用户名: 密码: 验证码:
缙云山常绿阔叶林常见植物的种子生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
种子是植物生活史的重要阶段,对幼苗建成、定居,种群的结构及群落演替或更新都有重要影响。国外对此进了广泛深入的研究,国内起步较晚,对种子生态学的系统研究尚未全面展开。本研究主要从种子大小与果实类型、植物生活型的关系,不同激素处理对种子萌发的影响,种子大小对幼苗更新的影响,种子大小与种子扩散机理的关系,种子扩散、幼苗定居和种群结构的关系等方面来研究缙云山常绿阔叶林中常见植物的种子萌发与幼苗生长特性,旨在为在城市园林绿化中中引种乡土树种解决如何开发种质资源的问题。在城市中构建地带性植被,首先要解决植物资源的开发,我们的研究即为此奠定基础。
     本文首先鉴别出74种植物的果实类型,测定了其种子的大小,并对其中67种植物的种子进了萌发实验;其次,选取了观赏价值较高,具有开发前景的四个常绿阔叶树种:贵州琼楠(Beilschemidia kweichowensis)、润楠(Machilus pingii)、虎皮楠(Daphniphyllum oldhamii)和薯豆(Elaeocarpus japonicus)进幼苗生长实验。在缙云山选5个不同生境作为栽培样地,移植4种植物的幼苗,定时观察其生长状况;在实验室中用不同基质和不同光照的组合栽培幼苗,也定时观察其生长情况;第三,在不同时间对缙云山主要植被类型中幼苗组成及其分布情况进了调查。主要结果如下:
     1.种子大小。在不同果实类型、不同植物生活型、不同科中种子大小都表现出极大的差异。果实种子类型以核果居多,共有34种植物为核果,浆果有13种,蒴果12种子,坚果6种,核果和坚果种子相对大,如贵州琼楠种子长度可以达到3cm以上,种径1.5cm,千粒重为4000g左右,蒴果小种子如小花叶底红(Phyllagathis fordii var. micrantha)种径0.5mm左右,千粒重才32mg左右。从生活型来看,常绿植物的种子要比落叶植物的大,大乔木的比小乔木的大,小乔木的比灌木的大。果实为核果或坚果的科的种子相对较大,如樟科、壳斗科、杜英科。种子大小的显著差异表明了不同物种对于环境适应采取的不同生活史对策。
     2.种子萌发实验。在实验室控制条件下,67个物种中可以萌发的有38种,其中常绿乔木树种为10种,落叶乔木9种,常绿灌木12种,落叶灌木7种。能够在培养皿中出苗的为37种,因为罗浮柿出芽后几天内即死亡。GA处理对大多数物种起作用,用Wilcoxon Matched Pairs Test检验表明,GA对所有可萌发的植物种子在萌发上有显著影响(p<0.01),可以提高萌发率或者加快萌发速度,或者两种作用都有。对萌发率显著提高的有23种,不显著影响的有12种,对萌发率的提高没有影响的有3种,还有29种植物有无激素处理时都不能萌发,其休眠类型不为GA所影响。用F值对种子大小和萌发率进检验,结果表明植物种子大小与所有67个种或38个可萌发的种的萌发率之间没有显著的相关性。
    
    西南农业大学硕士学泣论文摘要
    纽巨照里月绝月口口互里口里口纽里里旦里里里口里照旦里里里里里照里里口里里巴里里里里里里里里里里里里三里
     3.幼苗生长。植物种子大小影响其幼苗的生长,一般表现为大种子对幼苗存活和生长有
    利,贵州琼楠种子很大,在自然环境中表现出较高的生长势,而且死亡率相对较低,特别是
    在贵州琼楠林下这种优势非常明显。
     幼苗所处的生境条件也明显影响其生长状况。本文研究的4个树种在野外竹林中生长势
    和生长速度均比其他生境中的高,而裸地中死亡率明显高得多,表明幼苗的生长与其生活的
    光环境条件密切相关。
     在栽培控制条件下,4个物种幼苗生长表现不一。琼楠幼苗生长比较稳定,但从死亡水平
    来看,双层遮阴网条件下幼苗的死亡率相对比较低,保留种子的幼苗起始高度低,成活率比
    种子脱落的幼苗要高,这与种子自身的营养也可供养给幼苗生长有关.润楠呈集聚状生长时,
    长势要强一些或者死亡率较低;薯豆在双层遮阴中春季幼苗高度出现下降,是一些起始高度
    高的幼苗同时大量死亡的缘故。虎皮楠死亡率总体较高,各种处理的优劣差异不是很明显。
    总体上,4个物种的幼苗在土壤中比沙中生长的好,死亡率相对要低。
     4.野外调查了给云山主要植被中常见植物幼苗的分布情况,结果表明:针阔混交林(样
    地4)中幼苗多样性指数较常绿阔叶林为高;竹林中常绿阔叶树种的幼苗主要为一些种子散布
    能力强、喜光照的植物,如黄牛奶树(伽即2配05 laur认a)、川山矾(匀,即focos sech期e川办).
