用户名: 密码: 验证码:
液压机械传动平地机关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
平地机行驶驱动系统的传动方式主要有机械传动、液力机械传动和液压传动三种,机械传动平地机载荷自适应性能差,多挡位变速箱结构复杂,制造难度大,成本高,只能实现作业速度有级调节;液力传动平地机传动系统高效区窄,综合作业效率偏低;静压传动方式车速范围窄,驱动轮同步性能有待提高,高速行驶时的传动效率偏低。液压机械传动方式能有机结合液压和机械两种传动方式的优点,弥补机械、液力机械和液压三种传动方式存在的不足,相对于目前我国平地机主机及部件加工制造水平而言,是较为理想的传动方式。液压驱动技术用于牵引式机械的行驶系统属于前沿性课题,目前仅在中小功率的推土机上有较为成功的应用,结合了机械传动的液压机械传动平地机面临更多的技术难题,这些关键技术主要包括:传动系统结构方案的确定、传动系统静态参数匹配设计、无级调速、大速比换档和以最佳动力性与经济性为目标的参数匹配与控制等关键技术。本文对液压机械平地机上述关键技术进行了深入系统的研究,取得的主要成果如下:
     1.提出了平地机行驶驱动系统采用发动机—液压泵—液压马达—变速桥—驱动轮的液压机械新型传动方式,针对动力传递路线中液压泵与液压马达组成的液压系统采用何种循环方式的问题,采用理论研究和实验相结合的方法,对比分析了分别采用开式和闭式液压系统的工作原理,建立了仿真模型,针对平地机多种工况进行了仿真和实验对比研究。结果表明:采用闭式液压系统的平地机起步加速度大、停车制动距离小、减速时间短、停车时传动系统存在反拖现象;采用开式液压系统的平地机具有停车时匀减速、无反拖、停车制动时间和距离长等特点,综合来看,在目前技术情况下闭式液压系统优于开式液压系统。研究结果为液压机械平地机液压系统方案和控制方案的确定奠定了基础。
     2.研究了国内外代表品牌平地机运动学、动力学和质量等主要参数之间的关系,对比分析了多种液压机械传动方案的优缺点,确定了液压机械平地机行驶驱动系统的传动方案,对行驶液压泵排量、行驶液压马达排量、变速桥档位与减速比等静态参数进行了匹配研究。理论分析与实验结果表明:静态参数匹配合理,与无桥结构的液压传动平地机相比,具有车速范围宽、同步性能好、液压系统工作压力低及高速行驶工况下传动效率高等优点。
     3.建立了两档变速桥离合器结合过程的ADAMS动力学分析仿真模型,分析了离合器升、降档时控制压力加载速度、方式和大小对换档结合时间、磨擦力矩、换档冲击和滑磨功的影响;提出了液压机械复合换档控制方法,在换档过程中,采用调节离合器主动盘转速与离合器结合压力大小及上升曲线相结合的方法实现平稳换档。实验结果表明:针对大速比离合器换档难题,采用液压机械复合换档控制方法合理,离合器换档时间和换档冲击等性能参数满足机器换档平顺性要求。
     4.研究了液压机械传动平地机的动态参数匹配与控制问题,根据平地机的常用工况、载荷特征与液压机械传动平地机的特点,确定了液压机械传动平地机各个档位的速度范围,对每个档位下各静态参数进行了合理匹配;提出了行驶液压泵及行驶液压马达排量的控制策略,针对极限载荷给出了液压泵和液压马达排量动态调节原理及方法,实验结果表明:液压机械平地机主要技术参数和性能指标满足要求,行驶速度和牵引性能优于液压传动平地机。
     5.阐述了发动机变功率控制原理,研究了平地机发动机变功率节能控制的实现方法,依据平地机实际工况的需求,设计了发动机多功率特性曲线,实验结果表明:变功率控制技术应用于平地机上节能效果显著。
Motor graders are kind of traction machinery with relatively high speed. Theworking productivity and quality can be directly affected by the performance ofdriving system. Currently, there is a driving system technology gap between domesticproducts and foreign products. Three main driving systems, mechanical transmission,hydrodynamic transmission and hydraulic transmission, have respectively advantagesand disadvantages. Hydraulic and mechanical hybrid transmission, which combinestwo transmission merits, may be a reasonable method to deal with the scarce of keytechnology in processing of multi-position gearbox. Hydraulic transmission used intraction machinery belongs to frontier subject, and was once successfully realized insmall and medium-sized bulldozers. Hydraulic and mechanical hybrid transmissionhas lots of critical technical problems including design of driving system, systemstatic parameters matching design, infinite speed control method, automatictransmission offering a large speed ratio, system dynamic parameters control in orderto achieve a better power and economy performance. By conducting a research ofhydraulic and mechanical hybrid transmission in motor graders, the main results ofthis article are fivefold.
