用户名: 密码: 验证码:
复杂机械系统建模方法及在多轴底盘研发中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从分形理论的基本思想出发,探索性地提出了一种针对复杂机械系统的模型分解方法——分形解构法——该方法的核心思想是将一个复杂模型的复杂性尽量均衡地分解到各层次的局部优化模型中,使得各局部优化模型的复杂程度较低,便于设计与优化,同时各局部优化模型需要通过“过渡性性能指标参数”发生紧密联系,从而能保证模型的整体性不被破坏。
     进而,本文将此方法应用到多轴车辆底盘这一工程实例中,完善了多轴车辆底盘相关的整车动力学理论及双横臂油气悬架的悬架动力学理论,构造了针对多轴车辆底盘的分形解构法优化模型架构和优化流程,并实现了某型8轴底盘的优化算例。
     本文的创新性主要表现在以下几个方面:
     本文基于分形理论的思想,提出了针对复杂机械系统的模型分解方法——分形解构法。该方法是一种基于层次分解思想的建模方法,可以在一定程度上解决传统建模方法在面对复杂机械系统时所遇到的单个模型规模大、求解效率低、模型整体性能随参数变化的规律性差、模型优化困难、模型划分与工业研发体系不协调等问题。在具体的优化策略方面,提出了非完全独立的局部优化模型间的轮换优化方法,数值计算表明,该优化策略可以提高优化设计的计算效率。
     针对多轴车辆底盘,完善了整车动力学的相关理论,将其扩展为适合于任意轴距布置的多轴汽车的理论,提出了多轴车辆转向时各车轮侧偏角的最佳分布条件,并推导了相关公式:推导了多轴车辆不足转向度的解析表达式及相关的操稳判据;提出了多轴车辆直线制动稳定性条件;提出了多轴车辆制动工况下各轴附着系数利用率均衡分布时所需的各悬架的性能要求和各悬架的制动力要求,并推导了相关公式。
     采用旋量方法重新推导了悬架动力学的相关理论,指出了经典悬架力学中侧倾中心、纵倾中心等概念的不足之处,将其重新定义为侧向力诱导系数和纵向力诱导系数,使其从静态性能指标参数改变为动态性能指标参数,从而增强了悬架动力学对整车动力学的直接的、动态的理论支持。推导了双横臂独立悬架侧向力诱导系数和纵向力诱导系数的解析表达式。
     按照本文提出的分形解构法思想,构建了多轴车辆底盘的优化模型架构,成功地对8轴双横臂油气悬架底盘进行了优化设计。
Based on the fractal theory, the fractal decomposition method is proposed to decompose the complex mechanical system by the author through the exploratory way. The main idea of fractal decomposition method is to decompose the complexity of the model to the local optimization model in each level uniformly, which makes the model designed and optimized easily through reducing the complexity of each local optimization model. At the same time, the integrity of original model will not be violated, because all the local optimization models are related through the transition index parameters.
     The proposed method is used in the design of multi-axis chassis. The vehicle dynamic theory of the multi-axis chassis and double-wishbone oil suspension are complemented. The framework and flow of optimization model of multi-axis chassis based on the fractal decomposition method are constructed, and the numerical optimization example of an 8-axis chassis is presented.
     The original research of this work can be summarized as follows:
     Firstly, the fractal decomposition method is proposed to decompose the complex mechanical system based on the fractal theory in this thesis. From both the science and technology theory and the practical engineering, a new modeling and optimization framework is proposed, where this framework can solve some problems which are large size, low-solving efficiency, irregular, difficult to optimization, and model decomposed inconsistent with industrial manufacture system when traditional modeling methods are used in complex mechanical systems. In specific optimization, a rotational optimization method among the independent local optimization models is proposed, and the numerical example shows that this method is more efficient than traditional method.
     Secondly, the vehicle dynamic theory is complemented. The vehicle dynamic theory is extended to the multi-axis vehicle with any wheelbase layout, which provides the theory for multi-axis chassis modeling and simulation. In detail, the optimum distributed condition of each wheel slip angle for multi-axis vehicle is proposed, and some related formulas are introduced; the analysis expression of understeer and correlative handling criteria of multi-axis vehicle are induced; the stabilization condition of straight brake is proposed; to obtain high brake efficiency of each axle, the conditions of each suspension performance and brake force on each axle are proposed, and some related formulas are introduced.
