用户名: 密码: 验证码:
污灌区土壤—地下水系统中PBDEs地球化学行为及其原位测试新技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多溴联苯醚(Poly Brominated Diphenyl Ethers, PBDEs),作为一种新兴的全球性持久性有机污染物(Emerging POPs),已经在全球范围内的大气、水体、沉积物、生物以及人体中被广泛检出。PBDEs对人体的神经、内分泌、甲状腺、肝脏、肾脏等存在着潜在威胁,同时还可能存在胚胎致畸的作用。当前,有关PBDEs环境问题的研究已成为国际学术界的热点。
     水环境是PBDEs全球循环的重要组成部分,PBDEs通过地表径流、大气干湿沉降或其他方式等进入到水环境,又在特定条件下重新释放进入土壤和大气或被生物利用并通过食物链逐级累积,再次参与到全球循环中。PBDEs进入水环境的一个重要途径即污水排放或灌溉,因为污水处理厂的水处理过程并不能显著降解或去除PBDEs.大量调查结果显示,污水排放及灌溉己成为水环境中PBDEs污染的不可忽略的面状污染源。
     尽管PBDEs具有疏水性,土壤、沉积物对其有较强的固着能力,但大量野外调查显示地表水体已广泛受到PBDEs污染,最新的研究证明PBDEs已进入地下水。值得注意的是,地下水中的PBDEs极有可能通过饮用或植物生长等在人体或农作物中累积,对人体及地下水环境存在潜在污染风险。然而,人们关于PBDEs对地下水的污染及其在包气带中行为机理的认识非常有限,并不清楚这种新兴的疏水性有机卤化物如何“穿透”包气带进入地下水,并且在这相对黑暗的环境中发生了怎样的迁移及转化。
     本论文针对PBDEs全球循环研究的空缺区—地下水领域,被忽略的面状污染源—污水灌溉等问题,以山西省太原市小店污灌区作为研究区,开展与地下水中PBDEs污染及其行为特征相关的研究,提出"PBDEs在地下水中如何分布”、“疏水性的PBDEs如何穿透包气带进入地下水”"PBDEs在土壤一地下水系统中发生了怎样的行为过程”等关键问题。
     针对以上问题,本研究:
     (1)采集污水、污泥、土壤和地下水等样品进行PBDEs测试分析,查明典型污灌区内PBDEs污染现状,识别PBDEs在环境中的主要存在单体和污染源;
     (2)针对研究区内主要PBDEs污染物,开展其在土壤、石英砂、胶体等的静态吸附实验,查明PBDEs在饱和多孔介质中的吸附特征;
     (3)以石英砂为吸附质,重点开展HA有机质胶体影响下,主要PBDEs污染物在饱和多孔介质中的吸附和迁移实验,构建胶体作用下PBDEs在饱和多孔介质中迁移过程的数值模型。此外,为了避免常规PBDEs测试方法在研究PBDEs迁移机理中的不足,研发荧光光谱法在线测试PBDEs含量并将其应用于该实验研究。
     (4)构建典型胡敏酸(HA)胶体与PBDEs分子相互作用的三维模型,从分子尺度上识别胶体对PBDEs地球化学行为的影响。
     研究发现:
     (1)太原市小店污灌区土壤中PBDEs污染物的种类随环境改变而变化,2011年研究区内土壤中主要PBDEs污染物为:BDE47, BDE100, BDE154和BDE153,而2012年土壤中主要PBDEs污染物为:BDE71, BDE85, BDE99和BDE154。污水和浅层地下水中主要PBDEs污染物为:BDE47和BDE28,其主要赋存于<2μm的胶体及颗粒物上。污水灌溉是土壤和地下水中PBDEs的主要污染源,降雨或灌溉条件下农用地膜中释放的PBDEs是其潜在污染源。
     (2)水体中主要污染物—BDE28和BDE47在土壤和石英砂上的吸附主要是受化学作用控制,该吸附过程可以分为三个阶段:极快吸附,0.5-1h内含量下降至初始浓度的(35%-40%),为表面扩散过程;快速吸附,1-10h间含量下降至初始浓度的25%,此时PBDEs取代表面水分子而吸附在内/外表面:慢吸附,10-24h间,PBDEs进入颗粒内部微孔,含量下降至初始浓度的24%。
     (3)土壤中有机质含量显著高于石英砂,导致BDE28和BDE47在土壤上的吸附量高于在石英砂上的吸附量。其中,BDE28溶液(4-30μg/L)在土壤和石英砂上的Kd值分别为773-1456L/kg和456-1103L/kg,有机质均一化后获得其土壤和石英砂上的有机碳吸附系数(Log Koc)均在4.59-5.87之间。BDE47溶液(1-15μg/L)在土壤和石英砂上的Kd值分别为901-1547L/kg和482-850L/kg, Log K。。分别在4.5-5.3和4.8-5.4范围之间。
     (4)随着HA有机质胶体含量的增加,BDE47在石英砂上的平衡吸附量减少。线性吸附模型计算显示HA浓度分别为0、0.1和1mg/L条件下,BDE47在石英砂上的平均Kd值依次为:853.3L/kg (616.33-972.63L/kg)、12.63L/kg (8.99-14.76L/kg)和2.47L/kg (2.12-3.48L/kg)。表明HA与石英砂存在对BDE47的竞争吸附,且HA含量越高,对石英砂吸附BDE47过程的阻碍越强。
     (5)与传统的GCMS法相比,研发的荧光光谱法操作简便,测试快捷,可以很好的应用于HA对PBDEs吸附和迁移的影响机理研究。在此基础上,建立HA胶体影响下PBDEs在饱和砂柱中迁移的数值模型,可以很好的与实验数据拟合。实验与模拟结果发现:HA浓度分别为0,0.1和1mg/L时,BDE47穿透过程分别经过8×104PV,(7-8)×102PV和120PV,这进一步证明HA胶体显著促进了BDE47在饱和砂柱中的迁移。
     (6) PBDEs与HA分子相互作用主要通过氢键或羟基发生。作用后,二者的分子构型都发生了改变。该变化导致PBDEs的栅格表面积、体积和极性均增强,疏水性显著降低,从而增强了其在水环境中的迁移性。
     最后,在以上研究结果的基础上,构建HA胶体作用下,污灌区土壤—地下水系统中PBDEs的迁移模型,对PBDEs的形态转化过程进行分析认为:水溶态PBDEs与HA胶体作用后转化成胶体态PBDEs,以及土壤及沉积物上吸附态PBDEs在降雨及灌溉作用下部分转化成胶体态PBDEs,是PBDEs穿透包气带进入地下水的关键途径。
     本文的创新点为:
     (1)提出“胶体颗粒是PBDEs进入地下水的关键途径”的假设,通过开展污灌区土壤—地下水系统中胶体对PBDEs的协同迁移行为研究,从分子尺度上揭示出HA胶体对PBDEs在土壤—地下水系统中迁移过程的影响机理,科学回答了“持久性的疏水有机物PBDEs如何污染地下水”这一问题:
     (2)首次建立水体中PBDEs的荧光光谱分析法,并将其很好的应用于HA胶体作用下PBDEs迁移机理研究,为水环境中PBDEs污染物的在线快速监测提供了新的手段。
Poly Brominated Diphenyl Ethers (PBDEs) were widely detected in the air, water, sediment, animal and human body in the environment has been recognized to be a kind of global Emerging Persistent Organic Pollutants (POPs). PBDEs may affect human nerve, endocrine, thyroid, liver and kidney; they may also lead to embryonic malformation. At present, studies of environmental problems of PBDEs have become hot spots of international academia.