     1.A new transmission system of motor grader is provided as following: engine,hydraulic pump, hydraulic motor, transaxle and driving tires. By using the simulationand experiment methods, the analysis of two different hydraulic systems is conductedfor the typical working conditions such as quick start and natural parking. The resultof simulation and experiment shows that the closed-circuit hydraulic driving systemhas a fast response speed, short stopping time and distance, relatively large systempressure impact in stopping and a reverse dragging which is more prone to happen inparking. The open-circuit hydraulic system has long parking time and distance, noreverse dragging and an air suction which is easily to yield in parking process. Thesimulation results are the foundation of control system design.
     2.According to the research of kinetics, dynamics and mass parameters of foreignproducts, the driving system is determined. Then the parameters matching areresearched for example pump displacement, motor displacement and ratio of gear axle.The theoretical and experimental analyses reveal that the static parameters matchingare reasonable. Comparing with the hydraulic driving system without gear axle, thedesign has advantages including wide range of speed, good synchronization, low pressure of hydraulic system and high transmission efficiency under high speedtraveling.
     3.Owing to study on the dynamic procedure of clutch engagement, the simulationmode is established in ADAMS. By using the software, the research of the effects ofshift time, friction moment, shift shock and work of clutch slipping caused by thevelocity of clutch pressure increase, the accurate increase realization method and theamount of pressure. The mechanic and hydraulic control method is provided, whichmoderates the rotation speed of clutch driving disc and designs the curve of clutchpressure. The experimental results show that the control method can meet therequirement of shifting comforts.
     4.The dynamic parameters matching and control are discussed. According to theworking conditions and load characteristics, gear speed range and the staticparameters matching in different gears are determined. The control methods ofhydraulic pump and motor under limit load condition are given. The experimentalresult shows that the main performance and technology indexes meet the demands,and also are superior to hydraulic motor grader.
     5.The principle of variable engine power control is elaborated, and its realizationmethods are given. In order to meet the requirements of actual working condition, themulti-power curves of engine are designed. The experimental results reveal that thevariable engine power technology can significantly improve the fuel economy ofmotor graders.
引文
[1]焦生杰.国内外平地机发展现状与新技术[J].筑路机械与施工机械化,2008,25(3):10-16
    [2] Caterpillar. H系列平地机使用技巧[M/CD]. Caterpillar,2006-12-21
    [3] Caterpillar Launches M-Series Motor Graders, Construction Digest, June26,2006
    [4] Landers, Kirk. Get Ready for the Next Generation of Motor Graders [J]. Better Roads, Feb.2006
    [5] Volvo G930产品技术资料. Volvo Construction Equipment,2005.12
    [6] Deere770D产品技术资料. John Deere,2007
    [7] CASE平地机产品技术资料. CASE,2007
    [8]史文辉.我国平地机行业发展的现状与方向[J].标准工业标准化与质量,2003(6):39-40
    [9]小松GD675产品技术资料. Komatsu America Corp,2007
    [10]易小刚.全液压推土机液压与控制系统研究[D].西安:长安大学,2005
    [11]马鹏飞.全液压推土机液压行驶驱动系统动力学研究[D].西安:长安大学,2006
    [12]王欣.智能全液压平地机关键技术研究[R].长安大学博士后研究工作报告,2007.9
    [13] Caterpillar140H产品技术资料. Caterpillar,2006
    [14] He Ren,Gao Zongyin.Fuzzy Optimum of the Automobile Transmission Parameters.SAETransaction,1993,102(6):2413-1416
    [15]刘清华.未来平地机模型[J].筑路机械与施工机械化,2005,22(1):44-46
    [16]姜楠,冯柯,吴国祥.平地机的新技术展望[J].工程机械,2006,37(11):44-47
    [17]李建风.国内外平地机产品性能差异化分析[J].建设机械技术与管理,2006,19(4):43-46
    [18] Nobuo Iwai.Analysis on fuel economy and advanced systems of hybrid vehicle.In:JSAE Review20.Japan:Elsevier,1999:3-11
    [19]于庆达.静压传动平地机[J].工程机械,2006,37(4):7-9
    [20]刘燕.凯斯800系列平地机[J].工程机械与维修,2003,10(1):74-75
    [21]蒋岚. VOLVO B系列自行式平地机[J].工程机械与维修,2002,9(9):84-85
    [22] Devier,Lonnie J.(Dunlap, IL), Lunzman, Stephen V (Chillicothe, IL). Power management controlsystem for a hydraulic work machine, U.S.Patent5967756, October19,1999
    [23] Kamada, Seiji(Hiratsuka, JP), Control device for hydraulic drive machine, U.S.Patent6173573,January16,2001
    [24]毛昆立,甘建国.中联PY190型平地机[J].工程机械与维修,2006,13(4):137
    [25]陈颖.沃尔沃G900系列平地机[J].工程机械与维修,2006,13(4):134
    [26] Walt Moore. Motor-Grader Technology Hits High Gear [J]. Construction equipment, September2006.
