用户名: 密码: 验证码:
非定常扰动下非线性Rossby孤立波动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从J.S.Russell首次观察到孤立波以来,孤立波的研究一直是力学、物理学、应用数学、大气和海洋科学等学科交叉的前沿性课题,Rossby孤立波的研究是这一主题的一个重要分支。
     本论文采用理论分析、符号运算和数值模拟相结合的方法,研究了不同深度正压、层结流体中非定常扰动激发的Rossby孤立波的生成、演化以及相互作用,特别考虑了耗散等因素的影响。前人的研究通常针对定常扰动对Rossby孤立波的影响展开,本文主要考虑非定常扰动对Rossby孤立波生成、演化的影响以及与Rossby孤立波的相互作用,具有重要的理论意义与应用价值。
     首先针对无粘、不可压缩的正压流体,从包含耗散、地形的准地转位涡方程出发,运用扰动和时空伸长变换方法,推导出控制Rossby孤立波振幅的一维模型。利用推广的雅可比椭圆函数法以及扰动方法,获得了非受迫模型的解析解,分析了耗散对Rossby孤立波速度、宽度的影响,并得到了Rossby孤立波的守恒律。利用拟谱方法对模型进行数值求解,讨论了各种状态(共振、超临界、亚临界)下不同地形(不稳定地形,波动地形)对Rossby孤立波的影响,解释了波动地形能在一定程度上阻止孤立波破碎等海洋现象。
     其次针对无粘、不可压缩的层结流体,采用相似步骤得到层结流体Rossby孤立波的控制模型,特别是获得了新的代数Rossby孤立波控制模型,推广了通常描述代数Rossby孤立波的BO模型和ILW模型。通过数值模拟,讨论了非定常外源对Rossby孤立波的影响,解释了大气和海洋中的阻塞和振荡等现象。
     最后研究了正压流体中二维Rossby孤立波,推导出带耗散的二维经血Rossby孤立波控制模型,讨论了二维Rossby孤立波的守恒律,并运用正弦和余弦函数方法获得了模型的周期解与类孤立波解,讨论了耗散对Rossby孤立波振幅、移动速度以及宽度的影响。同时首次研究了二维代数Rossby孤立波,推导出了控制二维代数Rossby孤立波振幅的修正二维BO-Burgers模型,修正二维ILW-Burgers模型,扩大了二维Rossby孤立波的研究范围。本部分的研究是对非线性Rossby孤立波动力学研究的一个有益补充。
Since J.S.Russell observed the solitary waves firstly, the research on solitarywaves has become an advanced subject in mechanics, physics, applied mathemat-ics, atmospheric and oceanic sciences and so on, and has significant theoreticaland real meaning. The research on Rossby solitary waves is an important branchof the theme.
     In this thesis, the generation, evolution, interaction of Rossby solitary waveswhich excited by unsteady perturbation in barotropic and stratified fluid of difer-ent depth are investigated by employing the method of combination of theoreticalanalysis, symbolical computation and numerical simulation, especially here dissi-pation efect is considered. The former research commonly focused on the efectof steady perturbation on the Rossby solitary waves, while in the paper we con-sider the efect of unsteady perturbation on the generation, evolution, interactionof Rossby solitary waves, which has important theoretical and application value.
     Firstly, for the inviscid, incompressible barotropic fluid of diferent depth,from the quasi-geostrophic vorticity equation including topography and dissipa-tion, with the help of the perturbation method and stretching transform of timeand space, one-dimensional models governing the amplitude of Rossby solitarywaves are derived. By using the Jacobi elliptic function expansion method andperturbation method, the analytical solutions of corresponding homogeneous e-quations of the above models are obtained, the speed, dissipation efect and so onof Rossby solitary waves are discussed and the conservation laws of Rossby soli-tary waves are derived. By virtue of the pseudo-spectral method, the numericalsimulation of models are carried out. With the help of these water-fall plots, theefects of topography(unsteady topography, wavy topography) on Rossby solitarywaves are discussed under diferent states(resonant state, supercritical state, sub-critical state). The discussion can be used to explain the ocean phenomenon thatthe wavy bottom forcing can prevent wave breaking to some extent.
     Next, the inviscid, incompressible stratified fluid of diferent depth is con- sidered. By using the same method and procedure, the models governing theamplitude of Rossby solitary waves in the stratified fluid are derived. Comparingwith the former models, the nonlinearity is stronger in these models. Some ofthem are the generalization of the former models. By numerical simulation, theefect of unsteady external source on Rossby solitary waves are discussed and theblock and oscillation phenomenon which happen in ocean and atmosphere areexplained.
