用户名: 密码: 验证码:
循环平稳和解调频技术在故障诊断中的研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
旋转机械周期性运行方式使得所产生的振动信号具有一定的循环平稳性,因此利用循环平稳分析方法能够提取出平稳假设下所不能得到的隐藏的故障特征信息。利用齿轮箱中齿轮和轴承故障时振动信号的循环平稳特性的差异,建立齿轮箱的齿轮和轴承综合故障诊断方法是本文研究工作的重点。为了利用循环平稳分析方法,对描述循环平稳特征的循环统计量进行详细地研究是非常必要的。
     由于循环平稳信号的非平稳特性,循环平稳统计量的估计值与信号的时间起点密切相关,也就是说在计算循环自相关函数时,选择不同的时延方式将会得到不同的计算结果,同时也会影响谱相关函数的频移方式,这种状况的出现导致了循环平稳信息的多样性。因此本文推导了不同形式谱相关函数间的对应关系,以便从不同的谱相关函数中提取出唯一的循环平稳信息。
     时域的离散化必然会导致循环自相关函数在循环频率域的周期化,由于均方带限信号的时延二次变换在时间变量上的带宽是原信号的两倍,因此对于刚好满足Nyquist采样定理的离散信号,其循环自相关函数在循环频率域将不可避免地发生混迭。然而周期化后的谱相关函数则表现为分布在频率和循环频率谱相关平面上的独立菱形区域,不会发生混迭。基于以上分析,提出了对谱相关函数的菱形支撑区进行逆Fourier变换的循环自相关函数的无混迭算法,解决了直接利用离散信号所引起的混迭问题。本文在证明了循环周期图是一无偏非一致估计的基础上,进一步证明了时域平均和频域平滑对循环周期图的影响。从而发现,由于估计样本的有限性,对于含加性平稳噪声的周期信号(一阶循环平稳),谱相关函数在循环频率域并不能完全抑制平稳噪声对周期成分的影响。功率谱和谱相关函数在处理这类信号时将会得到几乎相近的信噪比(谱图中周期成分与背景噪声能量的比值),利用谱相关函数并不会比功率谱更加有效。
     通过分析齿轮箱中齿轮和轴承的运行机理,发现齿轮故障所引起的齿轮箱振动信号具有一阶循环平稳特性,而轴承故障所引起的齿轮箱振动信号却具有二阶循环平稳特性。从循环平稳与纯循环平稳理论的研究中发现,为了有效地抽取信号的循环平稳特性,必须剔除所有低阶循环平稳以排除干扰。将这一思路用在齿轮箱故障诊断中,提出了齿轮箱的齿轮和轴承综合故障诊断方法。利用自适应谱线增强器(或同步平均)将齿轮箱振动信号中的一阶循环平稳成分提取出来,将其能量的改变作为齿轮箱中齿轮故障的判断依据,对自适应谱线增强器的残余信号再利用循环自适应滤波器,抽取出其中的二阶循环平稳分量,则作为齿轮箱中轴承故障的判据,从而达到有效地确定齿轮箱中齿轮和轴承故障状态的目的。
     本文在详细分析了决定调频信号的边频带分布的第一类Bessel函数基本性质的基础上,对调频调幅现象共存时信号调制边带的非对称分布进行了理论上的解释,确定了调频调幅在各种混合模式下信号调制边带对称分布的条件。并找到了平方解调方法不能对调频信号解调的根本原因——调频信号的所有间隔相等的两边频的复幅值乘积之和等于零。为了克服常规的解调方法不能处理调频信号的这一缺陷,必须打破调频信号边带的特殊性,为此本文提出基于时延二次非线性的相关域和循环相关域解调频分析方法,以实现对调频信号的解调。
     最后利用了齿轮箱振动信号对本文所提出的方法进行了验证,振动信号来自对韶关宏大齿轮箱厂生产的SG135-2型变速器相应的实验,实验故障类型包括了变速器二档齿面剥落,五档断齿,输出轴轴承外圈故障和内圈故障。
Due to the periodicity of runing mode of rotating machinery, the vibration signals obtained from these machines are cyclostationary. Therefore, using cyclostationary methods can effectively extract fault’s features from these vibration signals, but it will be very difficult in the hypothesis of stationarity. The main aim of this paper is to make use of the difference of the cyclostationarity in gearbox’s vibration signals when gears and bearings have faults, and establish a gearbox’s integrated diagnosis method based on cyclostationarity. To this goal, the study of the cyclic statistic is an important step before using it.
     Because of the nonstationarity of cyclostationary signals, the estimators of the cyclic statistic depend on the data origination. That means different time-lag pattern of the Cyclic Autocorrelation Function (CAF) will arrive at different results and different frequency-shift mode of the Spectral Correlation Function (SCF). This will lead to some confusion when extracting the cyclostationarity by different estimator expressions for a same signal. Therefore, the relationship of SCF between different expressions is established. Through this method, the exclusive cyclostationarity can be obtained from the results of different expressions.
     The discretization in time domain will result in periodic extension in the frequency and cyclic frequency domain. Because the time-lag quadric transformation of meansquare bandlimited signals has double bandwidth in the time parameter, under the Nyquist sample rate, its CAF will appear aliasing in the cyclic frequency inevitability. But for its SCF, it distributes in the frequency and cyclic frequency plane independently. Based on this discover, an alias-free CAF based on inverse Fourier transformation of SCF in the diamond shape support area is brought forward.