     深入分析了常绿阔叶树种的幼苗分布特点,发现植物幼苗分布与种子散布能力(种子大
    小)及散布方式(果实类型)有关。大种子主要是重力传播,扩散距离较近,如贵州琼楠:
    较轻的种子可以风力传播,分布较远,如四川大头茶;浆果类种子通过动物捕食后传播,一
    般种子产量较大,如山黄皮。
     比较分析了6种植物的立木级结构,可以认为润楠的种群比较稳定,出苗率高;薯豆幼
    苗分布较窄,出苗率虽高,但幼苗存活率极低,影响种群更新:虎皮楠幼苗比较集中于复兴
    寺一带,当年生幼苗较多,多年生苗少见。
Seeds are defined as units of sexual reproduction developed from a fertilized ovule containing an embryo and play a key role in plant life cycles. Influence of it on establishment and settle of seedling, structure of population and succession of community were studied in abroad. On the contrary, the study for seed ecology is taken lately in China. So, the relationships of seed mass with fruit types and life forms, the influence on seed germination by treatment with different hormones, the impact of seed mass on regeneration of seedling, the mechanism of seed dispersal, relationship of seed mass and seed dispersal with seed settle and structure of population were examined by measuring the size of 74 kinds of fruits and its seeds and taking a experiment of germination on 67 kinds of seeds to expound the character of seed ecology of common trees in Jinyun Mountain and offer basically scientific theory for introduction of local plants.
    With promisingly ornamental value of being exploited, the four species Beilschemidia kweichowensis, Machilus pingii, Daphniphyllum oldhamii, and Elaeocarpus japonicus were used to carry out an experiment on growth of seedling and then their seedlings were transplanted into 5 different plots selected from Jinyun Mountain and were cultivated in greenhouse under mixed combination with different light intensity and various matrix and the growth of seedling was observed at certain interval to examine influence of multiple environmental factors on growth of seedling, and relationships of seed distribution and seed propagate with establishment of populations and patterns of communities.
    1.In our works, all 74 species seeds exhibit high variation among fruit types, life forms and families. The most of plants fruit belong to four fruit types: drupe (34 sp), berry (15 sp), capsule (12 sp) and nut (6 sp) and the seed mass of drupe and nut is larger, heavier than others. For example, the weight of largest seed, Beilschmiedia kweichowensis's (drupe), is 105-fold heavier than of smallest
    
    
    seed, Phyllagathis fordii var. Micrantha (capsule). The variation of seed size suggested the plant life for adapting the different conditions.
    2.In the greenhouse, 38 species of all 67 species may germinate, including 10 evergreen arbors, 9 deciduous arbors, 12 evergreen shrubs and 7 deciduous shrubs. GA influenced significantly the rate or speed of seed germination. After GA treatments, the germinated rate of 3 species had no change, 23 species could be increased markly, and 12 species was increased certainly, 29 species couldn't germinate with or without GA. In addition to, F Test showed no correlation between the seed mass and the seed germinated rate.
    3. The correlation lied in between seedling growth and treatments or different sites. The results suggested the ecological factors could strongly influence the performance of seedlings. Seedling performance varied strongly to cope with the difference in light, soil nutrient regime. Seed size effected seedling emergence, survival and seedling size. Large seed had a significantly greater probability of emergence at most studies. The effects of size were expressed strongly during the early part of the life cycle, for example Beilschmiedia kweichowensis. For Beilschmiedia kweichowensis, Machilus pingii, Daphniphyllum oldhamii, and Elaeocarpus japonicus, the growth had the higher speed or survival in the bamboo forest; the mortality was highest in the bare habitat in the fields; and the highest RGR (relate growth rate) of Beilschmiedia kweichowensis present in the evergreen forest. The results indicated the seedling growth tied up with its stands.
    With different treatments, the growth of four species exhibited different performance, and all four species performance better in humus than in sand. The growth of Beilschmiedia kweichowensis is stable in high or low light, but in lower light its mortality is the lowest, and its growth supplied by its seed was better than without seed. Machilus pingii seedling in dense treatment had the higher RGR or the lower mor
引文
[1]Carol C. Baskin, Jerry M. Baskin. Seed: ecology, biogeography and evolution of dormancy and germination. San Diego: Academic Press. 1998.27~574.