     Finally, the two-dimensional Rossby solitary waves in barotropic fluid arestudied. Similar to the previous chapters, the two-dimensional classical Rossbysolitary waves model with dissipation efect is derived. The conservation laws oftwo-dimensional Rossby solitary waves are analyzed. By employing the sin andcos function method, the periodical solutions and the solitary-wave-like solutionsof model are obtained. By virtue of the analytic solution, the efect of dissipa-tion on the amplitude, speed and width of Rossby solitary waves is researched.Meanwhile, the research of two-dimensional algebraic Rossby solitary waves isfirst carried out, and the modified two-dimensional BO-Burgers model, modifiedtwo-dimensional ILW-Burgers model are derived. It enlarges the research scopeof two-dimensional Rossby solitary waves model. The research in the paper is abeneficial supplement for nonlinear Rossby waves dynamics.
引文
[1]程艺,阿妹.积分型Darboux变换.数学年刊,1999,20(6):667-672.
    [2]崔洪农,杨学群,庞小峰,向隆万.非传播孤波的特性研究.水动力学研究与进展A辑,1991,6(1):18-25
    [3]戴世强,臧宏鸣.内孤立波的计算机代数研究.自然杂志,1994,17(3):177-178.
    [4]范恩贵,张鸿庆.非线性孤子方程的齐次平衡法.物理学报,1998,47:353-363.
    [5]房少梅.一类广义KdV方程组的谱和拟谱方法.计算数学,2002,8:353-362.
    [6]傅晓卫,许有丰.地形外源对冬季定常行星波形成的影响.大气科学,1994,18(1):72-80.
    [7]耿献国.变形Boussinesq方程的Lax对和Darboux变换解.应用数学和力学,1988,113:324-328.
    [8]谷超豪等.孤立子理论与应用[M].浙江:浙江科技出版社,1995.
    [9]蒋后硕,吕克利.切变气流中地形强迫激发的非线性长波.高原气象,1998,17(3):231-244.
    [10]金飞飞,朱抱真.在周期性热源强迫下,非线性大气强迫波振幅的非周期和准周期振荡-无耗散系统.中国科学B辑,1985,8:764-773.
    [11]李建平,丑纪范.非定常外源强迫下大尺度大气方程组解的性质.科学通报,1995,40(13):1207-1209.
    [12]李建平,丑纪范.大气吸引子的存在性.中国科学D辑,1997,27(1):89-96.
    [13]李子良.三维分层流动过双山脉地形激发的大气传播重力波动力学理论和数值模拟.地球物理学报,2007,50(1):34-42.
    [14]刘式达,傅遵涛,刘式适,赵强.非线性波动方程的Jacobi隋圆函数包络周期解.物理学报,2002,51(4):718-723.
    [15]刘式适,谭本馗.考虑β变化下的Rossby波.应用数学和力学,1992,13:35-44.
    [16]刘式适,付遵涛,刘式达,赵强.一类非线性方程的新周期解.物理学报,2002,51(1):10-15.
    [17]楼森岳,唐晓艳.非线性数学物理方法.科学出版社,北京,2006,23-28.
    [18]罗德海,纪立人.大气阻塞形成的一个理论.中国科学(B辑),1989,1:111-121.
    [19]罗德海.旋转正压大气中的非线性Schrodinger方程和大气阻塞.气象学报,1990,48(3):265-274.
    [20]罗德海.正压大气中的代数Rossby孤立波.气象学报,1991,49(3):269-277.
    [21]罗德海.考虑β变化下的Rossby孤立波与偶极子阻塞.应用气象学报,1995,6(2):220-227.
    [22]罗德海,卢燕.海洋中地形强迫的孤立涡旋的演变及其相互作用.海洋学报,1999,21(6):1-8.
    [23]罗德海.天气尺度波强迫包络孤立子理论与阻塞机理.2002,中国海洋大学博士学位论文。
    [24]吕克利.大地形和外源激发的定常和非定常的行星波动.热带气象学报,1994,10(3):247-256.
    [25]吕克利,朱永春.大地形对Rossby波波射线的影响,气象学报,1994,52(4):405-413.
    [26]吕克利,蒋后硕.近共振地形强迫Rossby孤立波,气象学报,1996,54(2):142-153.
