.地球化学.1998,27(2):101-107
    86.何高文,孙晓明,杨胜雄等.东太平洋CC区多金属结核铂族元素(PGE)地球化学及其意义.矿床地质.2006,25(2):164-174
    87.黄智龙,许成,刘丛强.碳酸盐与铂族元素地球化学.地质论评.2005,51(4):443-451
    88.鄢明才,迟清华,顾铁新等.中国各类沉积物化学元素平均含量.物探与化探.1995,19(6):468-472
    89.黎彤.中国陆壳及其沉积层和上地壳的化学元素丰度.地球化学.1994,23(2):140-145
    90.常向阳,朱炳泉,陈于蔚等.元素-同位素示踪技术在环境科学研究中的应用.广州大学学报(自然科学版).2002,1(3):67-70
    91.张宏飞,张利等.西秦岭花岗岩类地球化学和Pb-Sr-Nd同位素组成对基底性质及其构造属性的限制冲国科学(D).2005,35(10):914-926
    92.张理刚.东亚岩石圈块体地质.北京:科学出版社.1995,1-252
    93.朱炳泉.地球科学中同位素体系理论与应用-兼论中国陆壳幔演化.北京:科学出版社.1998,P236-P258
    94.朱赖民,陈立奇,张远辉等.北极楚科奇海、白令海上空大气气溶胶铅浓度及同位素研究.环境科学学报.2004,24(5)846-851
    95.王生伟,孙晓明,石贵勇等.云南白马寨铜镍硫化物矿床铂族元素地球化学及其对矿床成因的制约.地质学报.2006,80(9):1474-1486
    96.刘季花.海洋环境中Nd的同位素组成及其地质意义.海洋地质与第四纪地质.1998,18(4):35-43
    97.Pedersen等.DSDP/ODP504B孔上洋壳Nd和Pb同位素变化.海洋地质动态.2002,18(1):14-17
    98.刘志飞,Christophe,Alain等.青藏高原东部和湄公河盆地晚第四纪风化剥蚀与东亚季风演化在南海中的记录.矿物岩石地球化学通报.2005,24(1):30-38
    99.饶文波,杨杰东,陈骏等.中国干旱-半干旱区风尘物质的Sr、Nd同位素地球化学:对 黄土来源和季风演化的指示.科学通报.2006,51(4):378-386
    100.刘季花,崔汝勇,卢效珍.中太平洋CP25岩心的矿物、稀土元素及Sr、Nd同位素组成-晚新生代海底火山活动的证据.海洋地质与第四纪地质.1999,19(2):55-64
    101.刘焱光,孟宪伟,付云霞.冲绳海槽Jade热液场烟囱物稀土元素和锶、钕同位素地球化学特征.海洋学报.2005,27(5):67-32
    102.孟宪伟,杜德文,吴光龙.冲绳海槽中段表层沉积物物质来源的定量分离:Sr-Nd同位素方法.海洋与湖沼.2001,32(3):319-326
    103.孟宪伟,杜德文,龙江平.二端员混合过程的Sr、Nd同位素体系与端员贡献的定量分离.黄渤海海洋.1999,17(3):37-43
    104.张霄宇,张富元,章伟艳.南海东部海域表层沉积物锶同位素物源示踪研究.海洋学报.2003,25(4):43-49
    105.陈立奇等.北极海洋环境与海气相互作用研究.北京:海洋出版社.2003,P182-P206
    106.陈志华.北冰洋西部沉积物地球化学特征及环境指示意义.中国海洋大学硕士研究生论文.2004
    107.李栓科,张青松,王国等.北极阿拉斯加巴罗地区Elson泻湖的沉积古环境研究.极地研究.1997,9(1):1-8
    108.霍文冕,曾宪章,田伟之等.北极楚科奇海近代沉积物稀土元素地球化学特征初探.极地研究.2003,15(1):21-27
    109.高爱国,陈志华,刘焱光等.楚科奇海表层沉积物的稀土元素地球化学特征.中国科学(D 辑).2003,33(2):148-154
    110.高爱国,韩国忠,刘峰等.楚科奇海及其邻近海域表层沉积物的元素地球化学特征.海洋学报.2004,26(2):132-139
    111.朱赖民,张海生,陈立奇.铅稳定同位素在示踪环境污染的应用.环境科学研究.2002,15(1):27-30
    112.Kevin H.Johannesson,Zhou Xiaoping.Origin of middle rare earth element enrichments in acid waters of a Canadian High Arctic lake.Geochimica et Cosmochimica Acta.1999,153-165
    113.Seung-Gu Lee,Dae-Ha Lee et al.Rare earth elements as indicators of groundwater environment changes in a fractured rock system:evidence form fracture-filling calcite.Applied Geochemistry.2003,135-143
    114.John L.Adgate,George G.Rhoads,Paul J.Lioy.The use of istope ratios to apportion sources of lead in Jersey City,NJ,house dust wipe samples.The Science of the Total Environment.1998,177-180
    115.Li Xianhua,Wei Gangjian et al.Geochemical and Nd istopic variations in sediments of the South China Sea:a response to Cenozoic tectonism in SE Asia.Earth and Planetary Science Letters.2003,207-220