     Water environment is an important part of PBDEs global cycle. PBDEs can go into water environment through surface runoff, atmospheric dry and wet deposition, or other paths. They can also be released back into the soil and atmospheric, or be used by organisms and accumulated as food chain under certain conditions, which make them into the global cycle again. One important source of PBDEs into water environment is wastewater discharge or irrigation, because it was found that water treatment processes in the Sewage treatment plant cannot significantly degrade or eliminate PBDEs. Investigation results showed that wastewater discharge or irrigation has become a significant pollution source of PBDEs into water environment.
     Although PBDEs are hydrophobic and can be strongly adsorbed on soil and sediment, they have been detected in groundwater. It was worth noting that PBDEs in groundwater may accumulate in human body or crops by drinking water or plant growth, these will be a potential risk for human health and water environment. However, our knowledge of PBDEs pollution in groundwater and their behavior mechanism in the unsaturated zone is limited. It is still unknown that how these hydrophobic POPs breakthrough unsaturated zone and into groundwater system, and what has happened during their migration and transformation in this dark environment.
     This study focused on this global Emerging POPs-PBDEs and the vacant area of their global circulation-groundwater environment. The typical sewage irrigation area of Xiaodian Irrigation Area in Taiyuan city was selected as the study area to study PBDEs behavior in groundwater environment. We are aimed to figure out three problems, that is,"How does PBDEs distribute in groundwater","How does hydrophobic PBDEs go through unsaturated zone and into groundwater environment", and "What has happened for PBDEs in soil-groundwater system".
     For the above questions, in this study:
     (1) Wastewater, soil, sludge and groundwater samples were collected for PBDEs measurement to analyze the distribution characteristics of PBDEs in the Irrigation Area and identify their major species and pollution sources.
     (2) Soil, sand and colloid were used as adsorbent to study the adsorption characteristics of major PBDEs on them.
     (3) Column experiments were carried out to test the effect of HA colloid on the adsorption and migration of PBDEs in saturated porous media. The numberical models of PBDEs migration in saturated porous media were built to fit experiment data. In addition, a new method of fluorescence spectra for aqueous PBDEs analysis was developed and used in this experiment.
     (4) Interaction of HA colloid and PBDEs were modeled to identify the effect of colloid on PBDEs geochemical behavior on the molecular scale.
     It was found that:
     (1) The major species of PBDEs were variable as the environment change, the major species of PBDEs in soil samples in2011were BDE47, BDE100, BDE154and BDE153, while that of PBDEs in soil samples in2012were BDE71, BDE85, BDE95and BDE154. The major species of PBDEs in wastewater and shallow groundwater samples were BDE47and BDE28, and they mainly distributed in the colloid or particles with the size of<2μm in water samples. Wastewater irrigation was the main pollution source for PBDEs in this area, meanwhile, widespread use of agricultural film could be a potential source of PBDEs in soil and groundwater.
     (2) Adsorption of BDE28and BDE47on soil and sand was mainly controlled by chemical action, their adsorption processes were divided into three stages:(i) highly quick absorption, their contents decreased to be35%-40%of original concentration in0.5-1h, which is controlled by surface diffusion process;(ii) quick adsorption, their contents decreased to be25%of original concentration in1-10h, which means that PBDEs take place of water molecular and are adsorbed on the inside/outside of surfaces; and (iii) slow adsorption, their contents decreased to be about24%of original concentration in10-24h, PBDEs have go to the inside of particle.
     (3) Under the influence of organic matter content, adsorptive capacity of both BDE28and BDE47on soil was higher than that on quartz sand. In the equilibrium concentrations of4-30μg/L, the Kd of BDE28on soil and sand were773-1456L/kg and456-1103L/kg, respectively. Their Log Koc was in the ranges of4.59-5.87. In the equilibrium concentrations of1-15μg/L, the Kd of BDE47on soil and sand were901-1547L/kg and482-850L/kg, respectively. Their Log Koc was in the ranges of4.5-5.3and4.8-5.4, respectively.
     (4) After added HA, equilibrium adsorption of BDE47on quartz sand decreased obviously. The Kd value of BDE47on sand with0,0.1and1mg/L HA in solutions were calculated by linear adsorption model to be853.3L/kg (616.33-972.63L/kg),12.63L/kg (8.99-14.76L/kg) and2.47L/kg (2.12-3.48L/kg), respectively. These indicated that there is competitive adsorption of BDE47on HA colloid and sand. The higher of HA content in the liquid phase, the inhibition of hydrophobic BDE47adsorption on solid was stronger.