    [27]吕克利,蒋后硕.外源与孤波的相互作用对阻塞形成的影响.应用气象学报,1998,9(4):431-440.
    [28]糜振星,刘应中,缪国平等.流对浅水波在缓变地形上的传播的影响.水动力学研究与进展,1992,73:359-368.
    [29]宋健,赖俊峰.正压流体中具有β效应与地形效应的强迫Rossby孤立波.物理学报,2010,59(7):4756-4760.
    [30]宋健,姜楠,杨联贵.切变基本纬向流中β效应的赤道Rossby孤立波包.物理学报,2011,60(2):024701.
    [31]苏晓冰,魏岗,戴世强.分层流体中的二维代数孤立波及其垂向结构.应用数学与力学,2005,26(10):1143-1151.
    [32]谭本馗,伍荣生.非线性Rossby波及其相互作用,I.Rossby包络孤立波的碰撞.中国科学,B辑,1993,4:437-448.
    [33]谭本馗,伍荣生.强迫耗散作用下的Rossby包络孤立波及其相互作用.大气科学,1995,19(3):289-300.
    [34]谈骏渝,范镜泓KdV-Burgers方程的级数解.力学学报,2000,32(2):159-170.
    [35]万德成.用VOF法数值模拟孤立波迎碰及在后台阶上的演化.计算物理,1998,15(6):656-666.
    [36]王明亮,李志斌,周宇斌.齐次平衡原则及其应用.兰州大学学报,1999,35(3):8-15.
    [37]王巧龙,黄明游.正则化长波方程孤立波的数值模拟.吉林大学自然科学学报,1997,7(3):1-13.
    [38]魏岗,戴世强.分层流体中运动源生成的内波研究进展.力学进展,2006,36(1):111-124.
    [39]曾庆存.数值天气预报的数学物理基础(第一卷).北京:科学出版社,1979.
    [40]赵强.地形对热带大气超长尺度Rossby波动的影响.热带气象学报,1997,13:140-145.
    [41]钟建新,颜晓红.基底波动对流体表面孤立波的影响,湘潭大学自然科学学报,1992,4(1):40-43.
    [42]朱祚金,吴同强,袁小平,陈义良.KdV-Burgers方程的拟特征线方法求解.中国科技大学学报,1997,27(4):481-486.
    [43]周显初.流体力学中的强迫孤立波.力学进展,1998,28(3):374-382.
    [44]Ablowitz, M.J. and Segur, H.. Solitons and the inverse scattering transfor-m[M]. SIAM Studies in applied Mathematics. SIAM, Philadelphia,1981.
    [45]Akylas, T.R.. On the excitation of long nonlinear water waves by a moving pressure distribution. J.Fluid Mech.,1984,141:455-466.
    [46]Bai, Y. C., Xu, H. Y. and Lu, D. Q.. Nonlinear evolution of the wave on the small amplitude uneven sloping bed. Applied Mathematics and Mechanics,2005,26(5):654-661.
    [47]Benjamin, T. B.. Internal waves of permanent form in fluids of great depth. J. Fluid Mech.,1967,29(3):559-592.
    [48]Benny, D. J.. Long non-linear waves in fluid flows. Journal of Mathematical Physics,1966,45:52-63.
    [49]Benney, D. J.. Large amplitude Rossby waves. Stud. Appl. Math.,1979,60:1-10.
    [50]Boyd, J. P.. Equatorial solitary waves.Part1:Rossby solitons. Journal of Phys.Oceanogr.,1980,10:1699-1717.
    [51]Boyd, J. P.. Weakly non-linear solitons for capillary-gravity waves:fifth-degree Korteweg-de Vries equation. Physica D,1991,48:129-146.
    [52]Casciola, C. M. and Landrini, M.. Nonlinear long waves generated by a moving pressure disturbance. J. Fluid Mech.,1996,325:399-419.
    [53] Chashechkin, Y. D. and Makarov, S. A.. The time-dependent motion dueto a cylinder moving in an unbounded rotating or stratified fluid. J. FluidMech.,1984,276:210-213.
    [54] Chelton, D. B. and Schlax, M. G.. Global observations of oceanic Rossbywave. Science,1996,272:234-238.
    [55] Chen, D. Y., Zhang, D. J. and Deng, S. F.. The novel multi-soliton solutionsof the MKdV-sine Gordon equations. J.Phys.Soc.Japn.,2002,71(2):658.
