用户名: 密码: 验证码:
室内人员疏散的元胞自动机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会和经济的持续发展、城市化进程持续加快以及人口迅速增长,城市不断涌现影剧院、购物中心、会展中心等人员密集的公共场所。同时,城市遭受灾害和重大突发性事件的威胁也越来越严重,近年来地震、火灾、踩踏等事故频繁发生,造成大量人员伤亡在紧急事件发生时,如何进行科学、有效的人员疏散是一个亟待解决的问题,已经成为公共安全和消防安全工程领域研究的热点和重点。因此,研究人员疏散过程中个体微观行为特征、整体宏观行为特征和疏散现象的生成机制具有重要的实际意义。
     人员疏散是一个极其复杂的非线性物理问题,对行人运动特征、疏散现象的生成机制以及疏散相关问题的研究已经形成了行人流动力学相关理论,并建立了各种各样的行人流仿真模型。其中,元胞自动机模型被广泛应用于行人流和人员疏散的模拟研究,因为元胞自动机是一个时间、空间和状态变量都离散的数学模型,可以省去求解微分方程而直接通过制定规则来模拟非线性物理现象,具有较强的模拟各种物理系统和自然现象的能力。
     本文在现有的行人流元胞自动机模型基础上,考虑行人实际的行为特征和典型公共场所的建筑结构特点,合理调整行人运动规则,建立新的人员疏散元胞自动机模型。计算机模拟研究了在不同情景下人员疏散过程,分析了各种因素对人员疏散时间的影响,并探讨了疏散动力学行为的生成机制。
     本文的主要工作如下:
     1.考虑教室内桌椅对人员运动速度的影响,建立了存在座位区域和过道区域的人员疏散元胞自动机模型。分析了人员密度、不同出口位置及课桌布局对人员疏散时间的影响。数值模拟结果表明,在座位区域人员密度越大,对疏散的影响越明显,增加了疏散时间;当出口设在侧面时,出口不应正对课桌和座位,紧靠两侧墙应有纵向过道,尤其紧靠出口墙壁侧留有纵向过道对疏散有利;纵向过道的数目和宽度对疏散都有影响,设计布局时,应使人员能较快离开座位区域,而在出口又不形成致密拥堵,以达到最优疏散效率。
     2.大型影剧院内光线不良,或者停电、火灾等紧急事件发生时,导致行人视线受影响。该情况下的疏散过程与正常疏散情况不同,会呈现不一样的疏散流动力学特征。为了研究行人视线受影响的疏散过程,在先前建立的人员疏散模型的基础上,提出一种改进的元胞自动机疏散模型。在模型中,疏散空间根据不同的行人视野半径可划分为可见出口区域和盲目区域;行人在不同区域移动行为不同,包括行人向出口移动、行人定向移动、沿墙移动和变化运动方向等行为。采用该模型对影院内的人员疏散过程进行模拟研究,并讨论了不同可见出口区域半径对疏散过程的影响。数值模拟结果表明,可见出口区域半径是影响人员疏散的关键因素;盲目区域内行人选择运动方向并移动的盲目性和随意性延误了总体疏散时间。最后研究盲区过道上安装疏散指示标志的疏散情况,并与前面的疏散情况进行比较。结果表明,过道上安装疏散指示标志对整个疏散过程十分有利。
     3.为了更细致地描述人员疏散过程中的行人运动行为,考虑了行人可具有多个运动方向和多种运动速度的情况,借鉴了多网格模型的思想,将行人占据的空间划分为多个小网格,构建了一种新的多网格模型。模拟研究房间内人员疏散过程,得到了传统单网格模型无法描述人员疏散动力学行为:①行人在单个时间步的运动距离与行人的尺寸不匹配;②行人在出口处于杂乱排列状态;③出口被单个行人独占,较好描述了出口对流量的限制效应。分析了行人数目和出口宽度对疏散时间的影响,并与单网格模型的情况进行比较。数值模拟结果对紧急情况下的人员疏散具有一定的指导意义。
     最后,对全文的工作进行了总结和概括,并指出一些有待研究的问题,对今后行人疏散流的研究方向进行了展望。
With the sustainable development of society and economy, and the acceleration of urbanization process, urban population explosive growth, cinemas, theatres, shopping malls, convention centers, and other crowded public places constantly emerge. At the same time, urban disasters and major emergencies are more serious threats. In recent years, earthquake, fire, stampede and other accidents occur frequently, causing heavy casualties. It is an exigent problem that how to conduct scientific and effective evacuation when emergency incident happen have became the hotspot and keystone of study on public safety and fire safety field. Therefore, research on the characteristic of individual microcosmic behavior and holistic macro behavior, and the mechanism of evacuation phenomena in the occupant evacuation process has significant practical value.