    [27] Mansouri.M, Holgerson.M, Khonsari.M, Aung.W.Thermal and Dynamic Characterization of WetClutch Engagement With Provision for Drive Torque [J]. Journal of Tribology,2001,123(4):313-323
    [28]刘忠,杨国平.工程机械液压传动原理、故障诊断与排除.北京:机械工业出版社,2005
    [29]佚名.国产平地机的竞争力分析及发展策略[J].机电信息,2004,4(3):19-21
    [30]徐尤龙,韩志强,迟水滨.平地机构造及施工使用[M].北京:人民交通出版社,1991
    [31]张永相.机电控制理论及应用[M].重庆:重庆大学出版社,2002
    [32]葛安林.车辆自动变速理论与设计[M].北京:机械工业出版社,1993
    [33]董伟亮,罗红霞.液压闭式回路在工程机械行走系统中的应用[J].工程机械,2004,35(5):38-40
    [34] Centea D,Rahnejat H,Menday M.Non-linear multibody dynamic analysis for the study of clutchtorsional vibrations(judder).Appl Math Mod,2001,25(2):177-192
    [35] Berger E,Sadeghi F,Krousgrill C.Torque transmission characteristics of automatic transmission wetclutches:experimental results and numerical comparison.Trib Trans,1997,40(1):539-548
    [36]付永领,祁晓野. AMESim系统建模和仿真[M].北京:北京航空航天大学出版社,2006
    [37]吴仁智,刘凯杰,耿令新等.采用闭式液压系统的工程车辆传动系试验台[J].工程机械,2008,39(1),49-53
    [38]曾谊晖,刘爱荣. PQ190型全液压平地机液压控制系统的设计[J].机床与液压,2003,31(3):83-85
    [39] Ost W,De Baets P,Degrieck J.The tribological behavior of paper friction plates for wet clutchapplication investigated on SAE#H and pin-on-disk test rigs.Wear,2001,249(1):367-371
    [40] Holgerson M.Apparatus for measurement of engagement characteristics of a wetclutch.Wear,1997,213:140-147
    [41] Ito H,Fujimoto K,Eguchi M,Yamamoto T.Friction characteristics of a paper-based facing for a wetclutch under a variety of sliding conditions.Trib Trans,1993,36:134-138
    [42]陈永峰.全液压平地机的动力匹配及牵引性能分析[J].建筑机械,2007,27(2):91-96
    [43]王欣,易小刚,张德兴.全液压平地机的关键匹配与控制技术[J].筑路机械与施工机械化,2008,25(3):18-21.