     Thirdly, the suspension dynamic theory is introduced by screw theory method. The shortcoming of some concepts such as roll center, trim center and so on are indicated, and they are re-defined as lateral force inducing factor and longitude force inducing factor, which transforms the original static performance index to dynamic performance index, so the suspension dynamic theory supports the vehicle dynamic more directly and dynamically. The analysis expressions of lateral force inducing factor and longitude force inducing factor of double wishbone suspension are introduced in this thesis.
     Lastly, based on the proposed fractal decomposition theory, multi-axis chassis optimization model framework is constructed, and an 8-axis double wishbone hydro-pneumatic suspension chassis is optimized.
引文
[1]刘兴堂,梁炳成,刘力等.复杂系统建模理论、方法与技术.北京:科学出版社,2008.
    [2]欧阳莹之著,田宝国周亚等译.复杂系统理论基础.上海:上海科技教育出版社,2003.
    [3]成思危,冯芷艳.复杂性科学探索.北京:民主与建设出版社,1999,1-8.
    [4]成思危.复杂科学与系统工程.管理科学学报,1999,12(2):1-6.
    [5]waldropM著,陈玲译.复杂:诞生于秩序与混沌边缘的科学.生活·读书·新知三联书店,1997.
    [6]Hollnad J.Hidden order How adaptation builds complexity, Addiosn-Wesley Publishing ComPany Inc,1995.
    [7]成思危复杂科学与组织管理[J]科学,2001,53(1):6-9.
    [8]李士勇复杂系统、非线性科学与智能控制理论[J]计算机自动测量与控制,2000,8(4):1-3.
    [9]李夏,戴汝为.系统科学与复杂性(Ⅱ)[J];自动化学报;1998,04:32-35.
    [10]苗东升.系统科学大学讲稿.中国人民大学出版社,2007,第24讲,分形理论.
    [11]汪小帆等.复杂网络理论及其应用.清华大学出版社,2006,第2.8节,复杂网络的自相似.
    [12]魏宏森曾国屏.试论系统的层次性原理.系统辨证学学报,1995,01(5).
    [13]孙东川林福永.谈谈系统的层次性与涌现性.The 13th Annual Conference of System Engineering Society of China.
    [14]董春雨姜璐.层次性:系统思想与方法的精髓.系统辩证学报,2001,01.
    [15]廖守亿戴金海.复杂适应系统及其基于Agent的建模与仿真方法.系统仿真学报,2004,16(1).
    [16]孟祥恰等.基于云模型的主观信任管理模型研究.系统仿真学报,2007, 19(14).
    [17]赵光武.还原论与整体论相结合探索复杂性.北京大学学报.2002,11:14-19
    [18]王亮.从自然法则到人类文明.国际文化出版社,2008.
    [19]刘秉正编著.非线性动力学与混沌荃础.东北师范大学出版社,1994
    [20]林夏水等.分形的哲学漫步.北京:首都师范大学出版社,1999.
    [21]张济忠.分形.北京:清华大学出版社,1995.
    [22]刘长国.全钢载重子午线轮胎稳态力学特性有限元分析[硕士学位论文],2004.吉林:吉林大学.
    [23]Watanabe K., Yamakawa J, Tanaka M., Sasaki T. Turning characteristics of multi-axle vehicles. Journal of Terramechanics,2007,44:81-87
    [24]Wang S., Zhang J., Li H. Steering performance simulation of three-axle vehicle with multi-axle danamic steering. IEEE Vehicle Power and Propulsion Conference, Harbin, China, September 3-5,2008
    [25]Williams DE. Handling benefits of steering a third axle. Automobile Engineering,2010,224:1501-1511.
    [26]Qiuzhen Q, Jean WZ. On Steering Control of Commercial Three-Axle Vehicle. Journal of Dynamic Systems, Measurement, and Control,2008,130:1-11.
    [27]Wu DH. A theoretical study of the yaw/roll motions of a multiple steering articulated vehicle. Proceedings of the Institution of Mechanical Engineering, PartD:Journal of Automobile Engineering,2001,215:1257-1265.