    [2]中山包.发芽生理学.北京.农业出版社.1988.7(1).
    [3]卡恩 A.A.种子休眠和萌发的生理生化.北京.农业出版社.1989.
    [4]Mitsue Shibata, Tohru Nakashizuka. Seed and seedling demography of four co-occurring carpinus species in a temperate deciduous forest. Ecology. 1995.76(4): 1099~1108.
    [5]Jeanne C. Chambers. Relationships between seed fates and seedling establishment in an Alpine ecosystem. Ecology. 1995.76(7): 2124~2133.
    [6]Catherine E. Pake, D. Lawrence Venable. Seed banks in desert annuals: implications for persistence and coexistence in variable environments. Ecology. 1996. 77(5): 1427~1435.
    [7]Thomas J. smith, Ⅲ, Hung T. Chan, Carole C. Mclvor, et al. Comparisons of Seed Predation in Tropical, Tidal Forests From Three Continents. Ecology. 1989.70(1): 146-151.
    [8]Jeroen Gerritsen, Holly S. Greening. Marsh Seed Banks of the Okefenokee Swamp: effects of hydrologic regime and nutrients. Ecology. 1989. 70(3): 750-763.
    [9]Diane R. Campbell, Kenneth J. Halama. Resource and pollen limitations to lifetime seed production in a natural plant population. Ecology. 1993.74(4): 1043~1051.
    [10]T. D. Lee, F. A. Bazzaz. Regulation of fruit and seed production in an annual Legume, Cassia Fasciculata. Ecology. 1982.63(5): 1363~1373.
    [11]Taber D. Allison. Pollen production and plant density affect pollination and seed production in Taxus Canadensis. Ecology. 1990. 71 (2): 516-522.
    [12]Nickolas M. Waser, Mary V. Price. Outcrossing distance effects in Delphinium Nelsonii: pollen loads, pollen tubes, and Seed Set. Ecology. 1991.72(1): 171-179.
    [13]William E. Kunin. Sex and the single mustard: population density and pollinator behavior effects on seed-set Ecology. 1993.74(7): 2145-2160.
    [14]Jon Agren. Population size, pollinator limitation, and seed set in the self-incompatible herb Lythrum Salicaria. Ecology. 1996.77(6): 1779~1790.
    [15]Diane R. Campbell. Pollinator Sharing and Seed Set of Stellaria pubera: Competition for Pollination. Ecology. 1985.66(2): 544-553.
    [16]D. F. Greene, E. A. Johnson. Estimating the Mean Annual Seed Production of Trees. Ecology. 1994. 75(3): 642-647.
    [17]D. Lawrence Venable, Alberto Burquez, Gabriela Corral, et al. The ecology of seed heteromorphism in Heterosperma Pinnatum in central Mexico. Ecology. 1997.68(1): 65~76.
    
    
    [18]Ken Thompson, Louise C. Rickard, Dunmail J. Hodkinson, et al. Seed dispersal: the search for trade-offs. The ecological consequences of environmental heterogeneity. Blackwell Science. Oxford OK.152-172.
    [19]Jessica Wilcox Wright, Thomas R. Meagher. Pollination and seed predation drive flowering phenology in Silene Latifolia (Caryophyllaceae). Ecology. 2003.84 (8): 2062~2073.
    [20]Johanne Brunet. Male reproductive success and variation in fruit and seed set in Aquilegia Caerulea (Ranunculaceae). Ecology. 1996.77(8): 2458~2471.
    [21]Johan Ehrlen. Proximate limits to seed production in a herbaceous perennial Legume, Lathyrus Vernus. Ecology. 1992.73(5): 1820-1831.
    [22]Mitsue Shibata, Hiroshi Tanaka, Tohru Nakashizuka. Causes and consequences of mast seed production of four co-occurring Carpinus species in Japan. Ecology. 1998. 79(1): 54-64.
    [23]Alice A. Winn, Patricia A. Werner. Regulation of Seed Yield Within and Among Populations of Prunella Vulgaris. Ecology. 1987.68(5): 1224-1233.
    [24]Diane De Steven. Reproductive consequences of insect seed predation in Hamamelis Virginiana. Ecology. 1983.64(1): 89~98.
    [25]Lindsay A. Turnbull, Michael J. Crawley and Mark Ree. Are plant population seed-limited? A review of seed sowing experiments. OIKOS. 2000.88: 225-238.
    [26]Gilles Houle. Seed dispersal and seedling recruitment of Betula alleghaniensis: spatial inconsistency in time. Ecology. 1998.79(3): 807-818.