     (5) Compared with conventional GC-based analytical methods, the fluorescence spectroscopy method is more efficient for PBDEs migration study, because it only uses a small amount of samples (4ml), avoids lengthy complicated concentration and extraction steps, and has a low detection limit of a few ng/L. Based on this method, models of PBDEs transport in saturated sand column under the effect of HA colloid were conducted to fit the experimental data well. When HA concentrations were0,0.1and1mg/L, the breakthrough time of BDE47into column were8×10,(7-8)×102and120pore volumes, respectively. These further confirmed that HA colloid significantly promoted BDE47migration.
     (6) HA interacted with PBDEs mainly by hydrogen bonding or hydroxyl. After interaction with HA, the surface area, volume and polarity of PBDEs increased while their hydrophobicity decreased, which increased PBDEs migration in water environment.
     Finally, based on the reported study, field investigation and laboratory experiments, migration model of PBDEs in soil and groundwater system in irrigation area was constructed. Speciation change analysis result showed that the key processes of PBDEs go through unsaturated zone and into groundwater were (i) aqueous PBDEs reacted with HA colloid to form colloidal PBDEs, and (ii) adsorbed PBDEs on soil and sediment transferred to colloidal PBDEs under the effect of rainfall and irrigation.
     The innovations of this paper are:
     (1) We first proposed that "Colloid may be the key path of PBDEs into groundwater". The effect of colloid on PBDEs transportation between soil and groundwater was studied to explain that how PBDEs go through soil and into groundwater and3D structures of PBDEs and HA were modeled to further explain the geochemical behavior of PBDEs in the system of soil and groundwater.
     (2) A new method was developed for rapid and direct measurement of aqueous PBDEs using fluorescence spectroscopy, which can be well applied on migration mechanism study of PBDEs under the effect of HA colloid, and will supply a new tool for PBDEs in situ measurement in water environment.
引文
[1]Yogui, G. T.,Sericano, J. L., Polybrominated diphenyl ether flame retardants in the U.S. marine environment:A review. Environment International.2009,35 (3),655-666.
    [2]McDonald, T. A., A perspective on the potential health risks of PBDEs. Chemosphere.2002,46 (5), 745-55.
    [3]Darnerud, P. O., Toxic effects of brominated flame retardants in man and in wildlife. Environment International.2003,29 (6),841-853.
    [4]North, K. D., Tracking polybrominated diphenyl ether releases in a wastewater treatment plant effluent, Palo Alto, California. Environmental Science & Technology.2004,38 (17),4484-4488.
    [5]Goel, A., McConnell, L. L., Torrents, A. et al., Spray irrigation of treated municipal wastewater as a potential source of atmospheric PBDEs. Environmental Science & Technology.2006,40 (7), 2142-2148.
    [6]Rayne, S.,Forest, K., Comment on "Comparative Assessment of the Global Fate and Transport Pathways of Long-Chain Perfluorocarboxylic Acids (PFCAs) and Perfluorocarboxylates (PFCs) Emitted from Direct Sources". Environmental Science & Technology.2009,43 (18),7155-7156.
    [7]Song, M., Chu, S. G., Letcher, R. J. et al., Fate, partitioning, and mass loading of polybrominated diphenyl ethers (PBDEs) during the treatment processing of municipal sewage. Environmental Science & Technology.2006,40 (20),6241-6246.
    [8]Hamilton, A. J., Stagnitti, F., Xiong, X. et al., Wastewater Irrigation:The State of Play. Vadose Zone J.2007,6 (4),823-840.
    [9]中国地下水科学战略研究小组,中国地下水科学的机遇与挑战.北京:中国科学出版社,2009.
    [10]Levison, J. K., Anthropogenic impacts on sensitive fractured bedrock aquifers [D]. Kingston. Ontario:Queen's University,2009.
    [11]Gottschall, N., Topp, E., Edwards, M. et al., Polybrominated diphenyl ethers, perfluorinated alkylated substances, and metals in tile drainage and groundwater following applications of municipal biosolids to agricultural fields. Science of the Total Environment.2010,408 (4), 873-883.
    [12]de Wit, C. A., An overview of brominated flame retardants in the environment. Chemosphere. 2002,46 (5),583-624.
    [13]Rahman, F., Langford, K. H., Scrimshaw, M. D. et al., Polybrominated diphenyl ether (PBDE) flame retardants. Science of the Total Environment.2001,275 (1-3),1-17.
    [14]de Boer, J., Wester, P. G, Klammer, H. J. C. et al., Do flame retardants threaten ocean life? Nature. 1998,394(6688),28-29.
    [15]Alaee, M., Backus, S.,Cannon, C., Potential interference of PBDEs in the determination of PCBs and other organochlorine contaminants using electron capture detection. Journal of Separation Science.2001,24 (6),465-469.
    [16]De Wit, C. A., Alaee, M.,Muir, D. C. G., Levels and trends of brominated flame retardants in the Arctic. Chemosphere.2006,64 (2),209-233.
    [17]Hamers, T., Kamstra, J. H., Sonneveld, E. et al., In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci.2006,92 (1),157-173.
    [18]Darnerud, P. O., Brominated flame retardants as possible endocrine disrupters. Int J Androl.2008, 31(2),152-160.
    [19]Frederiksen, M., Vorkamp, K., Thomsen, M. et al., Human internal and external exposure to PBDEs-A review of levels and sources. International Journal of Hygiene and Environmental Health.2009,212 (2),109-134.
    [20]Meironyte, D., Noren, K.,Bergman, A., Analysis of polybrominated diphenyl ethers in Swedish human milk. A time-related trend study,1972-1997. Journal of Toxicology and Environmental Health-Part A.1999,58 (6),329-341.
    [21]DeCarlo, V. J., Studies on brominated chemicals in the environment. Annals of the New York Academy of Sciences.1979,320,678-81.
    [22]Krol, S., Zabiegala, B.,Namiesnik, J., PBDEs in environmental samples:Sampling and analysis. Talanta.2012,93,1-17.
    [23]Hites, R. A., Polybrominated diphenyl ethers in the environment and in people:A meta-analysis of concentrations. Environmental Science & Technology.2004,38 (4),945-956.
    [24]Jaward, F. M., Farrar, N. J., Harner, T. et al., Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe. Environmental Science & Technology.2004,38 (1), 34-41.
    [25]Jaward, F. M., Meijer, S. N., Steinnes, E. et al., Further studies on the latitudinal and temporal trends of persistent organic pollutants in Norwegian and UK background air. Environmental Science & Technology.2004,38 (9),2523-2530.
