用户名: 密码: 验证码:
国内外复合片成分组织差异分析及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚晶金刚石复合片(Polycrystalline Diamond Compact)已广泛应用于地质钻探、非铁金属及合金、硬质合金、石墨、塑料、橡胶、陶瓷、木材等材料的切削加工等用途中。它的表层为金刚石粉末烧结而成的多晶金刚石,具有极高硬度、耐磨性和工作寿命;底层一般为钨钴类硬质合金,它具有较好的韧性,为表层聚晶金刚石提供良好的支撑,且容易通过钎焊焊接到各种工具上。目前国内外一般都采用超高压高温烧结的方法制造聚晶金刚石-硬质合金复合片。国内聚晶金刚石复合片的性能与国外先进产品有较大差距,主要表现在抗冲击性能较低、易分层、崩刃、破裂等方面。
     本课题采用扫描电镜、拉曼光谱、光电子能谱、X-射线衍射分析、电子探针等方法分析了国内外聚晶金刚石-硬质合金复合片在微观组织结构、元素成分分布方面的差异,结合对现有烧结工艺的分析,研讨了造成这些差异的机理;采用扫描电子显微镜、激光粒度分析、原子发射光谱、等离子发射光谱等方法对关键原材料-金刚石微粉的晶形、杂质含量进了比较分析测试。根据这些工作提出了一些改进国内聚晶金刚石-硬质合金复合片性能的设想。
     研究结果表明,国内外复合片具有如下差异和改进方向:Ⅰ.国内聚晶金刚石-硬质合金复合片杂质含量偏高,含有Mo、Fe、Cr等杂质,需要采取综合措施降低杂质含量,包括1.提高金刚石微粉原材料的纯度;2.改善操作环境;3.改进烧结时屏蔽层金属杯的材料;4.改进烧结前的处理和储存,采取真空处理和真空储存以排除金刚石吸附的各种杂质。5.建立金刚石微粉杂质检测方法和标准。Ⅱ.国内聚晶金刚石层中晶粒之间直接连接的共价健(C-C健)比例少,催化剂金属含量过高,导致宏观强度低,应采取如下措施:1.提高金刚石微粉堆积密度以提高烧结时高压传递的有效性和减小晶粒之间的距离;2.减少催化剂金属加入量以避免其隔断金刚石晶粒之间的直接健合,同时提高聚晶的热稳定性。Ⅲ.采取措施防止金刚石微粉在投料时出现粒度偏析。Ⅳ.采取措施降低PDC内部的残余应力。改进金刚石-硬质合金界面结构。Ⅴ.改进硬质合金基体的材料,使其与聚晶层的硬度和热膨胀系数具有更好的适配性。
Polycrystalline Diamond Compact (PDC) has been widely used in earth drilling, cutting of various materials such as non-ferrous metal and their alloy, hard metal alloy, graphite, plastics, rubber, ceramics. It's faced with polycrystalline diamond sintered from diamond powder. It has extremely high hardness, abrasion resistance and serving life. It's usually supported by tungsten carbide that has good toughness. The substrate provides good support for polycrystalline diamond and can be easily brazed to various tools. Presently PDCs are usually manufactured by HP-HT means. Domestic PDCs are inferior to foreign products. Domestic PDCs exhibit lower impact resistance, are more susceptible to delaminating, chipping and breakage.
    In the present research, scanning electron microscope (SEM), laser raman spectroscopy (LRS), X-ray photoelectron spectroscopy (XRS), X-ray diffraction (XRD) and electron probe micro analysis (EPMA) were utilized to investigate the difference in micro-structure and elements distribution between domestic and foreign PDCs. Combined with analysis on current manufacturing process, the mechanism for the difference was discussed. Scanning electron microscope (SEM), laser granularity analysis, atom emission spectroscopy (AES) and plasma emission spectroscopy (ICPAES) are also utilized to investigate the grain shape and impurities of key material-diamond power. Based on these work, some suggestions are presented to improve the performance of domestic PDCs.