    116.Saulwood Lin,I-Jy Hsieh et al.Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments.Chemical Geology.2002,377-394
    117.Muhammet Duman,Mert Avci,Erkan Demirkurt et al.Surficial sediment distribution and net sediment transport pattern in Izmir Bay,western Turkey.Continental Shelf Research.2004,24:965-981
    118.Caries Pelejero,Markus Kienast,Luejiang Wang et al.The flooding of Sundaland during the last deglaciation:imprints in hemipelagic sediments from the southern South China Sea.Earth and Planetary Science Letters.1999,171:661-671
    119. P. Wang, L Wang, Y. Bian, Z. Jian, Late Quaternary paleoceanography of the South China Sea: surface circulation and carbonate cycles, Mar. Geol. 1995, 127: 145-165.
    
    120. V.Shevchenko,A.Lisitzin et al. Heavy metals in aerosol over the seas of the Russian Arctic .The Science of the Total Environment. 2003, 306: 11 -25
    121. R.L.Phillips, A. Grantz. Regional variations in provenance and abundance of ice-rafted clasts in Arctic Ocean sediments:implications for the configuration of late Quaternary oceanic and atomospheric circulation in the Arctic. Marine Geology. 2001, 172: 91-115
    122. C.Viscosi-Shirley,N.Pisias et al.Sediments source strength transport pathways and accumulation patterns on the Siberian-Arctic's Chukchi and Laptev shelves.Continental Shelf Research. 2003, 23: 1201-1225
    123. L.B.ALEXEEVA,W.M.J.STRACHAN et al. Organochlorine Pesticide and Trace Metal Monitoring of Russian Rivers Flowing to the Arctic Ocean: 1990-1996
    124. J.A.Holemann,M.Schirmacher et al. Geochemistry of Surficial and Ice-rafted Sediments from the Laptev Sea(Siberia). Estuarine,Coastal and Shelf Science. 1999, 49: 45-59
    125. C.Viscosi-Shirley,K.Mammone et al.Clay mineralogy and multi-element chemistry of surface sediments on the Siberian-Arctic shelf: implications for sediment provenance and grain size sorting. Continental Shelf Research. 2003, 23: 1175-1200
    126. Seung-Gu Lee,Dae-Ha Lee et al.Rare earth elements as indicators of groundwater environment changes in a fractured rock system : evidence from fracture-filling calcite.Applied Geochemistry. 2003, 18: 135-143
    127. Janiel Rivera, Eugene B. Karabanov et al. Lana River discharge events in sediments of Laptev Sea, Russian Arctic. Estuarine,Coastal and Science . 2006, 66: 185-196
    128. Catherine Lalande,Kate Lepore,Lee W.Cooper et aLExport flues of particulate organic carbon in the Chukchi Sea:A comparative study using ~(234)Th/~(238)U disequilibria and drifting sediment traps.Marine Chemistry 2006.