     The issue of occupant evacuation is a very complicated nonlinear physical problem. The study on the mechanism of pedestrian characteristic, evacuation phenomena and other correlative questions have formed the theories of the pedestrian flow dynamics, also established various emulated models about pedestrian flow. Among these models, cellular automaton model has been widely used in simulation and investigation of pedestrian flow and occupant evacuation. Because cellular automaton is a discrete mathematical model in space, time and state, we can simulate the nonlinear physical phenomenon by leaving out solving the differential equation and establishing rules directly. The model has a strong ability to simulate diverse physical systems and nature phenomenon.
     In this paper, considering the practical behavior characteristics of pedestrian and the building structure characteristics of the typical public places, we adjust the pedestrian moving rules rationally and propose a new cellular automaton evacuation model based on the existed cellular automata model. We simulate and study the occupant evacuation process in different scenes by computer, and analyze the effect on evacuation time, also investigate the mechanism of evacuation dynamics.
     The main texts are the followings:
     1. Considered desk and chair affecting pedestrian moving velocity, we propose a new cellular automaton evacuation model with two seating and desk regions, and analyze the effect of the occupant density, different exit positions and internal layout on evacuation time. The numerical results demonstrate that:With the greater occupant density, the effect of the seating region on pedestrian evacuation will be much more evident, and the evacuation time increase; When the exit is designed on the side, it should not face to the desks and seats; aisles closed to the two side of the wall are necessary, especially that it is very beneficial for the aisles closed to the exit side of the wall. In order to achieve optimal evacuation efficiency, considered the effect of the number and width of aisle on evacuation time, the internal layout should be made so that the pedestrian can leave the seating region much more quickly, and the exit should not be formed dense congestion.
     2. Because of poor light or emergency event such as power failure and fire occurs in large cinemas, pedestrian sight is affected. So that the evacuation process in this case is different from the normal one, and show different evacuation dynamics characteristics. In order to investigate the evacuation process with affected pedestrian sight, an improved cellular automata evacuation model is proposed on the basis of the previous cellular automata model. In the model, the space to be evacuated is divided into exit visible area and blind area by pedestrian sight radius. Pedestrian have varied movement in different evacuation areas, including movement to the exit, movement in fixed direction, movement along the wall, changing movement direction and so on. We study the evacuation process in cinemas via the model and discuss the effect of exit visible area on evacuation process. The numerical results demonstrate that:the radius of exit visible area is the key factor in evacuation; pedestrian in blind area select the movement direction to move blindly and randomly, delaying collectivity evacuation time. Finally, we simulate the evacuation process with evacuation indication sign installed in aisles of the blind area, and contrasted it with the previous evacuation. The results show that it is very beneficial to aisles with evacuation indication sign for the evacuation process.
     3. In order to describe the pedestrian dynamics more carefully in occupant evacuation process, considered the case that pedestrian have multi-direction of movement and manifold movement velocity, we divide the occupied space of a pedestrian into many small grids and propose a new multi-grid model based on the idea of multi-grid model. We simulate the occupant evacuation process in room and get the different evacuation dynamics which traditional single-grid model can not depict:①The motion distance of a pedestrian in single time step do not match with the size of a pedestrian;②the pedestrians in the exit are out of alignment;③a single pedestrian takes up the exist, it is better to describe the effect of exit restrictions on the flow. We analyze that the effect of number of occupant, width of exit on evacuation time, and compare with the case of single-grid model. The numerical results have some guide significance to occupant evacuation in urgent instances
     Finally, we give the conclusions of our works and present the prospect of further research of pedestrian flow.