     The quality of estimator of SCF is deduced and a conclusion is made that cyclic periodogram is unbiase and inconsistent. Further more the influence of time average and frequency smooth are deduced too. Because of the limitation of data length, for periodic signals with adding stationary noise (cyclostationary at the first order), SCF do not totally suppress the effect of stationary noise to periodic components. Either PSD or SCF, the SNR of periodic components to background noise is subequal. Therefore, SCF seems more suitable for cyclostationary signals at the second order than at the first order.
     Through study the vibration signals of gearboxs, we find out that the vibration signals induced by a fault gear is cyclostaionary at the first order, and the signals induced by a fault bearing is cylcostationary at the second order. From the knowledge of pure cyclostationarity and cyclostationarity, we know that cyclostationarity at all lower order must be subtracted to define the accurate order of cyclostationarity in the signals. Therefore a new gearbox integrate fault diagnosis method based on cyclostationarity is set up. Using an adaptive line enhancer and a cyclic adaptive filter, the gearbox vibration signal is separated into three parts, i.e., a first-order cyclostationary part and a second-order cyclostationary part and a stationary part. The firs part is used to judge the fault state of gears, and the second one is for bearings. Therefore, the fault whether of gears or bearings in the gearbox can be determined based on them.
     In order to explain the feature of amplitude and phase of FM signals, Bessel function of the first kind is studied, because it is a determinant factor to sideband of FM signals. Based on this, the sideband distribution of signals with AM and FM mixed together is analyzed, and the condition of symmetric sideband distribution is determined in spite of the mix mode of AM and MF is addition or multiplication. Square transform isn’t suitable for FM signals, because of the special feature of Bessel function of the first kind. To overcome this limitation, two kinds of method were established. They are based on asymmetric filtering and time-lag quadratic nonlinearity transformation, respectively. Through these methods, FM signals are transformed to signals which can be demodulated by normal demodulation methods, so FM demodulation is achieve.
     At last, all methods in this study are tested by the vibration signals obtained from gearbox SG135-2, which was made by HongDa Gearbox Company in ShaoGuan. In these tests, four fault modes are used, including second gear spalling, fifth gear broken, bearings in the output shaft with a outer race fault and a inner race fault.
引文
[1] 陈进, 机械设备振动监测与故障诊断, 上海交通大学出版社, 1999.
    [2] 屈梁生, 何正嘉, 机械故障诊断学, 上海科学技术出版社, 1986.
    [3] 丁玉兰, 石来德, 机械设备故障诊断技术, 上海科学技术文献出版社, 1993.
    [4] 徐敏, 欧美大型旋转机械检测诊断技术发展近况与评述, 第四届全国机械诊断技术会议论文集, 1994, 22-26.
    [5] 寇惠, 韩庆大, 故障诊断的振动测试技术, 冶金工业出版社, 1989.
    [6] 雷继尧, 何世德, 机械故障诊断基础知识, 西安交通大学出版社, 1989.
    [7] 张正松, 旋转机械振动监测及故障诊断, 机械工业出版社, 1991.
    [8] 黄文虎, 夏松波, 刘瑞岩, 设备故障诊断原理、技术及应用, 科学出版社, 1996.
    [9] L. Cohen, Time-frequency distributions-a review, Proc. IEEE, 1989, 77(7), 941-981.
    [10] S. Qian, Introduction to time-frequency and wavelet transforms China Machine Press, 2005.
    [11] 张晔, 信号时频分析及应用, 哈尔滨工业大学出版社, 2006.
    [12] O. Rioul, M. Vetterli, Wavelets and signal processing, IEEE SP Magazine (Signal Processing), 1991, 14-37.
    [13] 崔锦泰, 程正兴, 小波分析导论, 西安交通大学出版社, 1995.
    [14] 李建平, 小波分析与信号处理, 重庆出版社, 1997.
    [15] 范剑青, 姚琦伟, 陈敏, 非线性时间序列, 高等教育出版社, 2005.
    [16] 苏文斌, 史维祥, 温熙森, 故障诊断中非线性耦合特征提取的研究, 西安交通大学学报, 1999, 33(1), 88-92.
    [17] 苏文斌, 史维祥, 温熙森, 故障诊断中非线性耦合特征提取(一), 机械研究与应用, 1998, 11(12), 12-13.
    [18] 苏文斌, 史维祥, 温熙森, 故障诊断中非线性耦合特征综合优化(续一), 机械研究与应用, 1998, 11(3), 12-13.
    [19] 王海燕, 非线性时间序列分析及其应用, 科学出版社, 2006.
    [20] 陈进, 姜鸣, 高阶循环统计量理论在机械故障诊断中的应用综述, 振动工程学报, 2001, 14(2), 124-138.
    [21] 张严, 王树勋, 非线性相位耦合的切片谱分析方法, 电子学报, 1998, 26(10), 104-109.
    [22] 张严, 王树勋, 李生红, 二次相位耦合的 3/2 维谱分析, 电子学报, 1996, 24(4), 109-112.
    [23] 王志杰, 丁康, 齿轮箱故障诊断中复杂振动调制现象的分析, 重庆大学学报, 1996, 19(4), 97-102.