    [27]颜育民.种子休眠综述.种子.78:30~34.
    [28]张建峰.木本植物种子休眠与激素.种子.1992.(58):46~48.
    [29]Ken S. Moriuchi, D. Lawrence Venable, Catherine E, Pake, et al. Direct measurement of the seed bank age structure of a sonoran desert annual plant. Ecology. 2000. 81(4): 1133-1138.
    [30]Susan Kalisz. Experimental determination of Seed Bank Age Structure in the Winter Annual Coilinsia Verna. Ecology. 1991.72(2): 575-585.
    [31]Susan Kalisz, Mark A. McPeek. Demography of an age-structured annual: resampled projection matrices, elasticity analyses, and bank effects. Ecology. 1992.73(3): 1082~1093.
    [32]白玉光,王晓燕.种子萌发生态学分析.中国草地.1991.4:60~65.
    [33]赵笃乐.光对种子休眠与萌发的影响(上).生物学通报.1995.30(7):24~25.
    [34]Jeanne C. Chambers, James A. MacMahon, James H. Haefner. Seed Entrapment in Alpine Ecosystems: Effects of Soil Particle Size and Diaspore Morphology. Ecology. 1991. 72(5):1668-1677.
    [35]Horacio Paz, Miguel Martnez-Ramos. Seed mass and seedling performance within eight species of Psychotria (Rubiaceae). Ecology. 2003.84(2): 439~450.
    
    
    [36]Wendy Parciak. Seed size, number, and habitat of a fleshy-fruited plant: consequences for seedling establishment Ecology. 2002.83(3): 794-808.
    [37]Susan Foster, Charles H. Janson. The Relationship between Seed Size and Establishment Conditions in Tropical Woody Plants. Ecology. 1985.66(3): 773-780.
    [38]T.R.H. Pearson, D. F. R.P. Burslem, C. E. Mullins, et al. Germination ecology of neotropical pioneers: interacting effects of environmental condition and seed size. Ecology. 2002. 83(10):2798~2807.
    [39]C. Vazquez-Yanes, A. Orozco-Segovia, E. Rincon, et al. Light beneath the litter in a tropical forest: effect on seed germination. Ecology. 1990. 71(5): 1952-1958.
    [40]Martín R. Aguiar, Osvaldo E. Sala. Seed distribution constrains the dynamics of the patagonian steppe. Ecology. 1997. 78(1): 93-100.
    [41]H. F. Howe, E. W. Schupp, L. C. Westley. Early Consequences of Seed Dispersal for a Neotropical Tree (Virola surinamensis). Ecology. 1985.66(3): 781-791.
    [42]张世挺,杜国祯,陈家宽.种子大小变异的进化生态学研究现状与展望.生态学报.2003,2.23(2):353~364.
    [43]Michael B. Walters, Peter B. Reich. Seed size, nitrogen supply, and growth rate affect tree seedling survival in deep shade. Ecology. 2000. 81(7): 1887-1901.
    [44]Maureen L. Stanton. Seed Variation in Wild Radish: Effect of Seed Size on Components of Seedling and Adult Fitness. Ecology. 1984. 65, 4, 1105-1112.
    [45]Turnbull, L., Rees M., Crawley M. J. Seed mass and the competition/colonization trade-off: a sowing experiment. Journal of Ecology. 1999. 87:899~912.
    [46]Mark Rees, M.Mangel, L. Turbuil, et al. The effects of heterogeneity on dispersal and colonization in plants. The ecological consequences of environmental heterogeneity, Blackwell Science. Oxford OK.237-264.
    [47]Thomas O. Crist, James A. MacMahon. Harvester Ant Foraging and Shrub-Steppe Seeds:interactions of Seed Resources and Seed Use. Ecology. 1992.73(5): 1768-1779.
    [48]Susan Kalisz, Frances M. Hanzawa, Stephen J. Tonsor, et al. Ant-mediated seed dispersal alters pattern of relatedness in a population of Trillium Grandiflorum. Ecology. 1999, 80(8): 2620~2634.
    [49]Carlos M. Herrera. Adaptation to frugivory of Mediterranean Avian seed dispersers. Ecology. 1984.65(2): 609~617.
    [50]Martin L. Cipollini, Douglas J. Levey. Antifungal activity of Solarium fruit glycoalkaloids:implications for frugivory and seed dispersal. Ecology. 1997.78(3): 799-809.
    [51]Stephen B. Vander Wall. Foraging success of granivorous rodents: effects of variation in seed and soil water on olfaction. Ecology. 1998. 79(1): 233-241.