    129. H.Eicken, R.Gradinger,A.Gaylord et al.Sediment transport by sea ice in the Chukchi and Beaufort Seas: Increasing importance due to changing ice conditions? Deep-Sea Research . 2005, 52: 3281-3302
    130. Brian Morton et al., .South China Sea. Marine Pollution Buletin.2001,42 (12): 1236-1263
    131. Morton B and Granham B.South China Sea.Marine Pollution Bulletion.2001,42(12): 1236-1263
    132. Sholkovitz ER,Elderfield H,Szymczak R et al.Island weathering: River sources of rare earth elements to the Western Pacific Ocean.Marine Chemistry. 1999,68: 39-57
    133. Norman MD and Deckker P.Trace metalsin lacustrine and marine sediments: A case study from the Gulf of Carpentaria,northern Australia.Chemical Geology.1990,82: 299-318
    134. Panttan JN,Rao CM,Higgs NC et al.Distribution of major,trace and rare-earth elements in surface sediments of the Wharton Basin,Indian Ocean.Chemical Geology. 1995,121: 201 -215
    135. Frey FA and Haskin L.Rare earths in oceanic basalts.J.Geophys.Res.,1964,69(4): 775-780
    136. Haeckel M,Beusekom JV,Wiesner MG et al.The impact of the 1991 Mount Pinatubo tephra fallout on the geochemical environment of the deep sea sediments in the South China Sea.Earth and Planetary Science Letters.2001,193: 151-166
    137. Kazuhiro T,Yuji N and Akimasa M.Rare earth elements of Pacific pelagic sediments.Geochimica et Cosmochimica Acta. 1990,54: 1093-1103
    138. Murray RW and Leinen M.Chemical transport to the sea floor of the equatorial pacific ocean across a latitude transect at 135 W: Tracing sedimentary major,trace and rare earth element fuxes at the Equator and the intertropical Convergence Zone. 1993,57: 4141-4163
    139. Winsner MG, Wang YB and Zheng LF. Fallout of volcanic ash to the deep South China Sea induced bu the 1991 eruption of Mount Pinatubo(Philippines).Geology.l995,23: 885-888
    140. Grousset F E,Quetel C R et al.Anthropogenic vs.lithogenic origins of trace elements(As,Cd,Pb,Rb,Sc,Sn,Zn)in water column particles: northwestern Mediterranean Sea.Marine Chemistry. 1995,48: 291-310
    141. Henry F,Jeandel C,Dupre B et al.Particulate and dissolved Nd in the western Mediterrean Sea: source,fate and budget.Marine Chemistry. 1994,45: 283-305
    142. Lee Celine S L.Li Xiandong et al.Heavy metal and Pb isotopeic compositon of aerosol in urban and suburban areas of Hong Kong and Guang zhou,South China—Evidence of the long-rang transport of air contaminants. Astomospheric Environment.2007,41: 432-447
    143. Marchard C,Lallier-Verges E,Baltzer F,Alberic P et al.Heavy metals distribution in mangrove sediments along the mobile coastline of French Guiana.Marine Chemistry.2006. 98: 1-17
    144. Shaw D M,Cramer J J,Higgins M D et al.Compositon of the Candian Precambrian shield and the continental crust of the earth.Geolilgical Society Special Publication.1986, 24: 275-282
    145. Wallians T P, Bubb J M et al.Metal accumulation within saltmarsh environments: a review.Marine Pollution Bulletin. 1994,28: 277-290
    146. E. de Vos, S J. Edwards, I. McDonald et al.A baseline survey of the distribution and origin of platinum group elements in contemporary fuvial sediments of the Kentish Stour, England.Applied Geochemistry.2002,17: 1115-1121
    147. Vaughan, G.T., Florence. T.M.. Platinum in the human diet, blood, hair and excreta. The Science of the Total Environment. 1992, 111: 47-58
    148. Khaiwal Ravindra, Laszlo Bencs , Rene Van Grieken.Platinum group elements in the environment and their health risk. The Science of the Total Environment.2004, 318: 1-43