    [26]Jaward, T. M., Zhang, G., Nam, J. J. et al., Passive air sampling of polychlorinated biphenyls, organochlorine compounds, and polybrominated diphenyl ethers across Asia. Environmental Science & Technology.2005,39 (22),8638-8645.
    [27]Oros, D. R., Hoover, D., Rodigari, F. et al., Levels and distribution of polybrominated diphenyl ethers in water, surface sediments, and bivalves from the San Francisco Estuary. Environmental Science & Technology.2005,39 (1),33-41.
    [28]Wurl, O., Lam, P. K. S.,Obbard, J. P., Occurrence and distribution of polybrominated diphenyl ethers (PBDEs) in the dissolved and suspended phases of the sea-surface microlayer and seawater in Hong Kong, China. Chemosphere.2006,65 (9),1660-1666.
    [29]Luckey F, Fowler B,S., L., The second International Workshop on Brominated Flame Retardants. Stockholm, Sweden:2001.309-311.
    [30]Hayakawa, K., Takatsuki, H., Watanabe, I. et al., Polybrominated diphenyl ethers (PBDEs), polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) and monobromo-polychlorinated dibenzo-p-dioxins/dibenzofurans (MoBPXDD/Fs) in the atmosphere and bulk deposition in Kyoto, Japan. Chemosphere.2004,57 (5),343-356.
    [31]罗孝俊,麦碧娴,陈社军,PBDEs研究的最新进展.化学进展.2009,21(2/3),359-368.
    [32]Yang, C., Meng, X. Z., Chen, L. et al., Polybrominated diphenyl ethers in sewage sludge from Shanghai, China:Possible ecological risk applied to agricultural land. Chemosphere.2011,85 (3), 418-423.
    [33]Mai, B. X., Chen, S. J., Luo, X. J. et al., Distribution of polybrominated diphenyl ethers in sediments of the Pearl River Delta and adjacent South China Sea. Environmental Science & Technology.2005,39 (10),3521-3527.
    [34]Hassanin, A., Johnston, A. E., Thomas, G. O. et al., Time trends of atmospheric PBDEs inferred from archived UK herbage. Environmental Science & Technology.2005,39 (8),2436-2441.
    [35]Zou, M., Ran, Y., Gong, J. et al., Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China:occurrence, inventory, and fate. Environ Sci Technol.2007,41,8262-8267.
    [36]Liu, H., Zhou, Q., Wang, Y. et al., E-waste recycling induced polybrominated diphenyl ethers, polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzo-furans pollution in the ambient environment. Environment International.2008,34 (1),67-72.
    [37]Nam, J. J., Gustafsson, O., Kurt-Karakus, P. et al., Relationships between organic matter, black carbon and persistent organic pollutants in European background soils:Implications for sources and environmental fate. Environmental Pollution.2008,156 (3),809-817.
    [38]Birnbaum, L. F.,Staskal, D. F., Brominated flame retardants:cause for concern? Environmental Health Perspectives.2004,112 (0091-6765 (Print)),9-17.
    [39]单慧媚,马腾,杜尧等,多溴联苯醚在河套农灌区土壤和水体中的分布特征.环境科学与技术.2013,36(06),37-41+46.
    [40]da Fonseca, A. F., Herpin, U., de Paula, A. M. et al., Agricultural use of treated sewage effluents: Agronomic and environmental implications and perspectives for Brazil. Scientia Agricola.2007, 64 (2),194-209.
    [41]Murtaza, G., Ghafoor, A., Qadir, M. et al., Disposal and Use of Sewage on Agricultural Lands in Pakistan:A Review. Pedosphere.2010,20 (1),23-34.
    [42]韩善龙,王宝盛,阮挺等,不同水源灌溉的农田表层土壤中多氯联苯和多溴联苯醚的浓度分布特征.环境化学.2012,31(7),958-965.
    [43]杜斌,龚娟,李佳乐,太原市污水灌溉对水土环境的有机污染研究.人民长江.2010,41(17),
    [44]Wang, T, Wang, Y, Fu, J. et al., Characteristic accumulation and soil penetration of polychlorinated biphenyls and polybrominated diphenyl ethers in wastewater irrigated farmlands. Chemosphere.2010,81 (8),1045-51.
    [45]de la Cal, A., Eljarrat, E.,Barcelo, D., Determination of 39 polybrominated diphenyl ether congeners in sediment samples using fast selective pressurized liquid extraction and purification. Journal of Chromatography A.2003,1021 (1-2),165-173.
    [46]Zhao, X., Zhang, H., Ni, Y. et al., Polybrominated diphenyl ethers in sediments of the Daliao River Estuary, China:Levels, distribution and their influencing factors. Chemosphere.2011,82 (9),1262-1267.
    [47]Zhao, X., Zheng, B., Qin, Y. et al., Grain size effect on PBDE and PCB concentrations in sediments from the intertidal zone of Bohai Bay, China. Chemosphere.2010,81 (8),1022-1026.
    [48]Luo, X.-J., Zhang, X.-L., Chen, S.-J. et al., Free and bound polybrominated diphenyl ethers and tetrabromobisphenol A in freshwater sediments. Marine Pollution Bulletin.2010,60 (5), 718-724.
    [49]Ohta, S., Ishizuka, D., Nishimura, H. et al., Comparison of polybrominated diphenyl ethers in fish, vegetables, and meats and levels in human milk of nursing women in Japan. Chemosphere. 2002,46 (5),689-696.
    [50]EPA, Method 1614 Brominated Diphenyl Ethers in Water, Soil, Sediment and Tissue by HRGC/HRMS. August 2007.
    [51]Shin, M., Svoboda, M. L.,Falletta, P., Microwave-assisted extraction (MAE) for the determination of polybrominated diphenylethers (PBDEs) in sewage sludge. Analytical and Bioanalytical Chemistry.2007,387 (8),2923-2929.
    [52]Ni, H. G., Cao, S. P., Chang, W. J. et al., Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building. Environmental Pollution.2011,159 (7), 1957-1962.