    [56] Chraney, J. G. and Straus, D. M.. Form-Drag Instability, Multiple Equilib-ria and Propagating Planetary Waves in Baroclinic, Orographically Forced,Planetary Wave Systems. Journal of the Atmospheric Sciences,1980,37:1157-1176.
    [57] Clarke, A.. Solitary and cnoidal planetary waves. Geophysical Fluid Dynam-ics,1971,2:343-354.
    [58] Cole, S. L.. Transient waves produced by flow past a bump. Wave Motion,1985,7:579-587.
    [59] Davis, R. E.. Solitary internal waves in deep water. J. Fluid Mech,1967,29:593-607.
    [60] Davis, A. F. and Heathershaw, A. D.. Surface-wave propagation over sinu-soidally varying topography. J. of Fluid Mech.,1984,144:419-443.
    [61] Davis, A. G. and Villaret, C.. Prediction of sand transport rates by wavesand currents in the coastal zone. Continental Shelf Research,2002,22:2725-2737.
    [62] Dupon, P. and Vision, B.. Internal wave generation by a translating andoscillating sphere. Dyn. Atm. Oceans,1996,23(1):289-298.
    [63] Fornberg, B. and Driscoll, T. A.. A fast spectral algorithe for nonlinear waveequations with linear dispersion. J. of Compu. Phys.,1999,155:456-467.
    [64] Gao, S. T.. Nonlinear Rossby wave induced by large-scale topography. Ad-vances in Atmospheric Sciences,1988,5(3):301-310.
    [65] Gear, J. A. and Grimshaw, R. H. J.. A second-order theory for solitary wavesin shallow fluids, Phys. Fluids,1983,26:14-29.
    [66] Gear, J. A. and Grimshaw, R. H. J.. Weak and strong interaction betweeninternal solitary waves. Studies Appl. Math.,1984,68:253-258.
    [67] Gottwald, G. A.. The Zakharov-Kuznetsov equation as a two-dimensionalmodel for nonlinear Rossby wave. arXiv:nlin,2003,0312009.
    [68] Gree, W.C. and Swaters, G.E.. On the topographic dephasing and ampli-tude modulation of nonlinear Rossby wave interactions. Geophys, Astrophys.Fluid Dyn.,1991,61:75-99.
    [69] Grimshaw, R. H. J.. Evolution equations for long nonlinear waves in strati-fied shear flows. Studies Appl. Math.,1981,65:159-188.
    [70] Grimshaw, R. H. J. and Smyth, N.. Resonant flow of a stratified fluid overtopography. J.Fluid Mech.,1986,169:429-464.
    [71] Grimshaw, R. H. J. and Yi, Z. X. Resonant generation of finite-amplitudewaves by the flow of a uniformly stratified fluid over topography. Journal ofFluid Mechanics,1991,229:603-628.
    [72] Grimshaw, R. H. J. and Zhu, Y.. Oblique interactions between internal soli-tary waves. Studies Appl. Math.,1994,92:249-270.
    [73] Grimshaw, R. H. J., Malomed, B. A. and Tian, X.. Gap-soliton hunt incoupled Korteweg-de Vries system. Physics Letters A,1995,201:285-292.
    [74] Grimshaw, R. H. J., Pelinovsky, E. and Poloukhina, O.. Higher-orderKorteweg-de Vries models for internal solitary waves in a stratified shearflow with a free surface. Nonlinear Processes in Geophysics,2002,9:221-235.
    [75] Guo, B. Y. and Ma, H. P.. Spectral methods for two-dimensional incom-pressible flow. J. of Math. Research and Exposition,1999,19(2):375-390.
    [76] Hare, T. J. O. and Davies, A. G.. A comparison of two models for surface-wave propagation over rapidly varying topography. Applied Ocean Research,1993,15:1-11.
    [77] Hidekazu, T. and Masayuki, O.. Oblique interaction of internal solitarywaves in a two-layer fluid of infinite depth. Fluid Dynamics Research,2001,29:251-267.
    [78] Hough, S.. On the application of harmonic analysis to the dynamical theoryof the tides, Part I on Laplace’s oscillations of the first species, and onthe dynamics of ocean currents. Phil. Trans. Royal Soc. Lon.,1897,189A:201-257.
    [79] Hu, X. B. and Clarkson, P. A.. Rational solutions of an extended Lotka-Volterra equation. J.Non.Math.Phys.,2002,9:73-86.
