用户名: 密码: 验证码:
S14G-Humanin防治阿尔茨海默病的效应作用与机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:阿尔茨海默病(Alzheimer’s disease,AD)是老年期痴呆最常见的原因,以进行性智能衰退为主要临床特征。神经细胞外老年斑沉积、神经元内神经原纤维缠结和神经细胞缺失是其三大病理学特征。由于缺乏特异性的临床防治措施,目前AD已成为严重危害老年人身心健康和生活质量的重要疾病之一。尽管AD的病理机制尚未完全阐明,但众多的证据表明β-淀粉样蛋白(amyloid-beta protein,Aβ)在脑内聚集、纤维化、沉积形成老年斑及其神经毒性作用是AD形成的病理学基础。因此,有效地防止或减少Aβ在脑内聚集、纤维化、沉积形成老年斑及其神经毒性作用是防治AD的重要靶点和治疗策略。Humanin(HN)及其衍生物-S14G-Humanin(HNG)是近年来发现的一种新的神经保护因子,大量体外研究表明HN和HNG能够有效地抑制目前所知的AD相关致病因子的毒性作用,但其有效作用的机制尚未阐明。本项课题将通过体外、体内实验研究,进一步深入探讨HNG防治AD的有效作用与机制。方法与结果:(1)通过体外孵育Aβ1-42、Aβ1-42+不同浓度的HNG以及细胞培养,采用荧光测定、透射电镜、细胞活性测定等方法,观察HNG拮抗Aβ1-42神经毒性的效应作用及其机制。研究结果发现,Aβ1-42组孵育3 d后,硫磺素-T(Th-T)荧光强度显著增加,透射电镜观察显示Aβ明显聚集、形成了大量的淀粉样纤维;应用不同浓度的HNG共孵育后,Th-T荧光强度随HNG浓度增加而降低,且呈剂量依赖关系,表明HNG能够有效地抑制Aβ1-42聚集及其纤维性结构的形成,投射电镜的观察结果亦进一步证明了上述研究结果。应用培养的PC12细胞研究表明HNG能够有效地抑制Aβ1-42的神经毒性作用,HNG可能通过有效减少Aβ1-42聚集和纤维性蛋白形成而发挥其神经保护作用。(2)应用侧脑室注射聚集的Aβ25-35建立小鼠AD模型,采用行为学、神经形态学、生化分析等方法,评定腹腔注射HNG对小鼠认知障碍的效应作用及其机制。Y-迷宫和跳台型被动回避行为学评定结果表明,侧脑室注射聚集的Aβ25-35可使小鼠出现显著的短期和长期学习记忆障碍,而HNG治疗可显著改善Aβ25-35导致的认知障碍;应用神经形态学和ELISA方法,研究发现在大脑皮层和海马结构Aβ25-35可导致大量的反应性星型胶质细胞、激活小胶质细胞和凋亡细胞增加,以及脑内IL-6和TNFα显著升高;而HNG治疗能够显著减少脑内的神经炎症反应和凋亡细胞,且与改善行为学障碍相平行。(3)应用幼年转APP/PS-1基因小鼠(3月龄),采用行为学评定、神经形态学等方法,进一步深入研究腹腔注射HNG防治AD病程进展的有效作用及机制。应用Morris水迷宫、被动回避和主动回避实验的行为学评定结果表明,APP/PS-1+HNG治疗组较APP/PS-1+生理盐水治疗组的行为学障碍显著减缓,提示HNG可明显改善与海马、杏仁核和皮层相关的空间学习记忆功能、伤害性刺激记忆功能和条件反射性学习记忆功能。神经形态学研究证明HNG并不影响APP/PS-1小鼠大脑皮层和海马组织弥漫性Aβ斑块的形成和数量,但可显著减少纤维性Aβ形成和斑块数量,提示在AD病理进展过程中HNG可有效地抑制纤维性Aβ形成,并可能因此降低了其神经毒性作用,进而减少病理性损害的发生,减缓了AD病程的进展。结论:(1)体外研究首次证明了HNG能够抑制Aβ1-42聚集及其纤维性结构的形成及其神经毒性作用,推测HNG可能通过减少Aβ1-42聚集和纤维性蛋白形成而发挥其神经保护作用;(2)首次研究证明了HNG对Aβ导致神经炎性反应和细胞凋亡的有效作用,同时亦证明了HNG能够通过血脑屏障进入脑内发挥其抗Aβ致认知障碍的神经保护作用;(3)首次应用转基因AD小鼠,研究HNG防治AD行为学障碍的效应作用,并应用多个行为学试验证实了HNG防治AD行为学障碍进展的有效性,其可能的机制为HNG通过抑制纤维性Aβ形成而减缓了AD的病程进展。
Background and Objective: Alzheimer’s disease (AD) is the most common cause of dementia in the elderly population, characterized by progressive cognitive dysfunction. Extracellular amyloid plaques, intraneuronal neurofibrillary tangles, and neuron loss are considered as the major neuropathological hallmarks of the disease. Since no specific and causal therapy for this disease has been developed currently, AD is unfortunately still incurable disease, which severely affects the physical and mental health as well as life quality of the elderly population. Although the pathogenesis of AD still remains unclear, increasing evidence has shown that aggregation, fibrillization, and deposition of amyloid-beta protein (Aβ) as well as formation of senile plaques and its neurotoxicity play a crucial role in the development of AD. Therefore, the important treatment targets and strategies for AD are how to effectively prevent or reduce these factors respectively. Humanin (HN) and its derivative, S14G-Humanin (HNG), is a novel 24 amino acid peptide best known for its ability to markedly suppress neuronal cell death caused by AD-related toxitic insults in vitro, however the exact mechanism that how HNG can improve the cognitive dysfunction still remains to be elucidated. By using in vitro and in vivo experiments, the aim of this study is to investigate the effect and its mechanism of HNG for preventing and treating AD. Methods and Results: (1) By using thioflavine-T fluorometric assay and transmission electron microscopy, we observed whether HNG could block/reduce the Aβ1-42 aggregation and fibrillization in vitro. The effects of HNG on the neurotoxicity of Aβ1-42 were further examined in cultured PC12 cells by MTT method. The data from thioflavine-T fluorometric assay and transmission electron microscopy disclosed that HNG could markedly inhibit fibrillar Aβformation in dose-dependent manner; by using