    [53]Stapleton, H. M., Instrumental methods and challenges in quantifying polybrominated diphenyl ethers in environmental extracts:a review. Analytical and Bioanalytical Chemistry.2006,386 (4), 807-817.
    [54]Calvosa, F. C.,Lagalante, A. F., Supercritical fluid extraction of polybrominated diphenyl ethers (PBDEs) from house dust with supercritical 1,1,1,2-tetrafluoroethane (R134a). Talanta.2010,80 (3),1116-1120.
    [55]Weiss, S., Fluorescence spectroscopy of single biomolecules. Science.1999,283 (5408), 1676-1683.
    [56]Xu, C., Zipfel, W., Shear, J. B. et al., Multiphoton fluorescence excitation:New spectral windows for biological nonlinear microscopy. Proc. Natl. Acad. Sci. U. S. A.1996,93 (20),10763-10768.
    [57]Dutta, A. K., Kamada, K.,Ohta, K., Spectroscopic studies of nile red in organic solvents and polymers. Journal of Photochemistry and Photobiology A:Chemistry.1996,93 (1),57-64.
    [58]Shang, J. Y., Liu, C. X., Wang, Z. M. et al., In-Situ Measurements of Engineered Nanoporous Particle Transport in Saturated Porous Media. Environmental Science & Technology.2010,44 (21),8190-8195.
    [59]Rudnick, S. M.,Chen, R. F., Laser-induced fluorescence of pyrene and other polycyclic aromatic hydrocarbons (PAH) in seawater. Talanta.1998,47 (4),907-919.
    [60]杨仁杰,尚丽平,鲍振博等,激光诱导荧光快速直接检测土壤中多环芳烃污染物的可行性研究.光谱学与光谱分析.2011,31(8),2148-2150.
    [61]冯巍巍,王锐,孙培艳等,几种典型石油类污染物紫外激光诱导荧光光谱特性研究.光谱 学与光谱分析.2011,31(05),1168-1170.
    [62]Hawthorne, S. B., St Germain, R. W.,Azzolina, N. A., Laser-induced Fluorescence Coupled with Solid-Phase Microextraction for In Situ Determination of PAHs in Sediment Pore Water. Environmental Science & Technology.2008,42 (21),8021-8026.
    [63]Baumann, T., Haaszio, S.,Niessner, R., Applications of a laser-induced fluorescence spectroscopy sensor in aquatic systems. Water Research.2000,34 (4),1318-1326.
    [64]Lemke, M., Fernandez-Trujillo, R.,Lohmannsroben, H. G., In-situ LIF analysis of biological and petroleum-based hydraulic oils on soil. Sensors.2005,5 (1-2),61-69.
    [65]Kotzick, R.,Niessner, R., Application of time-resolved, laser-induced and fiber-optically guided fluorescence for monitoring of a PAH-contaminated remediation site. Fresenius Journal of Analytical Chemistry.1996,354 (1),72-76.
    [66]Wang, D., Cai, Z., Guibin, J. et al., Gas chromatography/ion trap mass spectrometry applied for the determination of polybrominated diphenyl ethers in soil. Rapid Communications in Mass Spectrometry.2005,19 (2),83-89.
    [67]Ni, H.-G., Cao, S.-P., Chang, W.-J. et al., Incidence of polybrominated diphenyl ethers in central air conditioner filter dust from a new office building. Environmental Pollution.2011,159 (7), 1957-1962.
    [68]Wang, P., Zhang, Q., Wang, Y. et al., Evaluation of Soxhlet extraction, accelerated solvent extraction and microwave-assisted extraction for the determination of polychlorinated biphenyls and polybrominated diphenyl ethers in soil and fish samples. Analytica Chimica Acta.2010,663 (1),43-48.
    [69]Eljarrat, E., De La Cal, A., Larrazabal, D. et al., Occurrence of polybrominated diphenylethers, polychlorinated dibenzo-p-dioxins, dibenzofurans and biphenyls in coastal sediments from Spain. Environmental Pollution.2005,136 (3),493-501.
    [70]Samara, F., Tsai, C. W.,Aga, D. S., Determination of potential sources of PCBs and PBDEs in sediments of the Niagara River. Environmental Pollution.2006,139 (3),489-497.
    [71]Shanmuganathan, D., Megharaj, M., Chen, Z. et al., Polybrominated diphenyl ethers (PBDEs) in marine foodstuffs in Australia:Residue levels and contamination status of PBDEs. Marine Pollution Bulletin.2011,63 (5-12),154-159.
    [72]Sanchez-Brunete, C., Miguel, E.,Tadeo, J. L., Determination of polybrominated diphenyl ethers in soil by ultrasonic assisted extraction and gas chromatography mass spectrometry. Talanta. 2006,70(5),1051-1056.
    [73]Ramos, J. J., Gomara, B., Fernandez, M. A. et al., A simple and fast method for the simultaneous determination of polychlorinated biphenyls and polybrominated diphenyl ethers in small volumes of human serum. Journal of Chromatography A.2007,1152 (1-2),124-129.
    [74]Quiroz, R., Arellano, L., Grimalt, J. O. et al., Analysis of polybrominated diphenyl ethers in atmospheric deposition and snow samples by solid-phase disk extraction. Journal of Chromatography A.2008,1192 (1),147-151.
    [75]Leung, A. O. W., Luksemburg, W. J., Wong, A. S. et al., Spatial Distribution of Polybrominated Diphenyl Ethers and Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Soil and Combusted Residue at Guiyu, an Electronic Waste Recycling Site in Southeast China. Environmental Science & Technology.2007,41 (8),2730-2737.
    [76]McCarthy, J. F.,Zachara, J. M., Subsurface transport of contaminants. Environmental Science & Technology.1989,23 (5),496-502.
    [77]李竺,多环芳烃在黄浦江水体的分布特征及吸附机理研究[D].上海:同济大学,2007.
    [78]张亚娟,水体中六六六的分配规律及胶体对其吸附作用研究[D].西安:长安大学,2010.
    [79]Ryan, J. N.,Elimelech, M., Colloid mobilization and transport in groundwater. Colloids and Surfaces A:Physicochemical and Engineering Aspects.1996,107 (0),1-56.
    [80]王连生,有机物定量结构一活性相关.北京:中国环境科学出版社,1993.