    [80] Hurley, D. G. and Keady, G.. The generation of internal waves by vibratingelliptic cylinders, Part2. Approximate viscous solution. J. Fluid Mech,1997,351:119-138.
    [81] Hruley, D. G. and Hood, M. J.. The generation of internal waves by vibratingelliptic cylinders, Part3. Angular oscillations and comparison of theory withrecent experimental observations. J Fluid Mech,2001,433:61-75.
    [82] Jin, F. F. and Ghil, M.. Intraseasonal oscillations in the extratropics:Hopfbifurcation and topographic instabilities. J. Atmos. Sci.,1990,47:3007-3022.
    [83] Johnson, R. S.. Some numerical solutions of a variable-coefcient Korteweg-de Vries equation. J. Fluid Mech.,1972,64:81-91.
    [84] Kao, T. W., Pao, H. P. and Renourd, D.. Internal solitons on the pycnocline:generation, propagation, and shoaling on breaking over a slope. J. FluidMech.,1985,159:19-53.
    [85] Kakutani, T. and Yamasaki, N.. Solitary waves in a two-layer fluid.J.Phys.Soc.Japan,1978,45:674-679.
    [86] Keulegan, G. H.. Characteristics of internal solitary waves. J. Res. Natl.Bur. Stand.,1953,51:133-140.
    [87] Koop, C. G. and Bulter, G.. An investigation of internal solitary waves in atwo-fluid system. J. Fluid Mech.,1981,112:225-251.
    [88] Lamb, K. and Yan, L.. The evolution of internal wave undularbores:comparisons of a fully nonlinear of a fully nonlinear numerical modelwith weakly nonlinear theory. J. Phys. Oceanography,1996,26:2712-2734.
    [89] Lane-serf, G. F.. Topographic and boundary efects on steady and unsteadyflow through straits. Deep-Sea Research II,2004,51:321-334.
    [90] Larsen, L.N.. Solitary waves in the wasterlies. J.Atmos.Sci.,1965,22:222-224.
    [91] Latif, M. and Bamett, T. P.. Causes of decadal climate variability over theNorth Pacific and North America. Sciences,1994,266:634-637.
    [92] Latif, M. and Bamett, T. P.. Decadal climate variability over the NorthPacific and North America: Dynamics and predictability. J. Clim.,1996,9:2407-2423.
    [93] Lee, C. and Beardsley, R. C.. The generation of long nonlinear internal wavesin a weakly stratified shear flow. J. Geophys. Res.,1974,79:453-462.
    [94] Lee, S. J.. Generation of long water waves by moving disturbances.Ph.D.thesis, California Institute of Technology,1985.
    [95] Li, D.. Simulation of stratified flow over three-dimensional topography.Ph.D. Thesis, Stanford University. U.S.A.,2002.
    [96] Li, G.Q.. The atmospheric circulation features seen in the rotating fluidphysics experiments. Acta Meterologica Sinica,1993,51:405-413.
    [97] Li, Y. S., Ma, W. X. and Zhang, J. E.. Darboux transformation of classicalBoussinesq system and its soliton solutions. Physics Letters A.,2000,275:60-66.
    [98] Lighthill, J.. Waves in fluid. Cambridge: Cambridge University Press,1978.
    [99] Li, X., Wang, Y. G. and Sha, S. M.. Numerical simulation of topographychange in reclaimed land along coast of South China Sea. J. of Hydrody-namics,series B,2002,17:87-92.
    [100] Lin, M. and Li, J. C.. Efects of surface waves and marine soil parameters onseabed stability. Applied Mathematics and Mechanics,2001,22(8):904-916.
    [101] Liu, R. X. and Wu, L. L.. Small stencil pade schemes to solve nonlinearevolution equations. Appl. Math. Mech.,2005,26(7):872-881.
    [102] Long, R. R.. Solitary waves in one-and two-fluids system. Tellus,1956,8:460-471.
    [103] Long, R. R.. Solitary waves in the westerlies. Journal of the AtmosphericSciences,1964,21:197-200.
    [104] Luo, D.H.. Quasi-resonant interactions among barotropic Rossby waveswith two-wave topography and low frequency dynamics. Geophys. Astro-phys.Fluid Dyn.,1994,76:145-163.
    [105] Luo, D. H.. A barotropic envelope Rossby soliton model for block-eddyinteraction. Part I: efect of topography. J. of the Atmospheric Sciences,2005,62:5-21.