MTT method to assay the cell activity, HNG dose-dependently reduced Aβ1-42 on the cultured PC12 cells. These findings suggest that HNG could prevent Aβ-induced neurotoxicity via inhibiting Aβaggregation and fibrillization. (2) By using a mouse AD model with intracerebroventricular injection (icv) of aggregated Aβ25-35, we sought to determine the effects of HNG on neuroinflammatory responses and apoptosis associated with behavioral deficits induced by Aβ25-35 in vivo. The results from this study indicate that icv injection of aggregated Aβ25-35 induced impairment of learning and memory, markedly elevated numbers of reactive astrocytes, activated microglia, and apoptotic cells, as well as remarkable increased levels of IL-6 and TNFα. Moreover, intraperitoneal HNG treatment ameliorated behavioral deficits, and reduced neuroinflammatory responses and apoptotic cells in the brain. Cumulatively, these findings demonstrate for the first time that HNG may have the potential for attenuating Aβ-induced cognitive deficits by reducing inflammatory responses and apoptosis in vivo. (3) By using young transgenic AD model (APP/PS-1 mice; 3-month-old), we investigated the effects of HNG on behavioral deficits, and Aβexpression and formation of senile plaques. The data from behavioral tests (i.e. Morris water maze, step-through test, and shuttle-box test) revealed that the behavioral deficits in APP/PS-1+HNG group were significantly improved than in APP/PS-1+saline group, suggesting that intraperitoneal HNG treatment may ameliorate behavioral deficits associated with hippocampus, amygdale, and cerebrocortex. Furthermore, neuromorphological investigation disclosed that no significant influence of HNG on diffuse Aβplaques in cerebrocortex and hippocampal region was observed in APP/PS-1 mice, while HNG might significantly reduce the fibrillar Aβformation and plaques in those regions, indicating that HNG may slow the development of AD by inhibiting Aβaggregation and fibrillization as well as reducing Aβ-induced pathological impairments. Conclusions: (1) It has been shown for the first time that HNG may effectively inhibit Aβaggregation and fibrillization and its neurotoxicity, suggesting that HNG probally plays its neuroprotective role by reducing Aβaggregation and fibrillization. (2) The study is the first to show beneficial effects of HNG on neuroinflammatory responses and apoptosis in an animal model of AD. As a result of its ability to cross the blood-brain barrier into the brain, HNG may have therapeutic potential as a protective agent against Aβ-induced cognitive dysfunction. (3) It is the first time to demonstrate beneficial effects of HNG on preventing behavioral deficits in transgenic AD models (APP/PS-1 mice), and its underlying mechanism for slowing the development of AD may be through its ability of inhibiting fibrillar Aβformation.
引文
[1] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353-356.
    [2] Tsai J, Grutzendler J, Duff K, Gan WB. Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci. 2004;7(11):1181-1183.
    [3] Hardy J. Amyloid double trouble. Nat Genet. 2006;38(1):11-12.
    [4] de la Torre, Aliev G, Perry G. Drug therapy in Alzheimer's disease. N Engl J Med. 2004;351(18):1911-1913.
    [5] Drouet B, Pincon-Raymond M, Chambaz J, Pillot T. Molecular basis of Alzheimer's disease. Cell Mol Life Sci. 2000;57(5):705-715.
    [6] Tanzi RE, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell. 2005;120(4):545-555.
    [7] Lacor PN, Buniel MC, Chang L, Fernandez SL, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL. Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J Neurosci. 2004;24(45):10191-10200.