    [28]Moon KH, Lee SH, Chang S, Mok JK, Park TW. Method for control of steering angles for articulated vehicles using virtual rigid axles. International Journal of Automotive Technology,2009,10(4):441-449.
    [29]杨占敏,葛安林.多轴车辆稳定转向分析,重型汽车,1994,5:7-10
    [30]朱学斌,高峰.多轴车辆操纵稳定性研究,汽车技术,2008,8:1-6
    [31]陈建凯,丁宏刚,张小江,高秀华.多轴非线性轮胎车辆操纵稳定性分析,工程机械,2011,42(4):27-30
    [32]王国军,陈欣,徐安桃,王江.多轴汽车轴荷的合理分配与确定,军事交通学院学报,2009,11(2):53-56
    [33]王兴东,杨波,邹光明.多轴汽车的轴荷分配和轴荷转移计算方法研究,湖北工业大学学报,2006,21(3):165-167
    [34]于英.多轴越野车辆油气悬架系统参数仿真,农业机械学报,2005,36(11):25-28
    [35]陈欣,祁涛,李栓成,蒋美华,李华.高机动性车辆越野平顺性分析方法研究,汽车工程,2008,30(9):736-741
    [36]陈欣,孙园园,蒋美华,李华.高机动性多轴车辆越障性能分析模型研究,军事交通学院学报,2010,12(2):54-57
    [37]Sun T, Yu F. Study on ride quality of a heavy-duty off-road vehicle with a nonlinear hydropneumatic spring. International Journal of Automotive Technology,2005,6(5):483-489.
    [38]Perseguim OT, Costa Neto A. Comfort and Vibration Study of a Tractor and Trailer Combination Using Simulation and Experimental Approaches:the Jumping Ride Behavior. SAE Technical Paper Series,2000-01-3517.
    [39]Yang Y, Ren WQ, Chen LP, Jiang M, Yang YL. Study on ride comfort of tractor with tandem suspension based on multi-body system dynamics. Applied Mathematical Modelling,2009,33:11-33
    [40]Pennestri E, Valentini PP, Vita L. Comfort analysis of car occupants: comparison between multibody and finite element models. Int. J. Vehicle Systems Modelling and Testing,2005,1:68-78.
    [41]El-Gindy M., Mrad N., Tong X. Sensitivity of rearward amplification control of a truck/Full trailer to tyre cornering stiffness variations, Proceedings of the Institution of Mechanical Engineering, Part D:Journal of Automobile Engineering,2001,215:579-588
    [42]Letherwood M., Gunter D. Vehicle dynamics analysis of a heavy truck/trailer combination using simulation. SAE Technical Paper Series, SAE 1999-01-0119
    [43]Cheng C., Roebuck R., Odhams A., Cebon D. High-speed optimal steering of a tractor-semitrailer. Vehicle System Dynamics,49:4,561-593
    [44]Moon K., Lee S., Chang S., Mok J., Park T. Method for control of steering angles for articulated vehicles using virtual rigid axles. International Journal of Automotive Technology,2009,10(4):441-449
    [45]Frimberger M., Wolf F., Scholpp G, Schmidt J. Influences of Parameters at Vehicle Rollover. SAE 2000-01-2669
    [46]Hac A. Rollover stability index including effects of suspension design. SAE 2002-01-0965
    [47]Hyun D., Langari R. Modeling to Predict Rollover Threat of Tractor-Semitrailers. Vehicle System Dynamics,39(6):401-414
    [48]Hussain K., Stein W., Day A. Modelling commercial vehicle handling and rolling stability. Multi-body Dynamics,2005,219:357-369
    [49]Eisele D., Peng H. Vehicle dynamics control with rollover prevention for articulated heavy trucks. Proceedings of AVEC 2000,5th Int'l Symposium on Advanced Vehicle Control, Michigan, August 22-24,2000
    [50]Fiala E. Seitenkrafte am rollenden Luftreifen. VDI-Zeitschrift 96,973,1964
    [51]Gim G., Nikravesh P. A three dimensional tire model for steady state simulations of vehicles. SAE,1993,102 (2)
    [52]Gipser M. FTIRE-A new fast tire model for ride comfort simulations,1999 ADAMS Users Conference, Berlin
    [53]Pacejka H., Besselink I. Magic formula tyre model with transient properties. Vehicle System Dynamics Supplement,1997,27
    [54]Guo K., Ren L. A unified semi-empirical tire model with higher accuracy and less prameters. SAE 1999-01-0785
    [55]耶尔森·赖姆帕尔著,张洪欣、余卓平译,汽车底盘基础,科学普及出版社,1992
    [56]阿达姆·措莫托著,黄锡朋译,汽车行驶性能,科学普及出版社,1992
    [57]安部正人著,陈幸波译,汽车的运动与操纵,机械工业出版社,1998
    [58]郭孔辉,汽车操纵动力学,吉林科学技术出版社,1991.