    [106] Lv, K. L. and Jiang, H. S.. Interaction of topography with solitary Rossbywaves in a near-resonant flow. Acta Meteor. Sin.,1997,11(2):204-215.
    [107] Malanotte-Rizzoli, P.. Boundary-forced nonlinear planetary radiation.J.Phys.Oceanogr.,1984,14:1032-1046.
    [108] Marcus, S. L., Ghil, M. and Dickey, J.O.. The extratropical40day oscil-lation in the UCLA general circulation model Part I:Atmospheric angularmomentum. J. Atmos. Sci.,1994,51:1431-1445.
    [109] Maslowe, S. A. andRedekopp, L. G.. Long nonlinear waves in stratifiedshear flows.J.Fluid.Mech.,1980,101:321-348.
    [110] McCowan, J.. On the solitary wave. Phil. Mag.,1891,32:45-58.
    [111] Meng, L. and Lv, K. L.. Nonlinear long-wave disturbances excited by lo-calized forcing. Chinese J. Comp. Phys.,2000,17(3):259-267.
    [112] Meng, L. and Lv, K. L.. Dissipation and algebraic solitary long-waves ex-cited by localized topography. Chinese J. Comp.Phys.,2002,19(2):159-167.
    [113] Meng, L. and Lv, K. L.. Influences of dissipation on interaction of solitarywave with localized topography, Chinese J. Comp. Phys.,2002,19(4):349-356.
    [114] Munk, W.H.. Surf beats. EOS Trans.,1949,30:849-854.
    [115] Myint, S. and Grimshaw, R. H. G.. The modulation of nonlinear periodicwave trains by dissipative terms in the Korteweg-de Vries equation. Wavemotion,1995,22:215-238.
    [116] Nathan, T. R. and Barcilon, A.. Low-frequency oscillations of forcedbarotropic flow. J. Atmos. Sci.,1994,51:582-588.
    [117] Newell, A.C.. Soliton in mathematics and physics[M]. Philadelphia, SIAM,1985.
    [118] Ono, H.. Algebraic solitary waves in stratified fluids. J of the Phys. Soc. ofJapan,1975,39(4):1082-1091.
    [119] Ono, H.. Algebraic Rossby wave soliton. J of the Phys. Soc. of Japan,1981,50(8):2757-2761.
    [120] Pan, L. X., Yan, J. R. and Zhou, G. H.. A direct approach to the solitonperturbation for KdV-MKdV equation. ACTA Math. Sci.,2003,239(30):356-360.
    [121] Pedlosky, J.. Geophysical fluid dynamics. Springer, New York,1979.
    [122] Pelinovsky, E., Talipova, T. and Stepanyants, Y.. Modelling of the prop-agation of nonlinear internal waves in horizontally inhomogeneous ocean.Izv.Atm. Oceanic Phys.,1994,30:79-85.
    [123] Pelloni, B. and Dougalis, V. A.. Numerical solution of some nonlocal, non-linear dispersive wave equations. J. of Nonlinear Science,2000,10(1)μ1-22.
    [124] Philander, S. G. H.. Forced oceanic waves. Reviews of Geoph. Spac. Phys.,1978,16:15-46.
    [125] Philip, H.. Alternating bar instabilities in unsteady channel flows overerodible beds. J. of Fluid Mech.,2004,499:49-73.
    [126] Polukhina, O. E. and Kurkin, A. A.. Improved theory o nonlinear topo-graphic Rossby waves. Oceanology,2005,45(5):607-616.
    [127] Porter, R. andPorter, D.. Scattered and free waves over periodic beds.J.Fluid Mech.,2003,483:129-163.
    [128] Rayleigh, L.. On waves. Phil. Mag.,1876,51(4):257-279.
    [129] Redekopo, L.G.. On the theory of solitary Rossby waves. J.Fluid.Mech.,1977,82:725-745.
    [130] Redekopp, L. G. and Weidman, P. D.. Solitary Rossby waves in zonal shearflows and interactions. J.Atmos.Sci.,1978,35:790-804.
    [131] Russell, J.S.. Repeat on waves. Tech. Rep. British Association for the Ad-vancement of Science41,1837.
    [132] Song, J. and Yang, L. G.. Modified KdV equation for solitary Rossby waveswith÷efect in barotropic fluids. Chinese Physics B,2009,7:2873-2877.