引文
[1]宋卫国,于彦飞,陈涛.出口条件对人员疏散的影响及其分析[J].火灾科学,2003,12(2):100-105.
    [2]赵道亮.紧急条件下人员疏散特殊行为的元胞自动机模拟[D].合肥:中国科技大学,2007.
    [3]吕春杉,翁文国,杨锐,等.基于运动模式和元胞自动机的火灾环境下人员疏散模型[J]清华大学学报:自然科学版,2007,47(12):2163-2167.
    [4]田欢欢.行人格子气流体力学模型、信息疏散作用及交通能耗的研究[D].南宁:广西大学,2009.
    [5]Blue V J, Adler J L. Emergent fundamental pedestrian flows from cellular automata microsimulation[J]. Transportation Research Record,1998, 1644:29-36.
    [6]Blue V J, Adler J L. cellular automata microsimulation for modeling bi-directional pedestrian walkways [J]. Forthcoming in Transportation Research B-METH,2001,35(3):293-312.
    [7]Burstedde C, Klauck K, Schadschneider A, et al. Simulation of pedestrian dynamics using a two-dimensional cellular automation[J]. Physica A,2001, 295(3-4):507-525.
    [8]杨立中,李健,赵道亮,等.基于个体行为的人员疏散微观离散模型[J].中国科学E辑工程科学&材料科学,2004,34(11):1264-1270.
    [9]Helbing D, Molnar P. Social force model for pedestrian dynamics[J]. Physical Review E,1995,51 (5):4282-4286.
    [10]Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic[J]. Nature,2000,407:487-490.
    [11]Helbing D. Traffic and related self-driven many-particle systems[J].Reviews of Modern Physics,2001,73 (4):1067-1142.
    [12]Weng W G, Shen S F, Yuan H Y, et al. A behavior-based model for pedestrian counter flow[J]. Physica A,2007,375 (2):668-678.
    [13]Helbing D, Farkas I. J, Molnar P and Vicsck T. Simulation of pedestrian crowds in normal and evacuation situations [J]. pedestrian and evacuation dynamics, 2002,21-58.
    [14]Biham 0, Middelton A A, Levine D A. Self-organization and dynamical transition in traffic-flow models[J]. Physics Review A,1992,46 (10):R6124-R6127.
    [15]Nagatani T. The physics of traffic jams[J]. Reports on progress in physics, 2002,65(9):1331-1386.
    [16]Helbing D, I Farkas, T Vicsek. Freezing by heating in a driven mesoscopic System[J]. Physics Review Letters,2000,84(6):1240-1243.
    [17]宋卫国,于彦飞,范维澄,等.一种考虑摩擦与排斥的人员疏散元胞自动机模型[J].中国科学E辑工程科学&材料科学,2005,35(7):725-736.
    [18]邱冰.楼房内人员逃生流的自动机模拟研究[D].桂林:广西师范大学,2004.
    [19]杨立中,方伟峰,黄锐,等.基于元胞自动机的火灾中人员逃生的模型[J].科学通报,2002,47(12):896-901.
    [20]Henderson L F. The statisties of crowd fluids[J]. Nature,1971,229(5284): 381-383.
    [21]Henderson L F. On the fluid mechanic of human crowd motions [J]. Transportation Research,1974,8 (6):509-515.
    [22]Cremer M, Ludwig J. A Fast Simulation Model for Traffic Flow on the Basis of Boolean Operations [J]. Mathematics and Computers in Simulation,1986, 28(4):297-303.
    [23]M Fukui, Y Ishibashi. Self-organized phase transitions in cellular automaton models for pedestrians[J]. J.Phys. Sco. Jpn.,1999,68(8):2861-2863.
    [24]杨立中,方伟峰,李健,黄锐.考虑人员行为的元胞自动机行人运动模型[J].科学通报,2003,48(11):1143-1147.
    [25]Muramatsu M, Irie T, Nagatani T. Jamming transition in pedestrian counter flow[J].Physica A,1999,267(3-4):487-498.
    [26]Muramatsu M, Nagatani T. Jamming transition in two-dimensional pedestrian traffic[J], Physica A,2000(1-2),275:281-291.