    
    
    [52]苏志尧,仲铭锦.种子传播的生态学特点.仲恺农业技术学院报.1993,5.6(1):48~53.
    [53]Brent H. Smith, Paul D. Forman, Amy E. Boyd. Spatial Patterns of Seed Dispersal and Predation of Two Myrmecochorous Forest Herbs. Ecology. 1989.70(6): 1649-1656.
    [54]Brent H. Smith, Catherine E. deRivera, Cam Lin Bridgman, et al. Frequency-Dependent Seed Dispersal by Ants of Two Deciduous Forest Herbs. Ecology. 1989.70(6): 1645-1648.
    [55]Mark Westoby, Barbara Rice, Jocelyn Howell. Seed Size and Plant Growth Form as Factors in Dispersal Spectra. Ecology. 1990. 71(4): 1307-1315.
    [56]Kartin Bohning-Gaese, Bernhard H. Gaese, Seth B. Rabemanantsoa. Importance of primary and secondary seed dispersal in the Malagasy tree Commiphora Guillaumini. Ecology. 1999. 80(3):821~832.
    [57]J. Timmons Roberts, E. Raymond Heithaus. Ants rearrange the vertebrate-generated seed shadow of a neotropical Fig tree. Ecology. 1986.67(4): 1046~1051.
    [58]Stephen J. Risch, C. Ronald Carroll. Effects of seed predation by a tropical ant on competition among weed. Ecology. 1986.67(5): 1319~1327.
    [59]Steven W. Rissing. Seed-harvester ant association with shrub: competition for water in the Mohave desert? Ecology. 1988.69(3): 809~813.
    [60]Takashi Masaki, Yohsuke Kominami, Tohru Nakashizuka. Spatial and seasonal patterns of seed dissemination of Cornus Controversa in a temperate forest. Ecology. 1994.75(7): 1903~1910.
    [61]Nick Reid Dispersal of Misteltoes by Honeyeaters and Flowerpeckers: Components of Seed Dispersal Quality. Ecology. 1989.70(1): 137-145.
    [62]C. Martinez del Rio, A. Silva, R. Medel, et al. Seed Dispersers as Disease Vectors: Bird Transmission of Mistletoe Seeds to Plant Hosts. Ecology. 1996. 77(3): 912-921.
    [63]JoséM. V. Fragoso, Kirsten M. Silvius, José A. Correa. Long-distance seed dispersal by tapirs increases seed survival and aggregates tropical trees. Ecology. 2003.84(8): 1998-2006.
    [64]John R. Poulsen, Connie J. Clark, Edward F. Connor, et al. Differential resource use by primates and hornbills: implications for seed dispersal. Ecology. 2002.83(1): 228~240.
    [65]R. Scot Duncan, Daniel G. Wenny, Mark D. Spritzer, et al. Does human scent bias seed removal studies? Ecology. 2002.83(9): 2630~2636.
    [66]Héctor Godínez-Alvarez, Alfonso Valiente-Banuet, Alberto Rojas-Martínez. The role of seed dispersers in the population dynamics of the columnar cactus Neobuxbaumia Tetetzo. Ecology. 2002.83(9): 2617~2629.
    [67]Jame S. Clark, Miles Silman, Ruth Kern, et al. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology. 1999.80(5): 1475~1494.
    [68]Ran Nathan, Uriel N. Safriel, Imanuel Noy-Meir. Field validation and sensitivity analysis of a
    
    mechanistic model for tree seed dispersal by wind. Ecology. 2001.82(2): 374~388.
    [69]Ran Nathan, Uriel N. Safriel, Imanuel Noy-Meir, et al. Spatiotemporal variation in seed dispersal and recruitment near and far from Pinus halepensis trees. Ecology. 2000. 81(8):2156-2169.
    [70]Amy B. McEuen, Lisa M. Curran. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Fcology. 2004. 85(2): 507~518.
    [71]Robert J. Orth, Mark Luckenbach, Kenneth A. Moore. Seed Dispersal in a Marine Macrophyte:Implications for Colonization and Restoration. Ecology. 1994.75(7): 1927-1939.
    [72]Kaoru Kitajima, Carol K. Augspurger. Seed and seedling ecology of a monocarpic tropical tree,Tachigalia Versicolor. Ecology. 1989.70(4): 1102~1114.
    [73]柯文山,钟章成,席红安等.四川大头茶地理种群种子大小变异及对萌发、幼苗特征的影响.生态学报.2000,7.20(4):697~701.
    [74]Yvonne M. Buckley, Paul Downey, Simon V. Fowler et al. Are invasives bigger? A global study of seed size variation in two invasive shrubs. Ecology. 2003.84(6): 1434~1440.