    [133] Szoeke, R. A.. Baroclinic instability over wavy topography. J. Fluid Mech.,1983,130:279-298.
    [134] Tihab, R., Mark, T. and Ablowirz, J.. Analytical and numerical aspec-t of certain nonlinear evolution equations.III numerical Kortewet-de Vriesequation. J. of Compu. Phys.,1984,55:231-253.
    [135] Tokos, K. L., Hinrichsen, H. H. and Zenk, W.. Merging and migration oftwo eddies. J. Phys. Oceanogr.,1994,24:2129-2139.
    [136] Tomczak, M. and Godfrey, J. S.. Regional oceanography: An introduction.http://www.es.flinders.edu.au/mattom/regoc/pdfversion.html,2001.
    [137] Torres, C. R., Hanazaki, H. and Ochao, J.. Flow past a sphere movingvertically in a stratified difusive fluid. J Fluid Mech,2000,417:211-236.
    [138] Tung, K. K. and Lindzen, R.S.. A theory of stationary long waves. PartI:A simple theory of blocking, Mon. Ewa. Rev.,1979,107:714-734.
    [139] Vision, B.. Internal wave generation in uniformly stratified fluids. Part2.moving point source. J. Fluid Mech.,1994,261:333-371.
    [140] Wadati, M.. The modified Korteweg-de Vries equation. J.Phys.Soc.Japan,1973,34:1289-1296.
    [141] Wang, S. L., Cheng, Y. L. and Wu, Z. R.. Numerical simulations of theefect of the waving bed on the surface waves. Computational mechanicsWCCM V1in conjunction with APCOM’04, Beijing, China,2004.
    [142] Wazwaz, A. M.. Exact specific solutions with solitary patterns for the non-linear dispersive K(m,n) equation. Chaos Solitons Fractral.2001,13(1):161-170.
    [143] Wazwaz, A. M.. New solitary-wave special solutions with compat supportfor the nonlinear dispersive K(m,n) equations. Chaos Solitons Fractral.2002,13(2):321-330.
    [144] Wu, D. M. and Wu, T. Y.. Three-dimensional nonlinear long waves dueto moving surface pressure. In: Proc.14th Symp. Naval Hydrodyn,1982,103-129.
    [145] Wu, Z. R., Cheng, Y. L. and Wang, S. L.. Numerical study on efect ofwaving bed on the surface wave. J. of Hydro. Sre.B.,2006,18(4):464-468.
    [146] Yang, H. W., Yin, B. S. and Shi, Y. L.. Forced dissipative Boussinesq equa-tion for solitary waves excited by unstable topography. Nonlinear Dynamics,DOI10.1007/s11071-012-0541-9.
    [147] Yamagata, T.. The stability, modulation and long wave resonance of aplanetary wave in a rotating, two-layer fluid on a channel beta-plane. Japan,J Meteoro Soc.,1980,58:160-171.
    [148] Yan, Z., Bluman, G.. New compacton soliton solutions and solitary pattern-s solutions of nonlinearly dispersive Boussinesq equations. Comput. Phys.Commun.,2003,152:25-33.
    [149] Yan, Z.. Modified nonlinearly dispersive mK(m,n,k) equations: I. New com-pacton solutions and solitary patterns solutions. Comput. Phys. Commun.,2002,149:11-18.
    [150] Yoshimasa, M.. Bilinear transformation method. Academic Press, INC.1984.
    [151] Zhang, D. H. and Chwang, A. T.. Numerical study of nonlinear shallowwater waves produced by a submerged moving disturbance in viscous flow.Physics of Fluids,1996,8(1):147-155.
    [152] Zhang, D. H. and Chwang, A. T.. On solitary waves forced by underwatermoving objects. J.Fluid Mech.,1999,389:119-135.
    [153] Zhang, D. H. and Chwang, A. T.. Generation of solitary waves by forwardand backward step bottom forcing. J.Fluid Mech.,2001,432:341-350.
    [154] Zhang, Y. L. and Zhu, S. P.. Subcritical transcritical and supcirtical flowsover a step. J.Fluid Mech.,1997,333:255-271.
    [155] Zhang, Y. L. and Zhu S. P.. Resonant transcritical flow over a wavy bed.Wave Motion,1997,25:295-302.
    [156] Zhu, Y.. Strongly oblique interactions between internal solitary waves withthe same mode. Applied Mathematics and Mechanics,1997,18(10):957-962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700