    [59]上官文斌,黄虎,刘德清.多刚体系统动力学在转向系和悬架运动学分析中的应用,汽车工程,1996,14(1):19-31
    [60]胡宁,罗素云,陈志恒,et al.麦弗逊悬架运动分析的空间解析法.拖拉机与农用运输车,2007,03:7-8.
    [61]李文君,蒋永林,高树新, et al.双横臂独立悬架空间运动学分析.汽车工程,2006,06:558-560
    [62]韩锐,毛务本.矢量代数在双横臂独立悬架运动分析中的应用.公路交通科技,2003,06:139-142.
    [63]党潇正,张建华,卫晓军,et al.轮式车辆双横臂独立悬架运动学分析. 轻型汽车技术,2008,Z2):8-12.
    [64]宁国宝,张立国,余卓平,et al.双横臂扭杆弹簧悬架系统空间结构非线性特性的建模与分析.汽车工程,2010,02:143-147.
    [65]吴志成,陈思忠,杨林,et al.几种独立悬架运动学特性对比研究.北京理工大学学报,2006,10:867-870
    [66]Lee U. A proposition for new vehicle dynamic performance index. Journal of Mechanical Science and Technology,2009,23(4):889-893
    [67]Zhao J-S, Li L, Chen L, et al. The concept design and dynamics analysis of a novel vehicle suspension mechanism with invariable orientation parameters. Vehicle System Dynamics,2010,48(12):1495-1510.
    [68]陈欣,林逸,王焕明,朱启听,龚学军.弹性元件对悬架性能的影响,汽车技术,1996,5:11-13
    [69]吕振华,徐建国.五连杆悬架的刚体运动学和弹性运动学分析.汽车技术,2002,11:10-14
    [70]杨树凯,宋传学,吴仕赋,et al.多连杆悬架与双横臂悬架运动学和弹性运动学特性分析.汽车技术,2006,12:5-8
    [71]朱浩,贾晓红,赵景山.直线导引型前独立悬架及转向杆系的设计与动力学仿真.汽车工程,2010,07:611-616
    [72]Knapczyk J, Dzierzek S. Elastokinematic Analysis of Five-rod Suspension with Flexible Joints, Including Effects of Shock Absorber. Vehicle System Dynamics, 1998,29(supl):270-279.
    [73]Yang X. Effects of bushings characteristics on suspension ball joint travels [J]. Vehicle System Dynamics,2011,49(1-2):181-197.
    [74]Nasada M. Effect on compliance and alignment variation with respect to stiffness of knuckle and shock absorber in a McPherson strut suspension. Vehicle System Dynamics,2006,44(supl):171-180.
    [75]Ryu YI, Kang DO, Heo S J, et al. Development of analytical process to reduce side load in strut-type suspension. Journal of Mechanical Science and Technology,2010,24(1):351-356.
    [76]Gerrard MB. The Equivalent Elastic Mechanism:a Tool for the Analysis and the Design of Compliant Suspension Linkages, SAE Technical Paper Series, 2005-01-1719
    [77]Cole D J. Fundamental Issues in Suspension Design for Heavy Road Vehicles. Vehicle System Dynamics,2001,35(4-5):319-360.
    [78]Shim T, Velusamy P C. Improvement of vehicle roll stability by varying suspension properties. Vehicle System Dynamics,2011,49(1):129-152.