    [75]Pedro Jordano. Frugivore-mediated selection on fruit and seed size: birds and St. Lucie's cherry,Prunns Mahaleb. Ecology. 1995.76 (8): 2627~2639.
    [76]Rein Kalamees, Martin Zobel. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology. 2002.83(4): 1017-1025.
    [77]Wendy Parciak. Environmental variation in seed number, size, and dispersal of a fleshy-fruited plant. Ecology: 2002.83(3): 780-793.
    [78]Qinfeng Guo, James H. Brown, Thomas J. Valone, et al. Constraints of seed size on plant distribution and abundance. Ecology. 2000. 81 (8): 2149-2155.
    [79]Alice A. Winn. Ecological and Evolutionary Consequences of Seed Size in Prunella Vulgaris.Ecology. 1988.69(5): 1537-1544.
    [80]D.S. Hammond, V.K. Brown. Seed size of woody plant in relation to disturbance, dispersal soil type in wet neotropical forests. Ecology. 1995.76 (8): 2544~2561.
    [81]于顺利,蒋高明.土壤种子库的研究进展及若干研究热点.植物生态学报.2003.27(4):552~560.
    [82]J.W.Dalling, M. D. Swaine, Nancy C. Garwood. Dispersal patterns and seed bank dynamics of pioneer trees in most tropical forest. Ecology. 1998.79(2): 564~578.
    [83]曹敏,唐勇,张建侯等.西双版纳热带森林的土壤种子库储量及优势成分.云南植物研究.1997.19(2):177~183.
    [84]Jaclyn L. Schnurr, Charles D, Canham, Richard S. Ostfeld, et al. Neighborhood analysis of small-mammal dynamics: impacts on seed predation and seedling establishment. Ecology. 2004.
    
    85(3): 741~755.
    [85]Miles R. Silman, John W. Terborgh, Richard A. Kiltie. Population regulation of a dominant rain forest tree by a major seed predator. Ecology. 2003.84(2): 431~438.
    [86]Janice A. Derr. Coevolution of the Life History of a Tropical Seed-Feeding Insect and its Food Plants. Ecology. 1980.61(4): 881-892.
    [87]Victoria L. Sork. Mammalian seed dispersal of Pignut Hickory during three fruiting seasons.Ecology. 1983.64(5): 1049~1056.
    [88]David L. Gorchov. Does Asynchronous Fruit Ripening Avoid Satiation of Seed Dispersers? A Field Test. Ecology. 1988.69(5): 1545-1551.
    [89]Kerry M. Christensen, Thomas G. Whitham. Indirect Herbivore mediation of avian seed dispersal in Pinyon Pine. Ecology. 1991.72(2): 534-542.
    [90]Stephen B. Vander Wall. Masting in animal-dispersed pines facilitates seed dispersal. Ecology.2002.83(12): 3508~3516.
    [91]Aaron M. Ellison, Julie Sloan Denslow, Bette A. Loiselle. Seed and seedling ecology of Neotropical Melastomataceae. Ecology. 1993.74(6): 1733~1749.
    [92]Stephen B. Vander Wall. Seed Fate Pathways of Antelope Bitterbrush: Dispersal by Seed-Caching Yellow Pine Chipmunks. Ecology. 1994.75(7): 1911-1926.
    [93]Dennis J. O'Dowd, Mark E. Hay. Multalism between Harvester Ants and a Desert Ephemeral:Seed Escape from Rodents.Ecology. 1980. 61(3): 531-540.
    [94]Carol K. Augspurger, Kaoru Kitajima. Experimental studies of seedling recruitment from contrasting seed distributions. Ecology. 1992.73(4): 1270-1284.
    [95]Douglas J. Levey, Margaret M. Byrne. Complex ant-plant interactions: rain-forest ants as secondary dispersers and post-dispersal seed predators. Ecology. 1993.74(6): 1802-1812.
    [96]E. Raymond Heithaus. Seed Predation by Rodents on Three Ant-Dispersed Plants. Ecology.1980. 62(1): 136-145. [110] Dennis J. O'Dowd, Mark E. Hay. Multalism between Harvester Ants and a Desert Ephemeral: Seed Escape from Rodents. Ecology. 1980. 61(3): 531-540.
    [97]Dolph Schluter. Seed and Patch Selection by Galapagos Ground Finches: Relation to Foraging Efficiency and Food Supply. Ecology. 1982.63(4): 1106-1120.
    [98]Craig W. Benkman, Russell P. Balda, Christopher C. Smith. Adaptations for Seed Dispersal and the Compromises Due to Seed Predation in Limber Pine. Ecology. 1984.65(2): 632-642.