    [24] 孙振明, 徐敏强, 王日新, 齿轮箱故障诊断中信号解调方法的研究, 中国机械工程, 2002, 13(17), 1462-1465.
    [25] 王延春, 谢明, 丁康, 包络分析方法及其在齿轮故障振动诊断中的应用, 重庆大学学报, 1995, 18(1), 87-91.
    [26] 朱利民, 钟秉林, 黄仁, 齿轮故障振动信号检波解调分析中的混频效应, 振动工程学报, 1999, 12(3), 331-337.
    [27] 孟涛, 廖明夫, 李辉, 齿轮故障诊断的时延相关解调法, 航空动力学报, 2003, 18(1), 109-113.
    [28] W. A. Gardner, Spectral correlation theory of cyclostationary time-series, Signal Processing, 1986,11(1), 13-36.
    [29] W. A. Gardner, Spectral correlation of modulated signals:I - analog modulation, IEEE Transactions on Communications, 1987, CM-35(6), 584-594.
    [30] W. A. Gardner, Exploitation of spectral correlation in cyclostationary signals, Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling, 1988, Minneapolis, MN, USA, 1-6.
    [31] W. A. Gardner, Rice's representation for cyclostationary processes, IEEE Transaction on Communications, 1987, 35(1), 74-78.
    [32] W. A. Gardner, L. E. Franks, Characterization of cyclostationary randon signal processes, IEEE Transaction on Information Theroy, 1975, IT-21(1), 4-14.
    [33] I. Antoniadis, G. Glossiotis, Cyclostationary analysis of rolling-element bearing vibration signals, Journal of Sound and Vibration, 2001, 248(5), 829-845.
    [34] R. B. Randall, J. Antoni, S. Chobsaard, The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals, Mechanical Systems and Signal Processing, 2001, 15(5), 945-962.
    [35] F. Bonnardot, R. B. Randall, F. Guillet, Extraction of second-order cyclostationary sources - application to vibration analysis, Mechanical Systems and Signal Processing, 2005, 19(6), 1230-1244.
    [36] J. Antoni, F. Bonnardot, A. Raad, M. El Badaoui, Cyclostationary modelling of rotating machine vibration signals, Mechanical Systems and Signal Processing, 2004, 18(6), 1285-1314.
    [37] L. Li, L. Qu, Cyclic statistics in rolling bearing diagnosis, Journal of Sound and Vibration, 2003, 267(2), 253-265.
    [38] J. Antoni, R. B. Randall, Differential diagnosis of gear and bearing faults, Journal of Vibration and Acoustics, Transactions of the ASME, 2002, 124(2), 165-171.
    [39] F. C. Zhou, J. Chen, J. He, G. Bi, F. C. Li, G. C. Zhang, Fault early diagnosis of rolling element bearings combining wavelet filtering and degree of cyclostationarity analysis, Journal of Shanghai Jiaotong University (Science), 2005, 10 E(4), 446-448.
    [40] J. Antoni, R. B. Randall, On the use of the cyclic power spectrum in rolling element bearings diagnostics, Journal of Sound and Vibration, 2005, 281(1-2), 463-468.
    [41] 陈仲生, 杨拥民, 胡政, 沈国际, 基于循环统计量的直升机齿轮箱轴承故障早期检测, 航空学报, 2005, 26(3), 371-375.
    [42] C.M.SPOONER, W. A. GARDNER, The cumulant theory of cyclostationary time-series, part ii: Development and applications, IEEE Trans. on Signal Processing, 1994, 42(12), 3409-3429.
    [43] W. A. Gardner, Introduction to random processes with applications to signals and systems, Second Edition, McGraw-Hill. NY, 1990.
    [44] 张贤达, 保铮, 非平稳信号分析与处理, 北京, 国防工业出版社, 1999.
    [45] 张园, 李力, 基于神经网络和高阶统计量的滚动轴承故障分类, 轴承, 2006, (4), 25-30.
    [46] 尚万峰, 关惠玲, 李志军, 基于高阶统计量自适应滤波的故障特征的提取, 信号处理, 2005, 21(05), 544-549.
    [47] W. A. Gardner, Measurement of spectral correlation, IEEE Trans. On Acoustic, Speech, and Signal Processing, 1986, 341111~1123.
    [48] W. A. Gardner, Spread-spectrum signal detection: A unifying view, signal image processing Lab. Dep. Elec. Comput. Eng. Univ. Calif. Davis. Tech. Rep. SIPL-85-6, 1985.
    [49] W. A. Gardner, The role of spectral correlation in design an performance analysis of synchronizers, IEEE Transaction on Communications, 1986, 34(11), 1089-1095.
    [50] W. A. Brown, H. H. Loomis, Digital implementations of spectral correlation analyzers,Proceeding of the Fourth annual ASSP workshop on Spectrum Estimation and modeling, Minneapolis MN, August 1988, 264~270.
    [51] C. M. Spooner, W. A. Gardner, Estimation of cyclic polyspectral, In Processing 25th Ann. Asilomar Confence Signals, Computation. (Pacific Grove, CA), November 4~6, 1991, 370~376.
    [52] R. S. Roberts, W. A. Brown, H. H. Loomis, A review of digital spectral correlation analysis: Theory and implementation, Cyclostationarity in Communications and Sgianl processing, Piscataway, NJ: IEEE, 1994,
    [53] R. S. Roberts, Architectures for digital cyclic spectral analysis, Ph.D dissertation, Dept. of Electrical Engineering and Computer Science, University of California, Davis, 1989.