    [27]Muramatsu M, Nagatani T. Jamming transition of pedestrian traffic at a crossing with open boundaries[J]. Physica A,2000,286(1-2):377-390.
    [28]郭谨一,刘爽,陈绍宽等.行人运动仿真研究综述[J].系统仿真学报,2008,20(9):2237-2242.
    [29]刘智丽,陈金川,郭继孚.城市交通宏观仿真建模及开发实例研究[J].交通运输系统工程与信息,2006,6(4):100-107.
    [30]王延钊.基于改进元胞自动机地下空间人员疏散模拟研究[D].重庆:重庆大学,2008.
    [31]范泽孟,刘怡君,汪云林等译.社会物理学国际前沿研究透视[M].北京:科学出版社,2007.
    [32]Helbing D, Molnar P, Farkas I J, Bolay K. Self-organizing pedestrian movement[J]. Environment and Planning B:Planning and Design,2001,28: 361-383.
    [33]Tajima Y, Nagatani T. Scaling behavior of crowd flow outside a hall [J]. Physica A,2001,292 (1-4):545-554.
    [34]Tajima Y, Nagatani T. Clogging transition of pedestrian flow in T-shaped channel[J]. Physica A,2002,303 (1-2):239-250.
    [35]Kuang H, Li X L, Song T, et al. Analysis of pedestrian dynamics in counter flow via an extended lattice gas model[J]. Physical Review E,2008,78(6):066117-066125.
    [36]Kuang H, Song T, Li X L, et al. Subconscious effect on pedestrian counter flow[J].Chinese Physics Letters,2008,25(4):1498-1501.
    [37]Chopard B, Droz M著.祝玉学,赵学龙译.物理系统的元胞自动机模拟[M].北京:清华大学出版社,2003:5-59.
    [38]胡清梅,方卫宁,郭北苑等.行人运动建模技术综述[J].计算机应用研究,2009,26(2):444-447.
    [39]Zhang J, Song W G, Xu X. Experiment and multi-grid modeling of evacuation from a classroom[J]. Physica A,2008,387(23):5901-5909.
    [40]Zhao D L, Yang L Z, Li J. Exit dynamics of occupant evacuation in an emergency[J]. Physica A,2006,363(2):501-511.
    [41]Schreckenberg M, Sharma S D. Pedestrian and evacuation dynamics[M]. New York:Springer,2001:21-58.
    [42]周金旺.行人流安全运动元胞自动机模拟研究[D].桂林:广西师范大学,2009.
    [43]Kirchner A, Schadschneider A. Simulation of evacuation process using a bionics-inspired cellular automaton model for pedestrian dynamics[J]. Physica A,2002,312(1):260-276.
    [44]Zhao D L, Li J, Zhu Y, et al. The application of a two-dimensional cellular automata random model to the performance-based design of building exit[J]. Building and Environment,2008,43(4):518-522.
    [45]Weng W G, Pan, L L, Shen S F, et al. Small-grid analysis of discrete model for evacuation from a hall[J]. Physica A,2007,374(2):821-826.
    [46]Yang L Z, Zhao D L, Li J, et al. Simulation of the kin behavior in building occupant evacuation based on Cellular automaton [J]. Building and Environment, 2005,40(3):411-415.
    [47]Kirchner A, Klupfel H, Nishinari K, et al. Simulation of Competitive Egress Behavior:Comparison with Aircraft Evacuation Data[J]. Physica A,2003,324(3): 689-697.
    [48]Kirchner A, Nishinari K, Schadschneider A. Friction Effects and Clogging in a Cellular Automaton Model for Pedestrian Dynamics [J]. Physical Review E,2003, 67(5):056122-056131.
    [49]Nishinari K, Sugawara K, Kazama T. Modelling of Self-driven Particles: Foraging Ants and Pedestrians[J]. Physica A,2006,372(1):132-141.
    [50]Li J, Yang L Z, Zhao D L. Simulation of Bi-direction Pedestrian Movement in Corridor[J]. Physica A,2005,354:619-628.
    [51]Yu Y F, Song W G. Cellular Automaton Simulation of Pedestrian Counter Flow Considering the Surrounding Environment[J]. Physical Review E,2007,75(4): 046112-046119.
