用户名: 密码: 验证码:
风电增速器行星轮系动态性能分析与参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,风电装备正朝着大型化和高可靠性方向不断发展,对于风机设计和运行维护等方面提出了更高的要求。风机传动系统面临独特的动力学问题,同时风电装备在全寿命区间上的复杂随机载荷历程也使得风机传动系统的设计和计算有了与以往不同的特点。这些都使得风电装备动力学基础理论和动态性能分析具有非常深刻的意义。
     本文以大功率风电增速齿轮箱的两级行星轮系为研究对象,以齿轮动力学的振动理论为基础,以数值仿真分析为手段,对两级行星轮系的动力学特性和振动行为进行了研究,并对齿轮箱的设计参数进行优化设计以达到减振降噪的目的。
     首先,建立系统动力学模型和分析模型。根据齿轮系统自身的特点,采用集中质量法建立了两级行星轮系的弯—扭—轴耦合非线性动力学模型,在模型中综合考虑误差激励、时变啮合刚度激励和齿侧间隙等影响因素。在动力学模型的基础上建立了两级系统的非线性时变分析模型。
     第二,分析系统的动力学特性:以固有特性计算理论为依据,分别对第一级、第二级和两级耦合行星轮系的固有频率进行了计算,并总结得到了各自的振动模式,在此基础上,研究了时变啮合刚度、行星架扭转刚度、太阳轮和行星轮的支撑刚度以及各轮质量对系统固有频率的影响。
     第三,研究系统的振动行为:利用双参数威布尔分布模拟风电齿轮箱的外部变载激励,对两级行星轮系的非线性变参数微分方程组进行无量纲化处理,通过对无量纲化后的方程组求解得到系统各自由度振幅的位移响应和各扭转自由度上的相图曲线和庞加莱图。研究了输入转速和连接轴的扭转刚度对系统位移振幅的影响规律。
     最后,以减振降噪为目标对系统进行优化设计:以系统加速度峰值最小为目标,以行星轮系能够正确传动和保证系统强度满足要求为约束条件,建立基于动力学的参数优化设计模型,并对其参数进行优化设计。从优化前后结果对比可知,系统最大加速度峰值得到降低,其他各构件加速度也保持在较低数值,系统体积得以减小,达到了减振降噪和系统体积轻量化的目的。
At present, the development of wind power equipment is moving in the direction of large-scale and high reliability, therefore, a higher demand for wind turbine design, operation and maintenance is raised. Wind turbine drive system faces with the unique dynamics problems, and the complex random load course of wind power equipment in the life-cycle interval also makes the design and calculation of the wind turbine drive system have different characteristics. All these make wind power equipment dynamics basic theory and dynamic performance analysis have a very profound meaning.
     The study object of this paper is the two-stage planetary gear trains in the high-power wind power speed-up machine. The dynamic characteristics and vibration behavior of the two-stage planetary gear trains were studied based on the vibration theory of the gear dynamics and by means of the numerical simulation analysis. The design parameters of the gearbox were optimized in order to achieve the purpose of reducing vibration and noise.
     First, the system dynamics model and analysis model were created. According to the own characteristics of the gear system, the bend-twist-axis coupled nonlinear dynamics model of two-stage planetary gear trains was established by use of the lumped mass method. The model was built in full consideration of the error incentive, the time-varying meshing stiffness excitation, backlash and other influencing factors. On the basis of the dynamics model, the nonlinear time-varying analysis model of two-stage planetary gear trains was established.
     Second, the dynamic characteristic of the system was analyzed. Based on inherent characteristic computation theory, the natural frequency of the first-stage, the second-stage and two-stage coupled planetary gear trains were calculated and the respective vibration modes were summarized. Furthermore, how the parameters such as the time-varying meshing stiffness, the torsional stiffness of the planet carrier, the support stiffness of the sun gear and planetary gear and the quality of every gear have an influence on the natural frequency of the system was studied.
     Third, the vibration behavior of the system was studied. The external variable load incentive of the wind turbine gearbox was simulated by use of two-parameter Weibull distribution. Nonlinear variable parameter differential equations of two-stage planetary gear trains were made into dimensionless ones. The dimensionless equations were solved to obtain the displacement amplitude response of every degree of freedom, the phase diagram curve and Poincare figure of every twist degree of freedom. The effect of the input speed and the torsional stiffness of the connection shaft on the amplitude of each degree of freedom was studied.
     Finally, the design parameters of the system were optimized in order to reduce vibration and noise. Parameter optimization design model based on dynamics was established as the goal of system acceleration peak minimum. Ensuring the correct drive of the planetary gear trains and making the system strength meet the requirements are the constraint conditions. The parameters were optimized. The contrast of results before and after optimization shows that the maximum acceleration peak of the system has been reduced, the other accelerations are maintained at a lower value, and the system volume are also reduced. The purpose of reducing vibration and noise and making the volume lightweight was achieved.