    [54] R. S. Roberts, W. A. Brown, H. H. Loomis, Computationally efficient algorithms for cyclic spectral analysis, Signal Processing, 1991, (4), 38~49.
    [55] 亨利·基尔, 马任全, 杨殿伦, 滚动轴承故障分析, 润滑与密封, 1978, (4), 81-89.
    [56] 吴翘平, 关于轴承松动故障的分析与排除, 洪都科技 1980, (1), 22-24.
    [57] 王振华, 滚动轴承运行状态的监测技术, 轴承, 1987, (4), 50-57.
    [58] C. S. Sunnersjo, Rolling bearing vibrations - the effects of geometrical imperfections and wear, Journal of Sound and Vibration, 1985, 98(2), 455-474.
    [59] C. S. Sunnersjo, Varying compliance vibrations of rolling bearings, Journal of Sound and Vibration, 1978, 58(3), 363-373.
    [60] Y. T. Su, M. H. Lin, M. S. Lee, The effects of surface irregularities on roller bearing vibrations, Journal of Sound and Vibration, 1993, 165(3), 455-466.
    [61] I. M. Howard, A review of rolling element bearing vibration dectection, diagnosis and prognosis, Research Report DSTO-RR-0013, Department of Defence, Aeronautical and Maritime Research Laboratory, 1994.
    [62] P. D. McFadden, Advances in the vibration monitoring of gears and rolling element bearings, 1985, Melbourne, Aust, 27-32.
    [63] P. D. McFadden, J. D. Smith, Information from the vibration of rolling bearings, 1984, Swansea, Wales, 178-190.
    [64] P. D. McFadden, J. D. Smith, Vibration produced by a single point defect on the inner race of a rolling element bearing under radial load, Cambridge University, Engineering Department, (Technical Report) CUED/C-Mech, 1983, 31.
    [65] P. D. McFadden, J. D. Smith, Model for the vibration produced by a single point defect in a rolling element bearing, Journal of Sound and Vibration, 1984, 96(1), 69-82.
    [66] N. Tandon, A. Choudhury, Theoretical model to predict the vibration response of rolling bearings in a rotor bearing system to distributed defects under radial load, Journal of Tribology, Transactions of the ASME, 2000, 122(3), 609-615.
    [67] J. T. Sopanen, A. M. Mikkola, Ball bearing vibration analysis including localized and distributed defects, 2003, Chicago, IL, United States, 1021-1030.
    [68] C. James Li, J. Ma, Bearing localized defect detection through wavelet decomposition of vibrations, 1992, Anaheim, CA, USA, 187-196.
    [69] L. Shi, R. B. Randall, J. Antoni, Rolling element bearing fault detection using improved envelope analysis, 2004, Swansea, United Kingdom, 301-311.
    [70] R. B. Randall, Editorial for special edition on gear and bearing diagnostics, Mechanical Systems and Signal Processing, 2001, 15(5), 827-829.
    [71] I. Howard, S. Jia, J. Wang, The dynamic modelling of a spur gear in mesh including friction and a crack, Mechanical Systems and Signal Processing, 2001, 15(5), 831-853.
    [72] B. D. Forrester, Advanced vibration analysis techniques for fault detection and diagnosis in geared transmission systems, PH.D. thesis, Swinburne University of Technology, Australia, 1996.
    [73] D.Brie, M.Tomczak, H.Oehlmann, A.Richard, Gear crack detection by adaptive amplitude and phase demodulation, Mechanical System and Signal Processing, 1997, 11(1), 149-167.
    [74] F. Bonnardot, M. El Badaoui, R. B. Randall, J. Daniere, F. Guillet, Use of the acceleration signal of a gearbox in order to perform angular resampling (with limited speed fluctuation), Mechanical Systems and Signal Processing, 2005, 19(4), 766-785.
    [75] H. Endo, R. B. Randall, Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter, Mechanical Systems and Signal Processing, 2007, 21(2), 906-919.
    [76] P. Bradshaw, R. B. Randall, Early detection and diagnosis of machine faults on the trans alaska pipeline, 1983, Dearborn, MI, USA, 7-17.
    [77] R. M. Stewart, Some useful analysis techniques for gearbox diagnostics, Machine Health Monitoring Group Technical Report: MHM/R/10/77, 1977.
    [78] P. D. McFadden, Interpolation techniques for time domain averaging of gear vbiration, Mechanical System and Signal Processing, 1989, 3(1), 87-97.
    [79] P. D. McFadden, Technique for calculating the time domain averages of the vibration of the individual planet gears and the sun gear in an epicyclic gearbox, Journal of Sound and Vibration, 1991, 144(1), 163-172.
    [80] P. D. McFadden, Window functions for the calculation of the time domain averages of the vibration of the individual planet gears and sun gear in an epicyclic gearbox, Journal of Vibration and Acoustics, Transactions of the ASME, 1994, 116(2), 179-187.
    [81] P. D. McFadden, M. M. Toozhy, Application of synchronous averaging to vibration monitoring of rolling element bearings, Mechanical Systems and Signal Processing, 2000, 14(6), 891-906.