    [81]Carlsen, E., Giwercman, A., Keiding, N. et al., Evidence for decreasing quality of semen during past 50 years. BMJ (Clinical research ed.).1992,305 (6854),609-13.
    [82]Xue, C. X., Zhang, R. S., Liu, H. X. et al., QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine. Journal of chemical information and computer sciences.2004,44 (5),1693-700.
    [83]王斌,余刚,黄俊等,QSAR/QSPR在POPs归趋与风险评价中的应用.化学进展.2007,(10),1612-1619.
    [84]Wang, Y. W., Liu, H. X., Zhao, C. Y. et al., Quantitative structure-activity relationship models for prediction of the toxicity of polybrominated diphenyl ether congeners. Environmental Science & Technology.2005,39 (13),4961-4966.
    [85]杨旭曙,王晓栋,张一鸣等,应用分子全息QSAR预测多溴二苯醚(PBDEs)的毒性.中国科学:化学.2010,40(01),86-94.
    [86]易忠胜,李连臣,叶廷文等,羟基多溴二苯醚生物活性的QSAR研究.桂林理工大学学报.2011,31(03),430438.
    [87]Harju, M., Hamers, T., Kamstra, J. H. et al., Quantitative structure-activity relationship modeling on in vitro endocrine effects and metabolic stability involving 26 selected brominated flame retardants. Environmental Toxicology and Chemistry.2007,26 (4),816-826.
    [88]Mansouri, K., Consonni, V., Durjava, M. K. et al., Assessing bioaccumulation of polybrominated diphenyl ethers for aquatic species by QSAR modeling. Chemosphere.2012,89 (4),433-444.
    [89]刘芃岩,高丽,赵雅娴等,分散液相微萃取气相色谱/气相色谱质谱法测定白洋淀水中多溴联苯醚.分析化学.2010,38(04),498-502.
    [90]钱宝,刘凌,肖潇,土壤有机质测定方法对比分析.河海大学学报(自然科学版).2011,39(01),34-38.
    [91]Cornelissen, G., Gustafsson, O., Bucheli, T. D. et al., Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils:Mechanisms and consequences for distribution, bioaccumulation, and biodegradation. Environmental Science & Technology.2005, 39(18),6881-6895.
    [92]王连生,有机污染化学.北京:高等教育出版社,2004.
    [93]Zou, M.-Y, Ran, Y, Gong, J. et al., Polybrominated diphenyl ethers in watershed soils of the Pearl River Delta, China:Occurrence, inventory, and fate. Environmental Science & Technology. 2007,41 (24),8262-8267.
    [94]Chen, C. e., Zhao, H., Chen, J. et al., Polybrominated diphenyl ethers in soils of the modern Yellow River Delta, China:Occurrence, distribution and inventory. Chemosphere.2012,88 (7), 791-797.
    [95]罗孝俊,余梅,麦碧娴等,多溴联苯醚(PBDEs)在珠江口水体中的分布与分配.科学通报.2008,53(02),141-146.
    [96]Ma, J., Qiu, X. H., Zhang, J. L. et al., State of polybrominated diphenyl ethers in China:An overview. Chemosphere.2012,88 (7),769-778.
    [97]Sjodin, A., Patterson, D. G.Bergman, A., A review on human exposure to brominated flame retardants-particularly polybrominated diphenyl ethers. Environment International.2003,29 (6), 829-839.
    [98]Domingo, J. L., Polybrominated diphenyl ethers in food and human dietary exposure:A review of the recent scientific literature. Food and Chemical Toxicology.2012,50 (2),238-249.
    [99]Chen, M., Yu, M., Luo, X. et al., The factors controlling the partitioning of polybrominated diphenyl ethers and polychlorinated biphenyls in the water-column of the Pearl River Estuary in South China. Marine Pollution Bulletin.2011,62 (1),29-35.
    [100]Hale, R. C., Alaee, M., Manchester-Neesvig, J. B. et al., Polybrominated diphenyl ether flame retardants in the North American environment. Environment International.2003,29 (6),771-779.
    [101]Levison, J., Novakowski, K., Reiner, E. J. et al., Potential of groundwater contamination by polybrominated diphenyl ethers (PBDEs) in a sensitive bedrock aquifer (Canada). Hydrogeology Journal.2012,20 (2),401-412.
    [102]Wang, J.-X., Jiang, D.-Q., Gu, Z.-Y. et al., Multiwalled carbon nanotubes coated fibers for solid-phase microextraction of polybrominated diphenyl ethers in water and milk samples before gas chromatography with electron-capture detection. Journal of Chromatography A.2006,1137 (1),8-14.
    [103]Polo, M., Gomez-Noya, G, Quintana, J. B. et al., Development of a solid-phase microextraction gas chromatography/tandem mass spectrometry method for polybrominated diphenyl ethers and polybrominated biphenyls in water samples. Analytical Chemistry.2004,76 (4),1054-1062.
    [104]Alaee, M., Sergeant, D. B., Ikonomou, M. G. et al., A gas chromatography/high-resolution mass spectrometry (GC/HRMS) method for determination of polybrominated diphenyl ethers in fish. Chemosphere.2001,44 (6),1489-1495.
    [105]Ikonomou, M. G, Fernandez, M. P., He, T. et al., Gas chromatography-high-resolution mass spectrometry based method for the simultaneous determination of nine organotin compounds in water, sediment and tissue. Journal of Chromatography A.2002,975 (2),319-333.
    [106]Amador-Hernandez, J., Fernandez-Romero, J. M.,de Castro, M. D. L., Flow injection screening and semiquantitative determination of polycyclic aromatic hydrocarbons in water by laser induced spectrofluorimetry-chemometrics. Analytica Chimica Acta.2001,448 (1-2),61-69.
    [107]Kuo, D. T. F., Adams, R. G., Rudnick, S. M. et al., Investigating desorption of native pyrene from sediment on minute-to month-timescales by time-gated fluorescence Spectroscopy. Environmental Science & Technology.2007,41 (22),7752-7758.
    [108]Soderstrom, G., Sellstrom, U., De Wit, C. A. et al., Photolytic debromination of decabromodiphenyl ether (BDE 209). Environmental Science & Technology.2004,38 (1), 127-132.