    149. Jiang S Y,Yang J H et al.Re-Os isotopes and PGE geochemistry of black shales and intercalated Ni-Mo polmetallic sulfide bed from the Lower Cambrian Niutitang Formation,South China.Progress In Natural Sciences.2003,13 (10) : 788-794
    150. Kathe K.Bertine,Minoru Koide et al.Comparative chemistries of some trivalent metals—bismuth,Rhodium and rare earth elements.Marine Chemistry. 1996,53: 89-100
    151. Koide, M., Goldberg, E.D et al.Osmium in marine sediments. Geochim. Cosmochim. Acta. 1991,55: 1641-1648
    152. J.Pasava. Anoxic sediments-an important environment for PGE: An overview.Ore Geology Reviews.1993,8: 425-445
    153. Wiesner M G, Wang Yu-bo, Zheng Lian-fu. Fallout of volcanic ash to the deep South China Sea induced by the 1991 eruption of Mount Pinatubo (Philippines). Geology, 1995,23: 885-888
    154. Bollhofer A,Rosman K J R.The temporal stability in lead isotopic signatures at selected sites in the Southern and Northern Hemispheres.Geochimica et Cosmochimica Acta.2001,66(8): 1375-1386
    155. Francois Bodet,Urs Scharer.Pb isotope systematics and timeintegated Th/U of SE-Asian continental crust recorded by single K-feldspar grains in large rivers.Chemical Geology.2001,177: 265-285
    156. Martin Frank,Nicholas Whiteley et al.Nd and Pb isotope evolution of deep water masses in the eastern Indian Ocean during the past 33 Myr.Chemical Geology.2006,226: 264-279
    157. Innocent.C,Fagel.C et al.Sm-Nd isotope systematics in deep-sea sediments: clay-size versus coarser fractions.Marine Geology.2000,168: 79-87
    158. Francis E.Grousset,Pierre E.Biscaye.Tracing dust sources and transport patterns using Sr,Nd and Pb isotopes.Chemical Geology.2005,222: 149-167
    159. Zhulidov A.V,Headley J.V et al.Concentrations of Cd,Pb,Zn and Cu in contaminated Wetlands of the Russian Arctic.Marine Pollution Bulletin. 1997,35: 252-259
    160. Naidu A.S,Blanchard A et al.Heavy metals in Chukchi Sea sediments as compared to selected circum-arctic shelves.Marine Pollution Bulletion. 1997,35: 260-269
    161. Jose L.Sericano,James M.Brooks et al.Trace contaminant concentrations in the Kara Sea and its adjaceng rivers Russia.Marine Pollution Bulletin.2001,42: 1017-1030
    162. Presley B.J.A review of Arctic trace metal data with implications for biological effects.Marine Pollution Bulletin. 1997,35: 226-234
    163. Loring D.H,Naes K et al.Arsenic,trace metals,and organic micro contaminants in sediments from the Pechora Sea,Russia.Marine Geology. 1995,128: 153-167
    164. Caggianelli A,Fiore S,Mongelli et al.REE distribution in the clay fraction of pelites from the southern Apennines,Italy.Chemical Geology. 1992,99: 253-263
    165. Antonio Simonetti et al.Pb and Sr isotopic evidence for sources of atmospheric heavy metals and their deposition budgets in northeastern North America.Geochimica et Cosmochimica Acta.2000,64(2): 3439-3452
    166. Antonic Simonetti et al.Pb and Sr compositions of snowpack from Quebec,Canada: Inferences on the sources and deposition budgets of atmospheric heavy metals.Geochimicia] et Cosmochimica Acta.2000,64(1): 5-20
    167. Richard Bindler,Ingemar Renberg et al.Pb isotope ratios of lake sediments in West Greenland: inferences on pollution sources.Atmospheric Environment.2001,35: 4675-4685
    168. Haack U,Kienholz B et al.Isotopic composition of lead in moss and soil of the European Arctic.Geochimica et Cosmochimica Acta.2004,68(12): 2613-2622
    169. Charles Gobeil,Robie W. Macdonald et al.Atlantic water flow pathways revealed by lead contamination in Arctic basin sediments.Science.2001,293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700