    [82] M. E. Badaoui, F. Guillet, J. Daniere, New applications of the real cepstrum to gear signals, including definition of a robust fault indicator, Mechanical Systems and Signal Processing, 2004, 18(5), 1031-1046.
    [83] A. V. Klimov, Determination of the state of gear transmissions by the method of cepstrum analysis, Soviet Engineering Research, 1983, 3(9), 12-14.
    [84] M. El Badaoui, J. Antoni, F. Guillet, J. Daniere, P. Velex, Use of the moving cepstrum integral to detect and localise tooth spalls in gears, Mechanical Systems and Signal Processing, 2001, 15(5), 873-885.
    [85] S. J. DiMaggio, Acceptance screening of turbopump gears using the cepstrum method, Journal of Propulsion and Power, 2002, 18(3), 572-576.
    [86] H. Tang, J.-Z. Cha, Y. Wang, C. Zhang, Principle of cepstrum and its application in quantitative fault diagnostics of gears, 1991, Miami, FL, USA, 141-144.
    [87] 周德廉, 倒频谱法在齿轮变速箱噪声分析中的应用, 江苏广播电视大学学报, 2003, 14(6), 44-45.
    [88] 张金, 张耀辉, 黄漫国, 倒频谱分析法及其在齿轮箱故障诊断中的应用, 机械工程师, 2005, (8), 34-35.
    [89] 邵国友, 孙延永, 周德廉, 空压机齿轮变速箱噪声的倒频谱分析法, 煤矿机械, 2004, (6), 123-124.
    [90] R. B. Randall, Cepstrum analysis and gearbox fault diagnosis, Maintenance Management International, 1982, 3(3), 183-208.
    [91] G. Dalpiaz, A. Rivola, R. Rubini, Effectiveness and sensitivity of vibration processing techniquesfor local fault detection in gears, Mechanical Systems and Signal Processing, 2000, 14(3), 387-412.
    [92] G. T. Zheng, W. J. Wang, A new cepstrum analysis procedure of recobering excitations for transient components of vibration signals and applications to rotating machinery condition monitoring, ASME Journal of Vibration and Acoustics, 2001, 123(4), 222-229.
    [93] 芮执元, 徐龙云, 李贵明, 基于倒频谱理论的滚动轴承故障检测, 轴承, 2007, (1), 35-37.
    [94] 何晓霞, 沈玉娣, 张西宁, 连续小波变换在滚动轴承诊断中的应用, 机械科学与技术, 2001, 20(4), 571-574.
    [95] 史东峰, 鲍明, 屈梁生, 小波包络分析在滚动轴承诊断中的应用, 中国机械工程, 2000, 11(12), 1382-1385.
    [96] Z. K. Peng, P. W. Tse, F. L. Chu, A comparison study of improved hilbert-huang transform and wavelet transform: Application to fault diagnosis for rolling bearing, Mechanical Systems and Signal Processing, 2005, 19(5), 974-988.
    [97] P. D. McFadden, J. G. Cook, L. M. Forster, Decomposition of gear vibration signals by the generalized s transform, Mechanical Systems and Signal Processing, 1999, 13(5), 691-708.
    [98] W. J. Wang, P. D. McFadden, Application of wavelets to gearbox vibration signals for fault detection, Journal of Sound and Vibration, 1996, 192(5), 927-939.
    [99] S. A. Neild, P. D. McFadden, M. S. Williams, A review of time-frequency methods for structural vibration analysis, Engineering Structures, 2003, 25(6), 713-728.
    [100] N. Tandon, A. Choudhury, Review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings, Tribology International, 1999, 32(8), 469-480.
    [101] T. Kaewkongka, Y. H. J. Au, R. T. Rakowski, B. E. Jones, A comparative study of short time fourier transform and continuous wavelet transform for bearing condtion monitoring, International Journal of COMADEM, 2003, 6(1), 41-48.
    [102] 丁夏完, 刘葆, 刘金朝, 王成国, R. S. D, 胡晓依, 基于自适应 stft 的货车滚动轴承故障诊断, 中国铁道科学, 2005, 26(6), 24-27.
    [103] 吕琛, 王桂增, 基于时频域模型的噪声故障诊断, 振动与冲击, 2005, 24(2), 54-57.
    [104] 田广, 唐力伟, 栾军英, 康海英, 田昊, 基于时频分布的行星齿轮箱滚动轴承故障诊断研究, 机械强度, 2007, 29(1), 152-155.
    [105] 王凤利, 马孝江, 基于局域波时频分析的齿轮故障诊, 农业机械学报, 2006, 37(12), 223-225.
    [106] 孙晖, 朱善安, 基于时延自相关预处理的 hilbert-huang 变换解调, 浙江大学学报(工学版), 2005, 39(12), 1998-2001, 2015.
    [107] V. K. Rai, A. R. Mohanty, Bearing fault diagnosis using fft of intrinsic mode functions in hilbert-huang transform, Mechanical Systems and Signal Processing, 2007, 21(6), 2607-2615.
    [108] R. B. Randall, D. Luo, Hilbert transform techniques for torsional vibration analysis, 1990, Melbourne, Aust, 122-126.
    [109] W. J. Wang, P. D. McFadden, Application of the wavelet transform to gearbox vibration analysis, 1993, Houston, LA, USA, 13-20.
    [110] W. J. Wang, P. D. McFadden, Application of orthogonal wavelets of early gear damage dection, Mechanical System and Signal Processing, 1995, 9(4), 497-507.