    [44]曾谊晖,胡清.机动平地机行驶液压系统和停车制动系统的设计[J].机械工程师,2005,21(10):113-114
    [45]刘海丽.基于AMESim的液压系统建模与仿真技术研究[D].西安:西北工业大学,2006
    [46] Rahman MA, ZhouPing. Field--based an analysis for permanent magnet motors.IEEE Trans onMagnets,1994,30(5)
    [47]胡建国.徐工GQ205型全液压平地机[J].工程机械,2006,37(3):9-11
    [48] Lya Kolmanovsky, Michiel van Nieuwstadt. Optimization of Complex Powertrain Systems for FuelEconomy and Emissions[A].Procecdings of the1999IEEE lntemational Conference on ControlApplications.Hawai:IEEE,1999:833-839
    [49]张铁,司癸卯.工程建设机械液压系统分析与故障诊断[M].北京:石油大学出版社,2001
    [50]郁录平.工程机械底盘设计[M].北京:人民交通出版社,2004
    [51] R.W.Zub,R.G.Colello.Effect of Vehicle Design Variables on Top Speed Performance and FuelEconomy.In:SAE Paper,US,800215
    [52]林涛,王欣,贾剑峰.同步分流阀在全液压平地机上的试验研究[J].筑路机械与施工机械化,2008,25(5):52-54
    [53]李建科,林涛,李迎春.浅淡平地机同步技术[J].筑路机械与施工机械化,2011,28(2):39-41
    [54] L.T.Wong.Power-train Matching for Better Fuel Economy.In:SAE Paper,US,790045
    [55]姚怀新.工程机械底盘理论[M].北京:人民交通出版社,2002
    [56]王欣,易小刚,张超等.全液压平地机电子抗滑转方法研究[J].筑路机械与施工机械化,2007,24(9):53-56
    [57]逐风.平地机的技术进步--今天的平地机市场比以往提供了更多的选择以及更加先进的技术设备[J].交通世界,2006,(11):34-36
    [58]林涛,谢金龙,肖峰.液压-机械传动的工程机械及其换档控制系统和方法[P].中国专利:ZL201110242282.2,2012-2-1
    [59]李建科,刘昌林,林涛.变速桥[P].中国专利: ZL201010614178.7,2011-5-18
    [60] Bartlett H,Whalley R.Power Transmission System Modelling.Journal of Mechanical EngineeringScience,1998,212(6):497-508
    [61] Liu Weixin,Ge Ping,Li Wei.Study of Optimal Between Automobile Transmission Parameters andEngine.In:The Winter Annual Meeting of The ASME.Dallas,1990:25-30
    [62]易小刚,王欣,林涛等.液压传动工程车辆抗滑转方法、系统以及平地机[P].中国专利:ZL200810002708.5,2009-7-15
    [63]易小刚,林涛,李建科.一种行驶驱动装置及平地机[P].中国专利: ZL201010276980.X,2011-1-5
    [64]焦生杰.现代筑路机械电液控制技术[M].北京:人民交通出版社,1998
    [65] Understanding Fundamentals Of Hydrostatic Transmissions,Diesel Progress Engines&Drives,2000
    [66]鲁建平,胡军科,尚建忠等.某型工程车闭式走行液压系统建模与仿真[J].机床与液压,2007,35(1):134-138
    [67]顾临怡,王庆丰,路甬祥.液压驱动的大惯性负载加减速特性研究[J].机械工程学报,2002,38(10):46-49
    [68]江平.平地机开式液压驱动系统研究[D].西安:长安大学,2010
    [69] Slough C,Everson M,Jaklevic R,Melotik,D,Shen W.Clutch shudder correlated to ATF degradationthrough local friction vs velocity measurements by a scanning force microscope.TribTrans,1996,39:609-614
    [70]张立军,赵升吨,刘克铭.中高压液压缸实验台液压系统仿真及优化[J].系统仿真学报,2007,19(3):671-674.
    [71]刘海丽,李华聪.液压机械系统建模仿真软件AMESim及其应用[J].机床与液压,2006,34(6):124-126
    [72]余佑管,龚国芳,胡国良. AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005,(3):28-31
    [73]傅新,徐明,王伟等.锻造操作机液压系统设计与仿真[J].机械工程学报,2010,46(11):49-54
    [74] Andreas Kugi, Kurt Schlacher, Heinz Aitzetmler. Modeling and Simulation of a hydrostatictransmission with variable-displacement pump[J]. Mathematics and Computers in Simulation.2000,(53):409-414
    [75]李太杰.工程机械底盘理论与性能[M].北京:人民交通出版社,1989
    [76]徐希民.铲土运输机械设计[M].北京:高等教育出版社,1987
    [77]何挺继,展朝勇.现代公路施工机械[M].北京:人民交通出版社,2002
    [78]陈新轩,展朝勇,郑忠敏.现代工程机械发动机与底盘构造[M].北京:人民交通出版社,2002
    [79]刘正富.全液压推土机关键技术参数研究[D].西安:长安大学,2004.