引文
[1]张文忠NTK300/31风电机齿轮箱的故障分析与预防[J].内蒙固电力技术,2001(5):46-47.
    [2]Robert Errichello. Comparison of ISO 6336 and AGMA 2001 Load Capacity Ratings for Wind Turbine Gears-Torque Reserve Ratio. GEARTECH Report No.2025,2002.
    [3]刘忠明,段守敏,王长路.风力发电齿轮箱设计制造技术的发展与展望[J].机械传动,2006,30(6):1-6.
    [4]吴丽媛,周振阳,韩溪.浅谈风电齿轮箱早期的故障形式[J].黑龙江科技信息,2011,(13):4.
    [5]路宏,王文婷.风力发电机组齿轮箱的结构研究及故障分析[J].内蒙固石油化工,2011,(22):16-18.
    [6]雷亚国,何正嘉等.行星齿轮箱故障诊断技术的研究进展[J].机械工程学报,2011,47(19):59-67.
    [7]Johan Ribrant, Lina Margareta Bertling. Survey of Failures in Wind Power Systems With Focus on Swedish Wind Power Plants During 1997-2005[J]. IEEE Transactions on Energy Conversion,2007,22(1):167-173.
    [8]El-morsy Mohamed S,Abouel-seoud Shawki, Rabeih El-Adl. Gearbox Damage Diagnosis using Wavelet Transform Technique[J]. International Journal of Acoustics and Vibration,2011,16(4):173-179.
    [9]董进朝.大型风电齿轮箱关键设计技术研究[D].郑州:郑州机械研究所,2007.
    [10]张庆伟,张博等.风力发电机齿轮传动系统的动态优化设计[J].重庆大学学报,2010,33(3):30-35.
    [11]李庆梅,元军锋,宋晓美.风电齿轮箱系统扭转振动固有特性计算分析[J].设计研发,2010,(11):46-49.
    [12]张立勇.大型风电齿轮箱均载性能研究及优化[D].郑州:郑州机械研究所,2009
    [13]Fernandez. A, Viadero. F, Pascual. J, etc. Vibration Behaviour Modelling for a Low-speed Gearbox[J]. Proceedings of ISMA 2002:International Conference on Noise and Vibration Engineering,2002,1-5:1407-1416.
    [14]Helsen Jan, Vanhol lebeke Frederik, Marrant Ben, etc. Multibody Modelling of Varying Complexity for Modal Behaviour Analysis of Wind Turbine Gearboxes[J]. Renewable Energy,2011,36(11):3098-3113.
    [15]李润方,王建军.齿轮系统动力学—振动·冲击·噪声[M].北京:科学出版社,1997.
    [16]A. Kahraman. Planetary Gear Train Dynamics[J]. Journal of Mechanical Design,1994, 116(3):713-720.
    [17]孙涛.行星齿轮系统非线性动力学研究[D].西安:西北工业大学,2000.
    [18]孙智民,季林红,沈允文.2K-H行星齿轮传动非线性动力学[J].清华大学学报(自然科 学版),2003,43(5):636-639.
    [19]刘欣.基于虚拟样机技术的直齿行星传动动力学研究[D].天津:天津大学,2007.
    [20]肖正明,秦大同等.盾构机主减速器三级行星传动系统扭转动力学[J].中国机械工程,2010,21(18):2176-2182.
    [21]杨通强.斜齿行星传动动力学研究[D].天津:天津大学,2003.
    [22]Al-Shyyab A, Kahraman A. Non-linear Dynamic Analysis of a Multi-mesh Gear train Using Multi-term Harmonic Balance Method:Period-One Motions [J]. Journal of Sound and Vibration,2005,284(1-2):151-172.
    [23]Al-Shyyab A, Kahraman A. Non-linear Dynamic Analysis of a Multi-mesh Gear train Using Multi-term Harmonic Balance Method:Sub-Harmonic Motions Motions [J]. Journal of Sound and Vibration,2005,279(1-2):417-451.
    [24]巫世晶,刘振浩等.基于谐波平衡法的复合行星齿轮传动系统非线性动态特性[J].机械工程学报,2011,47(1):55-61.
    [25]C.J. Bahk, R.G.Parker. Nonlinear Dynamics of Planetary Gears with Equal Planet Spacing[C]. New York:AMER SOC MECHANICAL ENGINEERS,2008:603-616.
    [26]张锁怀,沈允文,董海军等.用AOM研究强非线性齿轮系统动力学问题[J].机械工程学报,2004,40(12):20-24.
    [27]李华,沈允文等.基于A-算符方法的齿轮系统的分岔与混沌[J].机械工程学报,2002,38(6):11-15.
    [28]方宗德,沈允文,黄镇东.三路功率分流恒星式减速器的动态特性[J].航空学报,1990,11(7):341-350.
    [29]陆俊华,朱如鹏,靳广虎.行星传动动态均载特性分析[J].机械工程学报,2009,45(5):85-90.