    [111] 钟掘, 卓志红, 杨平, 包络-小波分析法用于滚动轴承故障诊断的研究, 中国有色金属学报, 1996, 6(4), 163-165.
    [112] J. Antoni, R. B. Randall, A stochastic model for simulation and diagnostics of rolling element bearings with localized faults, Journal of Vibration and Acoustics, Transactions of the ASME,2003, 125(3), 282-289.
    [113] J. Sopanen, A. Mikkola, Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: Theory, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2003, 217(3), 201-211.
    [114] C. Zhang, G. Zhu, D. Peng, X. Zhang, X. Wang, New demodulation technology of optimizing energy operator and application to gear fault diagnosis, Chinese Journal of Mechanical Engineering (English Edition), 2005, 18(4), 627-630.
    [115] 丁康, 谢明, 张彼德, 赵玲, 复解析带通滤波器及其在解调分析中的应用, 振动工程学报., 2000, 13(3), 385-392.
    [116] 李光, 丛培田, 基于共振解调的滚动轴承故障诊断的研究与实现, 机械工程师, 2006, (10), 129-130.
    [117] J. Ma, C. J. Li, New approach to gear vibration demodulation and its application to defect detection, Proceedings of the 1994 International Mechanical Engineering Congress and Exposition, 1994, Chicago, IL, USA, 299-306.
    [118] 王平, 廖明夫, 齿轮箱中滚动轴承的故障诊断, 航空动力学报, 2005, 20(6), 944-950.
    [119] 田涛, 丁康, 希尔伯特变换及其在故障诊断中的应用, 振动与冲击, 1996, 15(2), 24-27.
    [120] 王秉仁, 希尔伯特变换在机械故障诊断中的应用, 水利电力机械, 2000, (1), 43-45.
    [121] 王平, 廖明夫, 滚动轴承故障诊断的自适应共振解调技术, 航空动力学报, 2005, 20(4), 606-612.
    [122] R. B. Randall, A new method of modeling gear faults, Joural of Mechanical Design, 1982, 104(April), 259-267.
    [123] P. D. McFadden, Detecting fatigue cracks in gears by amplitude and phase demodulation of the meshing vibration, Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986, 108(2), 165-170.
    [124] 唐德尧, 共振解调技术在机械故障诊断中德应用和发展(一), 设备管理与维修, 1991, (11), 22-24.
    [125] 唐德尧, 共振解调技术在机械故障诊断中德应用和发展(二) 设备管理与维修, 1991, (12), 16-18.
    [126] W. Wang, Early detection of gear tooth cracking using the resonance demodulation technique, Mechanical Systems and Signal Processing, 2001, 15(5), 887-903.
    [127] 刘金朝, 丁夏完, 王成国, 自适应共振解调法及其在滚动轴承故障诊断中的应用, 振动与冲击, 2007, 26(1), 38-41.
    [128] 丁康, 江利旗, 解调分析在机械振动分析中应用的局限性研究, 机械科学与技术, 2000, 19(5), 722-725, 728.
    [129] 丁康, 孔正国, 振动调幅调频信号的调制边频带分析及其解调方法, 振动与冲击, 2005, 24(6), 9-12.
    [130] 丁康, 米林, 王志杰, 调制分析在故障诊断中应用的局限性问题, 振动工程学报, 1997, 10(1), 13-20.
    [131] 朱利民, 熊有伦, 解调分析中差频现象的理论分析及细化解调/频谱分析集成算法, 振动工程学报, 2001, 14(4), 409-413.
    [132] 郑晓溪, 丁康, 江利旗, 希尔伯特变换解调分析在故障诊断中应用的局限性研究, 汕头大学学报(自然科学版), 1999, 14(2), 40-46.
    [133] 钟发祥, 罗海运, 用瞬态频率波动法诊断齿轮故障, 振动与冲击, 1996, 15(1), 49-53.
    [134] A. C. McCormick, A. K. Nandi, L. B. Jack, Application of periodic time-varying autoregressive models to the detection of bearing faults, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1998, 212(6), 417-428.
    [135] N. Bouguerriou, M. Haritopoulos, C. Capdessus, L. Allam, Novel cyclostationarity-based blind source separation algorithm using second order statistical properties: Theory and application to the bearing defect diagnosis, Mechanical Systems and Signal Processing, 2005, 19(6), 1260-1281.
    [136] R. B. Randall, J. Antoni, S. Chobsaard, Comparison of cyclostationary and envelope analysis in the diagnostics of rolling element bearings, 2000 IEEE Interntional Conference on Acoustics, Speech, and Signal Processing, 2000, Istanbul, Turkey, 3882-3885.
    [137] A. C. McCormick, A. K. Nandi, Cyclostationarity in rotating machine vibrations, Mechanical Systems & Signal Processing, 1998, 12(2), 225-242.
    [138] C. Capdessus, M. Sidahmed, J. L. Lacoume, Cyclostationary processes: Application in gear faults early diagnosis, Mechanical Systems and Signal Processing, 2000, 14(3), 371-385.
    [139] C. Capdessus, E. Sekko, Estimation of cyclic cumulants by moving average. Application to the diagnosis of rotating machinery, 2002, Leuven, Belgium, 1555-1562.