    [80] Rexroth(Bosch Group)行走机械用液压及电子控制元件产品样本.博士力士乐有限公司,2001
    [81]焦生杰.沥青混凝土摊铺机液压驱动行驶与控制系统研究[D].西安:长安大学,2002.
    [82]吴永平,姚怀新.工程机械设计[M].北京:人民交通出版社,2005
    [83]姚怀新.工程车辆液压动力学关键问题的理论研究与试验台建设[D].西安:长安大学,2006
    [84]顾海荣.160hp全液压推土机行驶驱动系统匹配研究[D].西安:长安大学,2004
    [85]姚怀新.行走机械液压传动与控制[M].北京:人民交通出版社,2002
    [86]易小刚,焦生杰.全液压推土机关键技术参数研究[J].中国公路学报,2004,17(2),119-123
    [87]陈永峰.全液压平地机的动力匹配及牵引性能分析[D].西安:长安大学,2007
    [88]焦生杰.工程机械机电液一体化[M].北京:人民交通出版社,2000
    [89] Kato Y,T Shibayama.Mechanisms of Automatic Transmissions and TheirRequirements for WetClutches and Wet Brakes.Japanese Journal of Tribology,1994,39(12):1427-1437
    [90] Zhang N,Crowther A,Liu D K,Jeyakumaran J M.A finite element method for the dynamic analysis ofautomatic transmission gear shifting with a four-degree-of–freedom planetary gearset element.ProcInstn Mech Engrs Part D:J Automobile Engineering,2003,217(D6):461-473
    [91]马鹏飞,龙水根,杨喜龙等.全液压推土机行走驱动系统参数匹配及计算[J].建设机械技术与管理,2007,(12):97-100
    [92]田晋跃,刘新磊,刘益民.车辆静液传动匹配技术的研究[J].液压与气动,2006,30(10)
    [93]王玉海,宋健,李兴坤.离合器动态过程建模与仿真[J].公路交通科技,2004,21(10):121-125
    [94] Schoenau G, Burton R, Kavanagh G. Dynamic analysis of a variable displacement pump[J].Trans.ASME J. Dyn.Syst., Meas., Control,1990,112(1):122~132
    [95]姚怀新.工程车辆液压动力学与控制原理[M].北京:人民交通出版社,2006
    [96]李立斌,唐应时.离合器滑摩过程的动力学仿真计算[J].长沙交通学院学报,2006,22(4):65-68
    [97] A Crowther,N Zhang,D K Liu,J K Jeyakumaran.Analysis and simulation of clutch engagementjudder and stick-slip in automotive powertrain systems.Proc Instn Mech Part D:J AutomobileEngineering,2004,218(D6):1427-1446
    [98] SCOTT W,SUNTIWATTANA P.Effect of Oil Additives on the Performance of a Wet Friction ClutchMaterial.Wear,1995,17(l):850-855
    [99] Sano H,M Takesue.Friction Characteristics of Wet Clutch in the Process of DynamicEngagement.Japanese Journal of Tribology,1994,39(12):1567-1579
    [100]黎启柏.电液比例控制与数字控制系统[M].北京:机械工业出版社,1997
    [101]杨庆俊,顾宏韬,吕庆军.电液比例减压阀控换档系统控制策略研究[J].流体传动与控制,2010,39(2):16-19
    [102]张志刚,周晓军,沈路等.湿式离合器动态结合特性的仿真与试验[J].中国公路学报,2010,23(3):115-120
    [103]陈华明,张光德,严运兵.车辆换档过程的离合器仿真研究[J].汽车科技,2008,3(2):17-20
    [104]吴仁智,李兵成,陈吉良.平地机行驶驱动装置[P].中国专利: ZL200420068592.2,2005-11-30
    [105]董志广,陈伟.天工牌PY200H平地机[J].建筑机械,2003,23(4):14
    [106] Yamamoto T.The Present and Future State of Tribological Research into Wet FrictionMaterials.Japanese Journal of Tribology,1994,39(11):1419-1425
    [107] Shirahama S.Adsorption of Additives on Wet Friction Pairs and Their FrictionalCharacteristics.Japanese Journal of Tribology,1994,39(12):1479-1486
    [108]杨树军,苑士华,胡纪滨.湿式离合器换档过程动态特性[J].农业机械学报,2005,36(11):38-41
    [109] Biao Ma. Influence of Buffering Pressure Characteristics on Shift Clutch Engagement Process [J].Journal of Beijing Institute of Technology,2000,9(4):362-369
    [110]路甬祥.电液比例控制技术[M].北京:机械工业出版社,1988
    [111]傅顺军,马永明,易小冬等.大功率低速离合器结合过程动态特性仿真[J].舰船科学技术,2010,32(8):162-166
    [112]蒋庆磊,武鹏,王乐勤等.齿式离合器结合过程动态特性的仿真[J].机械设计,2009,26(3):20-22
    [113]王立勇,马彪,李和言等.湿式换档离合器摩擦片磨损规律研究[J].北京理工大学学报,2008,28(4):324-328
    [114]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002.