    [79]Rosam N, Darling J. Development and Simulation of a Novel Roll Control System for the Interconnected Hydragas(?) Suspension. Vehicle System Dynamics,1997,27(1):1-18.
    [80]Pintado P, Castell MA. Independent Suspension, Self Steered Axle, and 4WS for Busses. Vehicle System Dynamics,1999,31(3):137-155.
    [81]Kim J H, Kim K S, Kang Y J. Ride comfort evaluation and suspension design using axiomatic design. Journal of Mechanical Science and Technology,2007, 21(7):1066-1076.
    [82]Knable J J, Nagreski D L. Design of a multi-link independent front suspension for class a motor homes. SAE Technical Paper Series,1999-01-3731.
    [83]Chatillon MM, Jezequel L, Coutant P, et al. Hierarchical optimisation of the design parameters of a vehicle suspension system. Vehicle System Dynamics, 2006,44(11):817-839.
    [84]Wang H, Wang S, Tomovic MM. Suspension mechanism simulation and optimization considering multiple disciplines. Journal of Mechanical Science and Technology,2009,23(1):100-108.
    [85]Sancibrian R, Garcia P, Viadero F, et al. Kinematic design of double-wishbone suspension systems using a multiobjective optimisation approach. Vehicle System Dynamics,2010,48(7):793-813.
    [86]Yang X, Medepalli S. Sensitivities of suspension bushings on vehicle impact harshness performances [J]. SAE Technical Paper Series,2005-01-0827.
    [87]Alfi A, Fateh MM. Identification of nonlinear systems using modified particle swarm optimisation:a hydraulic suspension system. Vehicle System Dynamics, 2011,49(6):871-887.
    [88]Chen K, Beale D G. Base Dynamic Parameter Estimation of a MacPherson Suspension Mechanism. Vehicle System Dynamics,2003,39(3):227-244.
    [89]Jo SS, Beale D. Dynamic Parameter Estimation of a MacPherson Strut Suspension. Vehicle System Dynamics,1998,30(2):169-184.
    [90]Sandu C, Andersen E R, Southward S. Multibody dynamics modelling and system identification of a quarter-car test rig with McPherson strut suspension. Vehicle System Dynamics,2011,49(1-2):153-179.
    [91]Chae CK, Bae BK, Kim KJ, et al. A Feasibility Study on Indirect Identification of Transmission Forces through Rubber Bushing in Vehicle Suspension System by Using Vibration Signals Measured on Links. Vehicle System Dynamics,2000, 33(5):327-349.
    [92]Azadi S, Soltani A. Fault detection of vehicle suspension system using wavelet analysis. Vehicle System Dynamics,2009,47(4):403-418.
    [93]Warfford J, Frey N. A facility for the measurement of heavy truck chassis and suspension kinematics and compliances. SAE Technical Paper Series,2004-01-2609.
    [94]Smith WA, Zhang N. Hydraulically interconnected vehicle suspension: optimization and sensitivity analysis. Automobile Engineering,2010,224: 1335-1355.
    [95]Xu WT, Lin JH, Zhang Y H, Kennedy D, Williams F W. Pseudo-excitation-method-based sensitivity analysis and optimization for vehicle ride comfort. Engineering Optimization,2009,41(7):699-711.
    [96]Gu L, Tyan T, Li G, Yang RJ. Vehicle structure optimization for crash pulse. Proceedings of DETC'04 ASME 2004 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Salt Lake City, Utah, USA, September 28-October 2,2004.