    [140] 姜鸣, 循环统计量理论及其在滚动轴承故障诊断中的应用研究, 上海交通大学, 上海, 2002.
    [141] 姜鸣, 陈进, 循环自相关函数的解调性能分析, 上海交通大学学报, 2002, 36(6), 43-46.
    [142] 姜鸣, 陈进, 秦恺, 时变调幅信号的循环平稳特征讨论和应用, 上海交通大学学报, 2001, 35(12), 1798-1801.
    [143] 姜鸣, 陈进, 秦恺, 循环周期图在滚动轴承故障诊断中的应用, 机械科学与技术, 2002, 21(1), 108-110.
    [144] 姜鸣, 陈进, 秦恺, 汪慰军, 一阶循环矩分析在旋转机械振动信号分析中的应用, 振动工程学报, 2001, 14(4), 424-428.
    [145] 姜鸣, 陈进, 周福昌, 一种改进的循环自相关函数分析方法.2002 年论文集,2002 年 10 月16~19 日于,pp:958~963, 全国振动(诊断、模态、噪声与结构动力学)工程及应用学术会议, 2002, 北京, 958-963.
    [146] 金大玮, 贾民平, 循环自相关函数在旋转机械故障诊断中的应用, 机械制造与研究, 2006, (1),
    [147] 李力, 廖湘辉, 应用循环自相关函数诊断齿轮故障, 三峡大学学报, 2003, 25(2), 129-133.
    [148] 李力, 屈梁生, 二阶循环统计量在机械故障诊断中的应用, 西安交通大学学报, 2002, 36(9), 943-946.
    [149] 李力, 屈梁生, 循环统计量方法在滚动轴承故障诊断中的应用, 振动、测试与诊断, 2003, 23(2), 116-119.
    [150] 李力, 屈梁生, 循环域解调方法在滚动轴承故障诊断中的应用, 轴承, 2003, (10), 33-36.
    [151] 王锋, 屈梁生, 小波-循环谱密度法在旋转机械故障诊断中的应用, 中国设备工程, 2002, (6), 38-39.
    [152] 姜鸣, 循环统计量理论及其在滚动轴承故障诊断中的应用研究, 博士论文, 上海交通大学, 上海, 2002.
    [153] L. Bouillaut, M. Sidahmed, Comparison of the cyclostationary and the bilinear approaches: Theoretical aspects and applications to industrial signals, IEEE Signal Processing Workshop on Statistical Signal and Array Processing, SSAP, 2000, 702-706.
    [154] L. Bouillaut, M. Sidahmed, Cyclostationary approach for the early diagnosis and physical analysis of industrial signals, 2000, Leuven, Belgium, 945-952.
    [155] L. Bouillaut, M. Sidahmed, Cyclostationary and bilinear approaches for gears vibrating signals, Key Engineering Materials, 1999, 167-168354-362.
    [156] J. Antoni, J. Daniere, F. Guillet, Effective vibration analysis of ic engines using cyclostationarity. Part ii - new results on the reconstruction of the cylinder pressures, Journal of Sound and Vibration, 2002, 257(5), 839-56.
    [157] J. Antoni, J. Daniere, F. Guillet, Effective vibration analysis of ic engines using cyclostationarity. Part i - a methodology for condition monitoring, Journal of Sound and Vibration, 2002, 257(5), 815-37.
    [158] 秦恺, 陈进, 姜鸣, 陈春梅, 一种滚动轴承故障特征提取的新方法-谱相关密度, 振动与冲击, 2001, 20(1), 34-37.
    [159] 严榴香, 李力, 汤光华, 广义循环平稳随机过程的定义及其性质, 解放军理工大学学报(自然科学版), 2003, 4(3), 100-102.
    [160] L. Bouillaut, M. Sidahmed, Cyclostationary approach and bilinear approach comparison, applications to early diagnosis for helicopter gearbox and classification method based on hocs, Mechanical Systems and Signal Processing, 2001, 15(5), 923-943.
    [161] W. A. Gardner, Statistical spectral analysis: A nonprobabilistic theroy, Englewodd Cliffs, NJ, Prentice-Hall, 1987.
    [162] W. A. Gardner, Exploitation of spectral redundancy in cyclostationary signals, IEEE SP Magazine (Signal Processing), 1991, 8(2), 14-36.
    [163] 王宏禹, 非平稳随机信号分析与处理, 北京, 国防工业出版社, 1999.
    [164] G. D. Zivanovic, W. A. Gardner, Degrees of cyclostationarity and their application to signal detection and estimation, Signal Processing, 1991, 22(3), 287-297.
    [165] G. F. Boudreaux-Bartels, T. W. Parks, Reducing aliasing in the wigner distribution using implicit spline interpolation, 1983, Boston, Mass, USA, 1438-1441.
    [166] E. Chassande-Mottin, A. Pai, Discrete time and frequency wigner-ville distribution: Moyal's formula and aliasing, IEEE Signal Processing Letters, 2005, 12(7), 508-511.
    [167] A. H. Nuttall, Alias-free smoothed wigner distribution function for discrete-time samples, 1991, Honolulu, HI, USA, 1438-1445.
    [168] S.-c. Chan, K.-L. Ho, Efficient computation of the discrete wigner-ville distribution, 1990, New Orleans, LA, USA, 2165-2168.