    The present work suggests that our PDCs have following difference and could be improved by:
    I . Domestic PDCs contain more impurities such as Mo, Fe and Cr. They should be controlled by: 1. Improve the purification of diamond powder. 2. Improve the processing environment. 3. Change the material of shielding cup during sintering. 4. Improve the handling process and storage of diamond before sintering. Vacuum heat-treating and vacuum storage are recommended to eliminate impurities absorbed by diamond powder. 5. Standard for testing the
    
    
    impurity content of diamond powder should be established.
    II. The direct diamond-diamond bonding between granules in domestic PDCs are poor. Accordingly more catalyst metal are left over, this weaken the strength of the whole PDC. Thus following measures should be adopted: 1 .Increase the pack density of micron diamond power to improve the pressure transmitting between diamond granules and decrease the distance between them. 2. Reduce the content of catalyst metal to prevent it from blocking the direct bonding of diamond granules and improve the thermal stability of PDCs.
    III. Measures should be taken to prevent uneven distribution of grain size in diamond blending.
    IV .Measures should be taken to lower the residual stress in PDCs by improving the structure of the interface between diamond and substrate.
    V .Improve the material of substrate to improve its adaptability to polycrystalline diamond.
引文
[1] R.H.Wentorf, R.C.DeVries, F.B.Bundy. Sintered Superhard Material. Science (Washionton,DC), 1998, 208:873~880
    [2] Tze-Pin Lin. Residual Stress in Polycrystalline Diamond Compacts. American Ceramics Society, 1994.77(6): 1562~1568
    [3] 郭志猛,宋月清.超硬材料与工具.北京:冶金工业出版社 1996.100~120
    [4] Chow; Jacob, Horton; Ralph M, Smith; Redd H. Drill bit compact with boron or beryllium for fracture resistance. United States Patent, 6, 098, 731, 2000-08-08
    [5] R.Fenstra. Status of Polycrystalline-Diamond-Compact Bits:Part 1-Development. Journal of Petroleum Technology 1988.6:675~683
    [6] 白清顺,姚英学.聚晶金刚石(PCD)刀具发展综述.工具技术,2002,36(3):7~10
    [7] 方啸虎,人造金刚石、立方氮化硼及其制品丛书.北京:中国建材工业出版社,1998.30~40
    [8] 贺江宏.PDC钻头在塔河油田的应用与分析.石油钻探技术,2002,30(5):10
    [9] 胡群爱.PDC钻头在中原油田的应用与发展.江汉石油学院学报,2001,23(sub):125~126
    [10] M.Akaushi,S.Yamaoka, J.Tanaka, et al. Synthesis of Sintered Diamond with High Resistivity and Hardeness. American Ceramics Society, 1987, 70(10):237~239
    [11] Bovenkerk; Harold P, Gigl; Paul D. Temperature resistant abrasive compact and method for making same. United States Patent, 4,288,248, 1981-09-08
    [12] 王德新,焦庆余,王福全,郑振凯.真空净化处理对掺杂烧结型金刚石聚品耐磨性的影响.高压物理学报,1989,3(4):315~320
    [13] Wentorf. United States Patent, 3, 745, 623, 1973-06-05