    [97]Els PS, UYS PE. Investigation of the Applicability of the Dynamic-Q Optimisation Algorithm to Vehicle Suspension Design, Mathematical and Computer Modelling,2003,37:1029-1046
    [98]Gobbi M, Mastinu G, Doniselli C. Optimising a Car Chassis, Vehicle System Dynamics,1999,32:149-170
    [99]Goncalves JP, Ambrosio JA. Optimization of Vehicle Suspension Systems for Improved Comfort of Road Vehicles Using Flexible Multibody Dynamics, Nonlinear Dynamics,2003,34:113-131
    [100]Goncalves JP, Ambrosio JA. Road Vehicle Modeling Requirements for Optimization of Ride and Handling, Multibody System Dynamics,2005,13: 3-23
    [101]郭孔辉,陈明岚,宗长富.组合遗传算法在人-车-路闭环系统综合评价优化设计上的应用,中国机械工程,2001,12(7):804-807
    [102]孔繁森,郭孔辉,宗长富.全局演化局部模拟优化技术在汽车结构参数优化中的应用,汽车工程,2001,23(2):73-77
    [103]郭孔辉,孔繁森,宗长富.模拟退火优化技术在汽车结构参数优化中的应用.中国机械工程,2001,12(7):712-714
    [104]李玉璇,林忠钦,丁海涛,郭孔辉.利用正交试验法进行ABS控制参数的优化,机械科学与技术,2002,21(11):58-60
    [105]Kodiyalam S, Yang RJ, Gu L, Tho C H. Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment. Struct Multidisc Optim,2004,26:256-263.
    [106]Dhand A, Cho B, Walker A. Optimization potential of the vehicle launch performance for start-stop micro-hybrid vehicles. Automobile Engineering, 2010,224:1059-1070.
    [107]肖力军,李仁发.基于ADAMS的汽车底盘仿真及悬架系统性能优化.系统仿真学报,2006,18(7):55-58.
    [108]吕彭民,和丽梅,尤晋闺.基于舒适性和轮胎动载的车辆悬架参数优化.中国公路学报,2007,20(1):112-117.
    [109]Kim HM. Target cascading in optimal system design:[PhD thesis]. University of Michigan,2001.
    [110]Kim HM, Rideout DG, Papalambros PY. Analytical Target Cascading in Automotive Vehicle Design. Journal of Mechanical Design,2003,125:481-489.
    [111]Kokkolaras M, Louca LS, Delagrammatikas GJ, Michelena NF, Filipi ZS, Papalambros PY, Stein JL, Assanis DN. Simulation-based optimal design of heavy trucks by model-based decomposition:An extensive analytical target cascading case study. Int. J. of Heavy Vehicle Systems,2004,11:403-433.
    [112]Kim HM, Kokkolaras M. Target cascading in vehicle redesign:a classVI truck study. Int. J. of Vehicle Design,2002,29(3):1-27.
    [113]Blouin VY, Fadel GM, Haque IU, Wagner JR, Samuels HB. Continuously variable transmission design for optimum vehicle performance by analytical target cascading. Int. J. of Heavy Vehicle Systems,2004,11:327-348.
    [114]Michelena NF, Park H, Papalambros PY. Convergence Properties of Analytical Target Cascading, AIAA Journal,41,2003,41:897-905.
    [115]Michalek JJ, Papalambros PY. An Efficient Weighting Update Method to Achieve Acceptable Inconsistency Deviation in Analytical Target Cascading, ASME Journal of Mechanical Design,2005,127:206-213.
    [116]Tosserams S, Etman LFP, Papalambros PY, Rooda JE. An augmented Lagrangian relaxation for analytical target cascading using the alternating direction method of multipliers. Struct Multidisc Optim,2006,31:176-189.
    [117]Li Y. Diagonal quadratic approximation for parallel computing with analytical target cascading. Master thesis, Carnegie Mellon University,2006.
    [118]吕新生,高济众.复杂系统优化设计的分解协调法(之一).合肥工业大学学报,1995,18(3):1-7.
    [119]白广忱,张建国,平志鸿.大系统可靠度优化分配的分解协调法.系统工程与电子技术,1998,4:63-67.
    [120]陈树勋.工程大系统设计的普遍型分解协调优化.中国机械工程,1999,10(7):799-802.
    [121]杨波.计及车架弹性的多轴重型越野车整车动态性能研究:[博士学位论文].武汉:华中科技大学,2004
    [122]王兴东.提高多轴重型越野车制动性能的理论与试验研究:[博士学位论文].武汉:华中科技大学,2005
    [123]王云超.多轴转向车辆转向性能研究:[博士学位论文].长春:吉林大学2007
    [124]郝赫.多轴重型汽车刚弹耦合虚拟样机分析与匹配:[博士学位论文].长春:吉林大学,2011
    [125]王欢.多轴车辆转向系统与悬架系统集成控制研究:[博士学位论文].长春:吉林大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700