    [169] T. A. C. M. Claasen, W. F. G. Mecklenbrauker, Aliasing problem in discrete-time wigner distributions, IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, ASSP-31(5), 1067-1072.
    [170] A. H. Costa, G. F. Boudreaux-Bartels, Overview of aliasing errors in discrete-time formulations of time-frequency representations, IEEE Transactions on Signal Processing, 1999, 47(5), 1463-1474.
    [171] M. S. Richman, T. W. Parks, R. G. Shenoy, Discrete-time, discrete-frequency time-frequency representations, 1995, Detroit, MI, USA, 1029-1032.
    [172] A. H. Costa, G. F. Boudreaux-Bartels, Comparative study of alias-free time-frequency representations, 1994, Philadelphia, PA, USA, 76-79.
    [173] F. Peyrin, R. Prost, A unified definition for the discrete-time, discrete-frequency, and discrete-time/frequency wigner distributions, IEEE transactions on Acoustics, Speech, And Signal Processing., 1986, 34(4), 858-866.
    [174] M. H. Hayes, Statistical digital signal processing and modeling, New York, John Wiley &Sons, 1996.
    [175] F. Attivissimo, M. Savino, A. Trotta, Power spectral density estimation via overlapping nonlinearaveraging, IEEE Transactions on Instrumentation and Measurement, 2001, 50(5), 1418-1424.
    [176] F. Vernotte, Estimation of the power spectral density of phase: Comparison of three methods, Proceedings of the Annual IEEE International Frequency Control Symposium, 1999, 21109-1112.
    [177] R. Martin, Noise power spectral density estimation based on optimal smoothing and minimum statistics, IEEE Transactions on Speech and Audio Processing, 2001, 9(5), 504-512.
    [178] G.-H. Ding, T. Huang, B. Xu, Suppression of additive noise using a power spectral density mmse estimator, IEEE Signal Processing Letters, 2004, 11(6), 585-588.
    [179] 刘嘉焜, 应用随机过程, 科学出版社, 2000.
    [180] 赵希人, 工程中的随机过程, 黑龙江教育出版社, 1988.
    [181] 闵华玲, 随机过程, 同济大学出版社, 1987.
    [182] 李漳南, 吴荣, 随机过程教程, 高等教育出版社, 1987.
    [183] M. S. Bartlett, An introduction to stochastic processes with special reference to methods and applications, New York, Cambridge University Press, 1953.
    [184] R. B. Blackman, J. W. Tukey. (1958). "The measurement of power spectra." Dover Publlications, Inc, New York.
    [185] W. B. Davenport, Probability and random processings, New York, MeGraw Hill, 1970.
    [186] 张贤达, 现代信号处理, 北京, 清华大学出版社, 2002.
    [187] W. A. Gardner, C. M. Spooner, The cumulant theory of cyclostationary time-series, part i: Foundation, IEEE Transactions on Signal Processing, 1994, 42(12), 3387-3408.
    [188] 韩捷, 张琳娜, 齿轮故障的振动频谱机理研究, 机械传动, 1997, 21(2), 21-24.
    [189] A. Raad, J. Antoni, B. Randall, M. Sidahmed, Gear vibration modeling and fault characterization, 2002, Leuven, Belgium, 1487-1495.
    [190] J. Antoni, R. B. Randall, Unsupervised noise cancellation for vibration signals: Part i - evaluation of adaptive algorithms, Mechanical Systems and Signal Processing, 2004, 18(1), 89-101.
    [191] J. Antoni, R. B. Randall, Unsupervised noise cancellation for vibration signals: Part ii - a novel frequency-domain algorithm, Mechanical Systems and Signal Processing, 2004, 18(1), 103-117.
    [192] 赫金, 自适应滤波器原理, 电子工业出版社, 2006.
    [193] 毕果, 基于循环平稳的滚动轴承及齿轮微弱故障特征提取应用研究, 博士论文, 上海交通大学, 2007.
    [194] W. A. Gardner, Cyclic wiener filtering: Theory and method, IEEE Transaction on Communications, 1993, 41(1), 151-163.
    [195] G. Gelli, L. Paura, A. M. Tulino, Cyclostationarity-based filtering for narrowband interference suppression in direct-sequence spread-spectrum systems, IEEE Journal on Selected Areas in Communications, 1998, 16(9), 1747-1755.
    [196] S. Wan, K. T. Chan, Cyclic wiener filtering with adaptive frequency shift parameters in fading channels, 2005 NPRA Annual Meeting, 2000, San Francisco, CA, United States, 246-247.
    [197] 王竹溪, 郭敦仁, 特殊函数概论, 北京大学出版社, 2000.
    [198] 刘式适, 刘式达, 特殊函数, 气象出版社, 1988.
    [199] M. Abramowitz, I. A. e. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th printing, New York: Dover 1972.
    [200] 任怀宗, 师先进, 特殊函数及其应用, 中南工业大学出版社, 1986.
    [201] 张帆, 丁康, 广义检波解调分析的三种算法及其局限性研究, 振动工程学报, 2002, 15(2), 243-248.
    [202] 王立忠, 屈梁生, 自相关函数的除噪作用及其在工程中的应用, 中国设备工程, 2001, (7),35-36.
    [203] 王立忠, 屈梁生, 自相关函数的除噪作用及其在工程中的应用(续), 中国设备工程, 2001, (8), 35-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700