    [52]Yuan W F, Tan K H. An Evacuation Model Using Cellular Automata[J]. Physica A,2007,384(2):549-566.
    [53]黄希发,王科俊,郭莲英,邵清.基于Agent技术的人员疏散微观仿真模型研究[J].系统仿真学报,2009,21(15):4568-4571.
    [54]陈佳俊,安晓宇,蔡希辉,李忠伟.基于Agent的人员疏散系统设计与实现[J].计算机工程,2010,36(14):264-266.
    [55]Bonabeau E. Agent-based Modeling:Methods and Techniques for Simulating Human Systems [J]. Proceedings of the National Academy of Sciences of the USA,2002, 99(3):7280-7287.
    [56]郑小平,钟庭宽,刘梦婷.用于群体疏散的数字仿真方法研究[J].系统仿真学报,2009,21(12):3503-3508.
    [57]孟俊仙,周淑秋,饶敏.大型建筑内人员疏散计算机仿真研究研究综述[J]计算机应用与软件,2008,25(3):159-161.
    [58]Okazaki S.A Study of Pedestrian Movement in Architectural Space Part 3:Along the Shortest Path, Taking Fire, Congestion and Unrecognized Space into Account[J]. Journal of Architecture, Planning Environment Engineering AIJ,1979,285(2)137-147.
    [59]Lovas G G.Modeling and Simulation of Pedestrian Flow [J]. Transport Research B,1994,28 (3):429-43.
    [60]Thompson P A, Marchant E W. A Computer Model the Evacuation of Large Building Populations[J]. Fire Safety Journal,1995,24(1):131-148.
    [61]Nakayama A, Hasebe K, Sugiyama Y. Instability of pedestrian flow and phase structure in a two-dimensional optimal velocity model[J]. Physical Review E,2005,71(3):036121-036131.
    [62]Nagatani T. Dynamical transition and scaling in a mean-field model of pedestrian flow at a bottleneck[J]. Physica A,2001,300(3-4):558-566.
    [63]Yanagisawa D, Nishinari K. Mean-field theory for pedestrian outflow through an exit[J]. Physical Review E,2007,76(6):061117-061125.
    [64]Yu W J, Chen R, Dong L Y, et al. Centrifugal force model for pedestrian dynamics[J]. Physical Review E,2005,72(2):026112-026118.
    [65]Gipps P G, Marksjo B. A Micro-Simulation Model for Pedestrian Flows[J]. Mathematics and Computers in Simulation,1985,27(2):95-105.
    [66]方正,卢兆明.建筑物避难疏散的网格模型[J].中国安全科学学报,2001,11(4):10-13.
    [67]陈智明,霍然,王国栋.建筑内人员疏散的一种网络模型算法的讨论[J].火灾科学,2004(2):90-94.
    [68]方正,陈大宏,张铮,卢兆明.建筑物火灾人员疏散的计算机仿真[J].计算机仿真,2001,18(2):49-52.
    [69]Fang Z, Lo S M, Lu J A. On the relationship between crowd density and movement velocity[J]. Fire Safety Journal,2003,38(3):271-283.
    [70]Fang Z, Yuan J P, Wang Y C, et al. Survey of pedestrian movement and development of a crowd dynamics model[J]. Fire Safety Journal,2008,43(6):459-465.
    [71]田玉敏,蔡晶菁.基于人群动力学的疏散时间工程计算方法的探讨[J].科技通报,2008,24(1):138-142.
    [72]孙剑.李克平.行人运动建模及仿真研究综述[J].计算机仿真,2008,25(12):12-16.
    [73]郑小平,钟庭宽,张建文.公共建筑内群体疏散方法的探讨[J].中国安全科学学报,2008,18(1):28-33.
    [74]周勇,张和平,万玉田.人员疏散拥堵问题的博弈分析[J].中国安全科学学报,2008,18(8):131-134.
    [75]吉岩,李力,胡坚明,王法.一种基于分片磁场和动态博弈的行人仿真模型[J].自然科学进展,2009,19(3):337-343.
    [76]Song W G, Yu Y F, Wang B H, et al. Evacuation behaviors at exit in CA model with force essentials:A comparison with social force model[J]. Physica A,2006,371 (2):658-666.