    [99]Martin A. Stapanian. A model for fruiting display: seed dispersal by birds for Mulberry trees. Ecology. 1982.63(5): 1432~1443.
    [100]Sven G. Nilsson, Urban Wastljung. Seed predation and cross-pollination in mast-seedling beech (Fagus Sylvatica) patches. Ecology. 1987.68(2): 260~265.
    
    
    [101]John A. Bleiler, Gerald A. Rosenthal, Daniel H. Janzen. Biochemical ecology of Cananvanine-eating seed predators. Ecology. 1988.69(2): 427~433.
    [102]J, Daniel Hare, Elizabeth Elle. Survival and seed production of sticky and velvety Datura Wrightii in the field: a five-year study. Ecology. 2004.85(3): 615~622.
    [103]Montserrat Vilà, Cala M. D'Antoio. Fruit choice and seed dispersal of invasive vs. noninvasive Chrpobrotus (Aizoaceae) in costal California. Ecology. 1998.79(3): 1053~1060.
    [104]李志安,王伯荪,孔国辉等.鼎湖山季风常绿阔叶林黄果厚壳桂群落植物元素含量特征.植物生态学报.1999.23(5):411~417.
    [105]李志安,王伯荪,翁轰等.鼎湖山南亚热带季风常绿阔叶林凋落物的养分动态.热带亚热带植物学报.1998.6(3):209~215.
    [106]陈章和,王伯荪,张宏达.南亚热带常绿阔叶林生产力研究现状与展望.生态科学.1996.1:84~91.
    [107]刘静艳,王伯荪,臧润国.南亚热带常绿阔叶林林隙形成方式及其特征的研究.应用生态学报.1999.10(4):385~387.
    [108]臧润国,王伯荪,刘静艳.南亚热带常绿阔叶林不同大小和发育阶段林隙的树种多样性研究.应用生态学报.2000.11(4):485~488.
    [109]侯庸,王伯荪,张宏达,李鸣光.黑石顶南亚热带常绿林生态系统能量现存量.热带亚热带植物学报.1997.36(1):74~78.
    [110]侯庸,王桂青,王伯荪等.广东黑石顶自然保护区南亚热带常绿阔叶林凋落物能流的研究.生态科学.2000.19(2):7~11.
    [111]宋君,王伯荪,彭少麟等.南亚热带常绿阔叶林粘木种群营养元素的分布与循环.生态学报.1999.19(2):223~235.
    [112]魏平,温达志,黄忠良等.鼎湖山季风常绿阔叶林死木生物量及其特征.生态学报.1997.17(5):505~510.
    [108]张德强,余清发,孔国辉等.鼎湖山季风常绿阔叶林凋落物层化学性质的研究.生态学报.1998.18(1):96~100.
    [113]蔡锡安,彭少麟,曹洪麟等.广州罗岗村边次生常绿阔叶林群落分析.应用与环境生物学报.1998.4(2):107~114.
    [114]丁圣彦,宋永昌.浙江天童常绿阔叶林演替系列优势种光合生理生态的比较.生态学报.1999.19(3):318~323.
    [115]丁圣彦,宋永昌.浙江天童国家森林公园常绿阔叶林演替前期的群落生态学特征.植物生态学报.1999.23(2):97~107.
    [116]张庆费,宋永昌,吴化前,由文辉.浙江天童常绿阔叶林演替过程凋落物数量及分解动态.植物生态学报.1999.23(3):250~255.
    
    
    [117]张庆费,徐绒娣.浙江天童常绿阔叶林演替过程的凋落物现存量.生态学杂志.1999.18(2):17~21.
    [118]王希华,张婕,张正祥.浙江天童国家森林公园主要常绿阔叶树种叶子寿命的研究.植物生态学报.2000.24(5):625~629.
    [119]张笃见,由文辉.浙江天童常绿阔叶林地被层的种类组成.华东师范大学学报(自然科学版).1998.3:95~101.
    [120]倪健,宋永昌.亚热带常绿阁叶林若干树种分布与Penman指标关系的探讨.植物学报.1998.40(7):647~656.
    [121]倪健,宋永昌.中国亚热带常绿阔叶林优势种及常见种的分布与Kira指标的关系.生态学报.1998.18(3):248~262.
    [122]倪健,宋永昌.中国亚热带常绿阔叶林优势种及常见种的水热分布类群.植物生态学报.1997.21(4):349~359.
    [123]丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因.植物学报.1998.40(8):755~760.
    [124]彭军,李旭光,董鸣,刘玉成.重庆四面山亚热带常绿阔叶林种子库研究.植物生态学报.2000.24(2):209~214.