    [30]方志勇.风力发电增速箱齿轮传动系统动态特性研究[D].重庆:重庆大学,2008.
    [31]孙智民,沈允文,李素有.封闭行星齿轮传动系统的扭振特性研究[J].航空动力学报,2001,16(2):163-166.
    [32]周建星,董海军.基于非线性动力学的行星传动均载性能研究[J].机械科学与技术,2008,27(6):808-811.
    [33]F.Cunliffe, J. D. Smith, D. B. Welbourn. Dynamic Tooth Loads in Epicyclic Gears[J]. Journal of Engineering for Industry-Transactions of the ASME,1974,96(2):578-584.
    [34]Jian Lin, R.G.Parker. Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration [J]. Journal of Vibration and Acoustics-Transactions of the ASME,1999,121(3):316-321.
    [35]Jian Lin, R.G.Parker. Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters[J]. Journal of Sound and Vibration,1999,228 (1):109-128.
    [36]王世宇,宋轶民等.行星传动系统的固有特性及模态跃迁研究[J].振动工程学报,2005, 18(4):412-417.
    [37]卫一多,刘凯等.风电增速箱行星轮系动力学固有特性研究[J].重型机械,2008,(6):26-30.
    [38]A. Kahraman, G. W. Blankenship. Planet mesh phasing in epicyclic gear sets [C]. Proceedings of International Gearing Conference, Newcastle UK,1994:99-104.
    [39]P. Velex, L. Flamand. Dynamic Response of Planetary Trains to Mesh Parametric Excitations [J]. Journal of Mechanical Design,1996,118(1):7-14.
    [40]R.G.Parker, J.Lin. Mesh Phasing Relationships in Planetary and Epicyclic Gears [J]. Journal of Mechanical Design,2004,126(2):365-370.
    [41]孙智民,沈允文等.星型齿轮传动系统的非线性动力学分析[J].西北工业大学学报,2002,20(2):222-226.
    [42]王建军.计入内齿圈弹性的直齿行星传动动力学研究[D].天津:天津大学,2006.
    [43]鲍和云.两级星型齿轮传动系统分流特性及动力学研究[D].南京:南京航空航天大学,2006.
    [44]赵永强.舰船用大功率两级串联混合行星传动系统动力学研究[D].哈尔滨:哈尔滨工业大学,2010.
    [45]秦大同,肖正明,王建宏.基于啮合相位分析的盾构机减速器多级行星齿轮传动动力学特性[J].机械工程学报,2011,47(23):20-29.
    [46]卫一多.风电增速行星齿轮传动系统的振动分析[D].西安:西安理工大学,2009.
    [47]邵正宇,丁卫东.行星齿轮传动提高工作平稳性的优化设计[J].机械传动,2005,29(5):39-41.
    [48]秦大同,固西国等.兆瓦级风力机齿轮传动系统动力学分析与优化[J].重庆大学学报,2009,32(4):408-414.
    [49]成大先.机械设计手册(第四版)[M].北京:电子工业出版社,2007.
    [50]王龙宝.齿轮刚度计算及其有限元分析[D].江苏:江苏大学,2007.
    [51]申永胜.机械原理教程[M].北京:清华大学出版社,1999.
    [52]刘景军.斜齿轮啮合刚度的计算[J].武汉工程职业技术学院学报,2001,13(2):33-36.
    [53]韩静波,刘更,吴立言,刘光磊.齿轮系统动力学误差激励合成方法研究[J].机械传动,2009,33(5):24-26.
    [54]何辉群,张力伟.建立变形协调关系的解析法[J].宁夏工学院学报(自然科科学版),1995,7(3):83-85.
    [55]陈令国.行星齿轮传动系统的建模与仿真研究[D].辽宁:辽宁工程技术大学,2007.
    [56]任丽蓉.兆瓦级风力发电机组电动变桨距系统研究[D].重庆:重庆大学,2009.
    [57]API PUBLICATION 684-1996[S].America:American Petroleum Institute,1996.
    [58]约翰.M.比格斯.结构动力学[M].北京:人民交通出版社,1982.
    [59]谢官模.振动力学[M].北京:国防工业出版社,2007.
    [60]John Hetzer, David C. Yu, Kalu Bhattarai. An Economic Dispatch Model Incorporating Wind Power[J]. IEEE Transactions on Energy Conversion,2008,23(2):603-611.
    [61]郭新生.风能利用技术[M].北京:化学工业出版社,2007.
    [62]李超.变风载下变速风力发电机传动系统的可靠性评估与动力学特性研究[D].重庆:重庆大学,2011.
    [63]何金波.直驱永磁同步风力发电机组功率平滑控制策略研究[D].重庆:重庆大学,2009.
    [64]郭磊.斜齿轮多间隙非线性辊合系统动力学研究[D].大连:大连理工大学,2010.
    [65]褚洪生等MATLAB7.2优化设计实例指导教程[M].北京:机械工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700