    [14] Cho; Hyun S,Sung; Chien-Min, Merrill; Leo, et al. Cemented and cemented/sintered superabrasive polycrystalline bodies and methods of manufacture thereof. United States Patent, 5,011,514, 1991-04-30
    [15] Pennington. Boron-treated hard metal. United States Patent, 4961780, 1990-10-09
    [16] 林峰,吕智,劳善冬.提高三角形金刚石多晶烧结体耐磨性的研究.粉末冶金技术,
    
    1995, 13(3): 206~210
    [17] D. Miess, G. Rai. Fatigue Test and Thermal Resistance of Polycrystalline Diamond Compacts. Materials Science and Engineering, 1996, A209:270~276
    [18] 周振君,李工,杨正方.掺杂立方氮化硼对金刚石聚晶致密化和显微结构的影响.高压物理学报,2001,15(3):229~234
    [19] 邓福铭,陈小华,陈启武.PDC材料超高压烧结中聚晶金刚石晶粒异常生长及其抑制机制研究.金刚石与磨料磨具工程,2001,122(2)5~9
    [20] Hardy; John W., Pope; Bill J., Graham; Kevin G. et al. Composite polycrystalline cutting element with improved fracture and delamination resistance. United States Patent, 5,355,969, 1994-10-18
    [21] J.W. Paggett, E. F. Drake, A.D. Krawitz, et al. Residual Stress in Polycrystalline Diamond Compacts. International Journal of Refractory Metals & Hard Materials, 1999, 17:117~122
    [22] J.W. Paggett, E. F. Drake, A.D. Krawitz, et al. Residual stress and stress gradients in polycrystalline diamond compacts. International Journal of Refractory Metals & Hard Materials, 2002 (20): 187~194
    [23] 方建锋,张晋远,金成海,等.人造会刚石中包裹体含量的测定.金刚石与磨料磨具工程,2001,1(121):13~16
    [24] 李颖,韩秀丽,王孝琪.金刚石复合片机械性能的研究.金刚石与磨料磨具工程,2001,5(125):27~30
    [25] 李颖,邹广田.金刚石复合片掺杂烧结的微观结构研究.金刚石与磨料磨具工程,1996,3(93):8~10
    [26] Jon W. Paggett. X-ray Microanalysis of WC/Co substrate in a Polycrystalline Diamond Compact. Mechanical and Aerospace Engineering, 2001,44(4):86~88
    [27] 姚蓓,姚吉祥,周素红.扫描电镜和X射线能谱仪对金刚石聚结体显微结构的分析.材料工程,1994,Z1:107~109
    [28] 刘世宏,王当憨,潘承璜.X射线光电子能谱分析.北京:科学出版社 1988,67~88
    [29] 杨于兴.漆璿,X射线衍射分析.上海:交通大学出版社,1989,120~128
    [30] 邓福铭.超高压高温烧结中金刚石表面石墨化过程再研究.高压物理学报,2001,15(3):235~240
    
    
    [31] 李铭铭.金刚石复合片烧结体的研究.磨料磨具通讯,1998,1:9~10
    [32] 漆璿,戎华.X射线衍射与电子显微分析.上海:上海交通大学出版社,1992,142~149
    [33] 李力,董学斌,刘桂珍.梯度聚晶金刚石增强硬质合金楔形齿的电子探针分析.硬质合金,2001,13(4):218~220
    [34] 陶景光,廖兆曙,盛先平,钟国强.金刚石复合界面扩散系数的电子探针研究.分析测试学报,1996,16(3):6~9
    [35] 王光祖.超硬材料合成工艺学.郑州:中国磨料磨具工业公司,1987,183~200
    [36] X. Jia, S. Hayakawa, W. Li, Y. Gohshi, M. Wakatsuki, Cobalt impurities in synthetic diamond, Diamond and Related Materials, 1999, 8: 1895~1899
    [37] 蒙宇飞,苑执中.金刚石中过渡金属的研究现状.矿物岩石地球化学通报,2002,21(3)202~205
    [38] 吕智,劳善冬,林峰.我国钻探用金刚石聚晶材料的工艺研究.矿产与地质,1995,9(46):139~144
    [39] 张兴栋,彭应聪,邱淑琴.多晶金刚石烧结中晶粒表面石墨化的实验研究.高压物理学报,1989,3(2)125~132
    [40] 劳善冬,吕智,林峰,等.钻进用全刚石多晶体的结构类型.矿产与地质,1995,9(49):444~448
    [41] 陆厚根.粉体技术导论.上海:同济大学出版社,1998,35~45
    [42] 刘永康,叶先贤,林卓然.电子探针X射线显微分析,科学出版社,1973
    [43] Butcher, Horton, Jurewicz. Method of forming polycrystalline diamond cutters having modified residual stresses. United States Patent, 6,521,174, 2003-02-18
    [44] 左演声.材料现代分析方法.北京:北京工业大学出版社,2000,300~320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700