    [115]焦生杰,林涛.平地机液压机械复合传动装置[P].中国专利: ZL201020157879.8,2010-11-17
    [116]胡宏伟.湿式自动离合器结合过程特性的研究[D].杭州:浙江大学,2008
    [117] FengNeng Lian, ZhengMu Qiao, Biao Ma.Dynamic Performance Simulation of Power Shift ClutchDuring Shift [J]. Journal of Beijing Institute of Technology,2000,9(4):445-450
    [118]赵睿英.新型平地机功率自适应控制系统研究[D].西安:长安大学,2010
    [119]杨镝.工程车辆变速技术研究[D].吉林:吉林大学,2003
    [120]杨叔子.机械工程控制基础[M].武汉:华中科技大学出版社,2005
    [121]焦生杰.电控液压泵-马达车辆行驶控制系统研究[J].西安公路交通大学学报,1999,19(1):97-100
    [122]张志友.推土机极限载荷控制系统的探讨[J].工程机械,1999,30(12):32-35
    [123]王文深,王宝铭.液压系统负载自适应控制节能技术[J].矿山机械.2003,(2):32-33
    [124]王欣,熊逸群.全液压推土机控制系统关键技术研究[J].筑路机械与施工机械化,2006,23(10):47-49
    [125]柳波,何清华,杨忠炯.发动机-变量泵功率匹配极限负荷控制[J].中国机械工,2007,18(4):500-503
    [126]彭天好,杨华勇,傅新.工程机械中的泵与发动机匹配[J].工程机械,2001,(8):37-40
    [127]李荣湘.闭式液压泵与原动机的匹配计算[J].矿业研究与开发,2005,25(3):51-52
    [128] Lloyd A. Molby, Hydrostatic Variable Ratio Control System, U.S. Patent950403, Oct.11,1987
    [129]何清华,常毅华,郝鹏.液压挖掘机恒功率与变功率协调控制节能系统研究[J].建筑机械,2006,(3):55-58
    [130]王欣,易小刚.国外平地机的变功率控制[J].筑路机械与施工机械化,2007,24(10):59-61
    [131]王欣,张超,易晓刚.全液压平地机功率-载荷自适应方法研究[J].工程机械,2007,38(6):27-30
    [132] Tsuruga, Yasutaka(Ryugasakiugasaki, JP), Nakatani, Kenichiro (Tsuchiura, JP), Kawamoto, Junya(Tsuchiura,JP), Kanai, Takashi(Chiba-ken, JP). Engine speed control system for constructionmachine, U.S.Patent6176126, January23,2001
    [133]柳波,鲁湖斌,何清华等.变量泵功率匹配控制系统的动态仿真研究[J].机械科学与技术,2007,26(1):104-107
    [134]许光.功率匹配型液压节能系统[J].通用机械,2007,(9):69-71
    [135]王欣,张志友.牵引式机械的功率自适应控制[J].筑路机与施工机械化,2010,27(11):72-74
    [136] Lin Tao,Jiao Sheng-jie,Wang Xin.Fuzzy adaptive energy-saving technology for static hydraulicgrader[A].Proceedings2011International Conference on Mechaatronic Science,Electric Engineeringand Computer,MEC2011[C].The United States: IEEE Computer Society,2011:109-113
    [137] Tohji, Yutaka (Hiroshima, JP). Hydraulic control system, U.S.Patent5743089, April28,1998
    [138]王欣,焦生杰.全液压推土机实验研究[J].筑路机械与施工机械化,2006,23(6):5-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700