    [109]Moon, H. B., Choi, M., Yu, J. et al., Contamination and potential sources of polybrominated diphenyl ethers (PBDEs) in water and sediment from the artificial Lake Shihwa, Korea. Chemosphere.2012,88 (7),837-843.
    [110]Liu, C., Zachara, J. M., Qafoku, N. P. et al., Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resources Research.2008,44 (8).
    [111]Qiu, S., Wei, J., Pan, F. et al., Vibrational, NMR spectrum and orbital analysis of 3,3',5,5'-tetrabromobisphenol A:A combined experimental and computational study. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2013,105 (0),38-44.
    [112]Pullin, M. J.,Cabaniss, S. E., Rank analysis of the pH-dependent synchronous fluorescence-spectra of six standard humic substances. Environmental Science & Technology. 1995,29(6),1460-1467.
    [113]Matthews, B. J. H., Jones, A. C., Theodorou, N. K. et al., Excitation-emission-matrix fluorescence spectroscopy applied to humic acid bands in coral reefs. Marine Chemistry.1996, 55 (3-4),317-332.
    [114]Mobed, J. J., Hemmingsen, S. L., Autry, J. L. et al., Fluorescence characterization of IHSS humic substances:Total luminescence spectra with absorbance correction. Environmental Science & Technology.1996,30 (10),3061-3065.
    [115]Laane, R., Influence of pH on the fluorescence of dissolved organic-matter. Marine Chemistry. 1982,11(4),395-401.
    [116]Ghosh, K.,Schnitzer, M., Fluorescence excitation-spectra of humic substances. Canadian Journal of Soil Science.1980,60 (2),373-379.
    [117]Wright, J. R.,Schnitzer, M., Metallo-Organic Interactions Associated with Podzolizationl. Soil Sci. Soc. Am. J.1963,27 (2),171-176.
    [118]Gauthier, T. D., Shane, E. C., Guerin, W. F. et al., Fluorescence quenching method for determining equilibrium-constants for polycyclic aromatic-hydrocarbons binding to dissolved dissolved humic materials. Environmental Science & Technology.1986,20 (11),1162-1166.
    [119]Kumke, M. U., Lohmannsroben, H. G,Roch, T., Fluorescence quenching of polycyclic aromatic-compounds by humic-acid. Analyst.1994,119 (5),997-1001.
    [120]Sierra, M. M. D., Donard, O. F. X., Lamotte, M. et al., Fluorescence spectroscopy of coastal and marine waters. Marine Chemistry.1994,47 (2),127-144.
    [121]Llorca-Porcel, J., Martinez-Sanchez, G, Alvarez, B. et al., Analysis of nine polybrominated diphenyl ethers in water samples by means of stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry. Analytica Chimica Acta.2006,569 (1-2),113-118.
    [122]Fontana, A. R., Silva, M. F., Martinez, L. D. et al., Determination of polybrominated diphenyl ethers in water and soil samples by cloud point extraction-ultrasound-assisted back-extraction-gas chromatography-mass spectrometry. Journal of Chromatography A.2009, 1216 (20),4339-4346.
    [123]Liu, X., Li, J., Zha, Z. et al., Solid-phase extraction combined with dispersive liquid-liquid microextraction for the determination for polybrominated diphenyl ethers in different environmental matrices. Journal of Chromatography A.2009,1216 (12),2220-2226.
    [124]Fulara, I.,Czaplicka, M., Methods for determination of polybrominated diphenyl ethers in environmental samples-review. Journal of Separation Science.2012,35 (16),2075-2087.
    [125]Talsness, C. E., Overview of toxicological aspects of polybrominated diphenyl ethers:A flame-retardant additive in several consumer products. Environmental Research.2008,108 (2), 158-167.
    [126]Keum, Y. S.,Li, Q. X., Reductive debromination of polybrominated diphenyl ethers by zerovalent iron. Environmental Science & Technology.2005,39 (7),2280-2286.
    [127]Schenker, U., Soltermann, F., Scheringer, M. et al., Modeling the Environmental Fate of Polybrominated Diphenyl Ethers (PBDEs):The Importance of Photolysis for the Formation of Lighter PBDEs. Environmental Science & Technology.2008,42 (24),9244-9249.
    [128]Chefetz, B.,Xing, B., Relative Role of Aliphatic and Aromatic Moieties as Sorption Domains for Organic Compounds:A Review. Environmental Science & Technology.2009,43 (6),1680-1688.
    [129]Wania, F.,Dugani, C. B., Assessing the long-range transport potential of polybrominated diphenyl ethers:A comparison of four multimedia models. Environmental Toxicology and Chemistry.2003,22 (6),1252-1261.
    [130]Vonderheide, A. P., Mueller, K. E., Meija, J. et al., Polybrominated diphenyl ethers:Causes for concern and knowledge gaps regarding environmental distribution, fate and toxicity. Science of the Total Environment.2008,400 (1-3),425-436.
    [131]Ji, K., Choi, K., Giesy, J. P. et al., Genotoxicity of Several Polybrominated Diphenyl Ethers (PBDEs) and Hydroxylated PBDEs, and Their Mechanisms of Toxicity. Environmental Science & Technology.2011,45 (11),5003-5008.
    [132]Liu, W. X., Li, W. B., Hu, J. et al., Sorption kinetic characteristics of polybrominated diphenyl ethers on natural soils. Environmental Pollution.2010,158 (9),2815-2820.
    [133]Sharma, P., Flury, M.,Mattson, E. D., Studying colloid transport in porous media using a geocentrifuge. Water Resources Research.2008,44 (7).
    [134]Aksu, Z., Biosorption of reactive dyes by dried activated sludge:equilibrium and kinetic modelling. Biochemical Engineering Journal.2001,7 (1),79-84.
    [135]Ho, Y. S.,McKay, G., Pseudo-second order model for sorption processes. Process Biochemistry. 1999,34 (5),451-465.
    [136]Weber, W. J.,Morris, J. C., Proceeding of International Conference on Water Pollution Symposium. Oxford:Pergamon Press,1962.231.
    [137]周尊隆,卢媛,孙红文,菲在不同性质黑炭上的吸附动力学和等温线研究.农业环境科学 .2010,29(03),476-480.