    [125]彭军,李旭光,付永川,刘玉成.重庆四面山常绿阔叶林建群种种子雨、种子库研究.应用生态学报.2000.11(1):22~24.
    [127]赵群芬,李旭光,刘玉成.重庆四面山常绿阔叶林物种多样性研究.西南师范大学学报(自然科学版).1998.23(1):85~91.
    [128]刘玉成,缪世利.缙云山常绿阔叶林次生演替优势种群动态.植物生态学与地植物学学报.1992.16(1):26~35.
    [129]李雪梅,刘玉成,李旭光.缙云山森林次生演替序列群落结构物种多样性与稳定性关系.西南师范大学学报(自然科学版).1998.23(1):79~84.
    [130]田茂洁,刘玉成,黄林,李旭光.缙云山常绿阔叶林固定样方群落结构和物种多样性动态研究.西南师范大学学报(自然科学版).1998.23(2):199~205.
    [131]孙凡,钟章成.重庆缙云山四川大头茶常绿阔叶林重金属元素的累积与生物循环.中国环境科学.1998.18(2):111~116.
    [132]孙凡,钟章成,李旭光.四川大头茶地理分布与环境水热状况的关系.热带亚热带植物学报.1998.6(4):315~322.
    [133]熊利民,钟章成,李旭光.亚热带常绿阔叶林不同演替阶段土配种于库的初步研究.植物生态学与地值物学学报.1992.16(3):249~257.
    [134]陶建平,钟章成.不同环境中四川大头茶幼苗发生及幼苗消亡过程的研究.西南师范大学学报(自然科学版).1997.(3):302~310.
    
    
    [135]何永涛,李贵才,曹敏,唐勇.哀牢山中山湿性常绿阔叶林林窗更新研究.应用生态学报.2003.14(9):1399—1404.
    [136]李贵才,何永涛,韩兴国.哀牢山中山湿性常绿阔叶林林窗特征研究.生态学杂志.2003.22(3):13~17.
    [137]刘文耀,谢寿昌,谢克金,杨国平.哀牢山中山湿性常绿闰叶林凋落物和粗死木质物的初步研究.植物学报.1995.37(10):807~814.
    [138]吴邦兴.云南哀牢山徐家坝中山湿性常绿阔叶林动态和节律的研究.植物学报.1995.37(12):969~977.
    [139]彭华,吴征镒.无量山中山湿性常绿阔叶林及其植物区系的初步研究.云南植物研究.1997.20(1):12~22.
    [140]薛敬意,谢寿昌,赵恒康,甘健民.云南哀牢山常绿阔叶林下土壤涵养水能力分折林业科技 1997.22(6):9~11.
    [141]Mark Rees. Evolutionary Ecology of Seed Dormancy and Seed Size. Phil. Trans. R. Soc. Land B, 1996.35(1): 1299-1308.
    [142]Mazer S.J. Ecological, Taxonomic, and Life History Correlates of Seed Mass among Indiana Sune Angiosperms. Ecology Monogr. 1989. 59:153-175.
    [143]Mark Rees. Delayed Germination of Seeds: A Look at the Effects of Adult Longevity, the Timing of Reproduction, and Population Age/Stage Structure. American Nature. 1994. 144: 43-64.
    [144]Mark Rees. Trade-Offs among Dispersal Strategies in the British Flora. Nature. 1993. 366:150-152.
    [145]Preston R. A. J. L. Hamrick. Reproductive Dominance of Pasture Trees in a Fragmented Tropical Forest Mosaic. Science. 1998. 281: 103-105.
    [146]Silvertown S.W. Seed Size, Life Span and Germination Data as Coadapted Features of Plant Life History. American Nature. 1981. 118: 860-864.
    [147]Curran .L. M, G. D. Paoli, et al. Impact of EL Nio and Logging on Canopy Tree Recruitment in Borneo. Science. 1999. 286: 2184-2188.
    [148]Wright S.J. et al. The El Nino Southern Oscillation, Variable Fruit Production and Famine in a Tropical Forest. Ecology. 1999. 80: 1632-1647.
    [149]周德本,梁鸣,张悦,沈光.木本植物种子综合特征与催芽促进类型相关性的研究.植物研究.2000.20(4):395~401.
    [150]李良,王刚.种子萌发对策:理论与实验.生态学报.2003.23(6):1165~1174.
    [151]R 克纳普.植被动态.北京:科技出版社.1986.13-16.
    [152]F.A. Bazzaz, S. L. Miao. Successional status, seed size, and responses of tree seedlings to CO_2, light, and nutrients. Ecology. 1993.74(1): 104-112.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700