    [77]Yamamoto K, Kokubo S, Nishinari K. Simulation for pedestrian dynamics by real-coded cellular automata(RCA)[J]. Physica A,2007,379(2):654-660.
    [78]Huang H J, Guo R Y. Static floor field and exit choice for pedestrian evacuation in rooms with internal obstacles and multiple exits[J]. Physical Review E, 2008,78(2):021131-021136.
    [79]Jiang R, Wu Q S. Pedestrian behaviors in a lattice gas model with large maximum velocity[J]. Physica A,2007,373:683-693.
    [80]岳昊,邵春福,陈晓明,郝合瑞.基于元胞自动机的对向行人交通流仿真研究[J].物理学报,2008,57(11):6901-6908.
    [81]岳昊,邵春福,姚智胜.基于元胞自动机的行人疏散流仿真研究[J].物理学报,2009,58(7):4523-45230.
    [82]Song W G, Xuan X, Wang B H, et al. Simulation of evacuation processes using a multi-grid model for pedestrian dynamics[J]. Physica A,2006,363(2):492-500.
    [83]Varas A, Cornejo M D, Mainemer D, Toledo B, Rogan J, Munoz V, Valdivia J A. Cellular automaton model for evacuation process with obstacles[J]. Physica A,2007,382(2):631-642.
    [84]周金旺,邝华,刘慕仁,孔令江.成对行为对行人疏散动力学的影响研究[J].物理学报,2009,58(5):3001-3007.
    [85]Liu S B, Yang L Z, Fang T Y, Li J, Evacution from a classroom considering the occupant density around exits[J]. Physica A,2009,388(9):1921-1928.
    [86]岳昊,邵春福,关宏志,段龙梅.基于元胞自动机的行人视线受影响的疏散流仿真研究[J].物理学报,2010,59(7):4499-4507.
    [87]朱孔金,杨立中.房间出口位置及内部布局对疏散效率的影响研究[J].物理学报,2010,59(11):7701-7707.
    [88]Dirk Helbing, Motonari Isobe, Takashi Nagatani, and Kouhei Takimoto, Lattice gas simulation of experimentally studied evacuation dynamics[J]. Physical Review E,2003,67(6):067101-067104.
    [89]李健.考虑环境信息和个体特征性的人员疏散元胞自动机模拟及实验研究[D].合肥:中国科技大学,2008.
    [90]方正,陈大宏,卢兆明,用计算机仿真方法研究影剧院人员疏散[J].消防科学与技术&消防理论研究,2002,3(2):18-20.
    [91]陈晋,张盼娟,杨伟,李强.基于系统动力学模型的影剧院人员疏散策略[J].自然灾害学报,2005,14(6):125-132.
    [92]周金旺,陈秀丽,孔令江,刘慕仁,苏磊,唐国宁.基于元胞自动机的行人流疏散模拟研究[J].广西师范大学学报:自然科学版,2008,26(4):14-17.
    [93]Nagai R, Nagatani T, Isobe M, Adachi T. Effect of exit configuration on evacuation of a room without visibility[J]. Physica A,2004,343:712-724.
    [94]Motonari Isobe, Dirk Helbing, Takashi Nagatani. Experiment, theory, and simulation of the evacuation of a room without visibility [J]. Physical Review E,2004,69 (6):066132-066141.
    [95]Yuan Wei feng, Tan Kang Hai. A novel algorithm of simulating multi-velocity evacuation based on cellular automata modeling and tenability condition[J]. Physica A,2007,379(1):250-262.
    [96]Wei feng Yuan, Kang Hai Tan. Cellular automata model for simulation of effect of guiders and visibility range[J]. Current Applied Physics,2009,9(5): 1014-1023.
    [97]Guo R Y, Huang H J. A Mobile Lattice Gas Model for Simulating Pedestrian Evacuation[J]. Physica A,2008,387(2-3):580-586.
    [98]X Xu, W G Song, H Y Zheng. Discretization effect in a multi-grid egress model [J]. Physica A,2008,387(22):5567-5574.
    [99]房志明,宋卫国,胥旋.一种多格子模型的实现及其对单室疏散过程的分析[J].火灾科学.2008,17(3):165-171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700