    [138]Wang, W., Delgado-Moreno, L., Ye, Q. F. et al., Improved Measurements of Partition Coefficients for Polybrominated Diphenyl Ethers. Environmental Science & Technology.2011, 45 (4),1521-1527.
    [139]Liu, W. X., Cheng, F. F., Li, W. B. et al., Desorption behaviors of BDE-28 and BDE-47 from natural soils with different organic carbon contents. Environmental Pollution.2012,163, 235-242.
    [140]Delgado-Moreno, L., Wu, L.,Gan, J., Effect of Dissolved Organic Carbon on Sorption of Pyrethroids to Sediments. Environmental Science & Technology.2010,44 (22),8473-8478.
    [141]Chiou, C. T., Malcolm, R. L., Brinton, T. I. et al., Water solubility enhancement of some organic pollutants and pesticides by dissolved humic and fulvic-acids. Environmental Science & Technology.1986,20 (5),502-508.
    [142]Jerez, J.,Flury, M., Humic acid-, ferrihydrite-, and aluminosilicate-coated sands for column transport experiments. Colloids and Surfaces a-Physicochemical and Engineering Aspects.2006, 273 (1-3),90-96.
    [143]Kang, S. H.,Xing, B. S., Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environmental Science & Technology.2005,39 (1),134-140.
    [144]Salloum, M. J., Dudas, M. J.,McGill, W. B., Variation of 1-naphthol sorption with organic matter fractionation:the role of physical conformation. Organic Geochemistry.2001,32 (5), 709-719.
    [145]Olshansky, Y, Polubesova, T., Vetter, W. et al., Sorption-desorption behavior of polybrominated diphenyl ethers in soils. Environmental Pollution.2011,159 (10),2375-2379.
    [146]Xu, H.-Y, Zou, H.-W, Yu, Q.-S. et al., QSPR/QSAR models for prediction of the physicochemical properties and biological activity of polybrominated diphenyl ethers. Chemosphere.2007,66 (10),1998-2010.
    [147]User's manual of HyperChem Release 7. Hypercube Inc.,2002.
    [148]Foresman, J. B.,Frisch, E., Exploring Chemistry with Electronic Structure Methods. USA: Gaussian Inc.,1996.
    [149]赵亮,高金森,徐春明,分子计算理论方法及在化工计算中的应用.计算机与应用化学.2004,21(05),764-772.
    [150]李萍,戎非,朱馨乐等,右旋邻氯扁桃酸分子印迹聚合物的制备及结合特性研究.高分子学报.2003(05),724-727.
    [151]姚丽晶,张晋京,窦森,几种胡敏酸和富里酸分子结构模型的三维可视化与特性研究.土壤通报.2008,39(01),57-61.
    [152]Kubicki, J. D.,C.C.Trout, Molecular modeling of Fulvic and Humic Acids:Charging Effects and Interactions with Al3+, Benzene, and Pyridine, in Geochemical and Hydrological Reactivity of Heavy Metals in Soils. Boca Raton, FL:Lewis Publishers,2003.113-143.
    [153]姚丽晶,几种胡敏酸和富里酸分子结构模型的三维可视化与特性研究[D].吉林农业大学,2007.
    [154]吕贻忠,郑殷恬,赵楠,栗钙土胡敏酸分子三维结构模型构建及其优化.化学研究与应用. 2012,24(06),848-853.
    [155]杨永亮,潘静,李悦等,青岛近岸沉积物中持久性有机污染物多氯萘和多溴联苯醚.科学通报.2003,48(21),2244-2251.
    [156]刘汉霞,张庆华,江桂斌等,多溴联苯醚及其环境问题.化学进展.2005,17(03),554-562.
    [157]陈社军,麦碧娴,曾永平等,珠江三角洲及南海北部海域表层沉积物中多溴联苯醚的分布特征.环境科学学报.2005,25(09),1265-1271.
    [158]陆敏,韩姝媛,余应新等,蔬菜中多溴联苯醚的定量测定及其对人体的生物有效性.分析测试学报.2009,28(01),1-6.
    [159]卢晓霞,陈超琪,张姝等,厌氧条件下2,2’,4,4’-四溴联苯醚的微生物降解.环境科学.2012,33(03),1000-1007.
    [160]汤保华,祝凌燕,周启星,五溴联苯醚(Penta-BDE)与重金属对水生无脊椎动物大型蚤Daphnia magna存活及其繁殖的联合毒性影响.中山大学学报(自然科学版).2010,49(06),93-99.
    [161]汤保华,祝凌燕,周启星,多溴二苯醚(PBDEs)对环境的污染及其生态化学行为.生态学杂志.2008,27(01),96-104.
    [162]孟祥周,杨超,潘兆宇等,污水及污泥中多溴联苯醚的研究进展.环境科学与技术.2011,34(02),102-106.
    [163]谢晴,王莹,边海涛等,溶剂对十溴联苯醚(BDE-209)分子构型及光解的影响,中国辽宁大连,2009.
    [164]薛伟锋,陈景文,新兴环境污染物甲氧基多溴代联苯醚的光化学行为研究,中国福建厦门,2010.
    [165]张娴,高亚杰,颜昌宙,多溴联苯醚在环境中迁移转化的研究进展.生态环境学报.2009,18(02),761-770.
    [166]Zhu, W., Liu, L., Zou, P. et al., Effect of decabromodiphenyl ether (BDE 209) on soil microbial activity and bacterial community composition. World J Microbiol Biotechnol.2010,26 (10), 1891-1899.
    [167]He, J., Robrock, K. R.,Alvarez-Cohen, L., Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environ Sci Technol.2006,40 (14),4429-34.
    [168]Pfeifer, F., Truper, H. G, Klein, J. et al., Degradation of diphenylether by Pseudomonas cepacia Et4:enzymatic release of phenol from 2,3-dihydroxydiphenylether. Archives of microbiology. 1993,159 (4),323-9.
    [169]van der Zaan, B., Hannes, F., Hoekstra, N. et al., Correlation of Dehalococcoides 16S rRNA and Chloroethene-Reductive Dehalogenase Genes with Geochemical Conditions in Chloroethene-Contaminated Groundwater. Applied and environmental microbiology.2010,76 (3),843-850.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700