    [8] Francotte P, Graindorge E, Boverie S, de Tullio P, Pirotte B. New trends in the design of drugs against Alzheimer's disease. Curr Med Chem. 2004;11(13):1757-78.
    [9]陈彪,马秋兰.阿尔茨海默病病因学研究进展及治疗展望.中华神经科杂志2003;36(2):158-160.
    [10]陈新平,陈彪.阿尔茨海默病病因学及发病机制研究进展.中国现代神经疾病杂志. 2005;5(3):152-155.
    [11] Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y, Nishimoto I. Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer's disease-relevant insults. J Neurosci. 2001;21(23):9235-9245.
    [12] Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, Nishimoto I. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A. 2001;98(11):6336-6341.
    [13] Jung SS, Van Nostrand WE. Humanin rescues human cerebrovascular smooth muscle cells from Abeta-induced toxicity. J Neurochem. 2003;84(2):266-272.
    [14] Miao J, Vitek MP, Xu F, Previti ML, Davis J, Van Nostrand WE. Reducing cerebral microvascular amyloid-? protein deposition diminishes regional neuroinflammation in vasculotropic mutant amyloid precursor protein transgenic mice. J Neurosci. 2005;25(27):2571-2577.
    [15] Miao J,Xu F, Davis J, Otte-Holler I, Verbeek MM, Van Nostrand WE. Cerebral microvascular amyloid-? protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid-? precursor protein. Am J Pathol. 2005;167(2): 505-515.
    [16]刘佳福,刘振国.阿尔茨海默病炎症发病机制的研究进展.中风与神经疾病杂志. 2004;21(5):471-472.
    [17]王琳,韩杰,张昱. A lzheimer病病人血清与脑脊液白细胞介素2及肿瘤坏死因子水平检测的研究.中华神经科杂志. 2002;35(6):339-341.
    [18] Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. Acell surface receptor complex for fibrillar beta-amyloid mediates microglial activation. J Neuro Sci. 2003;23(7):2665-2674.
    [19] Li Y, Liu L, Barger SW. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysinsynthesis in cortical neurons through a p382MA PK pathway. J Neuro Sci. 2003;23(5):1605-1611.
    [20] Casal C, Serratosa J, Tusell JM. Relationship between beta-Aβpeptide aggregation and microglial activation. Brain Res. 2002;928(122):76-84.
    [21] Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS. Microglia enhance beta-amyloid peptide induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem. 2002;83(4):973-983.
    [22] Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F. Beta amyloid induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis. 2002;11(2):257-274.
    [23] Hoozemans JJ , Veerhuis R, Janssen I, et al. The role of cyclooxygenase 1 and 2 activity in prostaglandin E (2) secretion by cultured human adult microglia: imp lications for Alzheimer’s disease. Brain Res. 2002;951(2):218-226.
    [24] Wyss-Coray T, Mucke L. Inflammation in neurodegenerative disease double edged sword . Neuron. 2002;35(3):419-432.
    [25] Su JH, Anderson AJ, Cribbs DH, et al. Fas and Fas ligand are associated w ith neuritic degeneration in the AD brain and participate in beta-amyloid-induced neuronal death. Neurobiol Dis. 2003;12(3):182-193.
    [26]林煜,贺顺龙,陈俊抛,等.吲哚美辛对β-淀粉样蛋白诱导脑内炎症损伤的保护作用.中华老年医学杂志. 2002;21(2):123-126.
    [27] Bamberger ME, Landreth GE. Microglial interaction with beta amyloid: implications for the pathogenesis of Alzheimer’s disease. Microsc Res Tech. 2001;54(2):59-70.
    [28] Roberson ED, Mucke L. 100 years and counting: prospects for defeating Alzheimer disease. Science. 2006;314(5800):781-784.
    [29] Tanzi RE, Bertram L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell. 2005;120(4):545-555.
    [30]苗建亭,李柱一,林宏,宿长军,雷革胜,荀文兴,游国雄.β-淀粉样蛋白对大鼠脑细胞凋亡及相关基因表达的实验研究.中华临床医药杂志. 2002;3(22):1-4.
    [31]王英,苗建亭,李柱一,车宇,王英鹏,林宏,王者晋. NGF对β-淀粉样蛋白诱导海马神经细胞凋亡的保护作用.中国神经免疫学和神经病学杂志. 2003; 10(2):71-74.
    [32] Ohyagi Y. Intracellular amyloid beta-protein as a therapeutic target for treating Alzheimer's disease. Curr Alzheimer Res. 2008;5(6):555-561.
    [33] Zheng L, K?gedal K, Dehvari N, Benedikz E, Cowburn R, Marcusson J, Terman A. Oxidative stress induces macroautophagy of amyloid beta-protein and ensuing apoptosis. Free Radic Biol Med. 2009;46(3):422-429.
    [34] Ivins KJ, Ivins JK, Sharp JP, Cotman CW. Multiple pathways of apoptosis in PC12 cells. J Biol Chem. 1999;274(4):2107-2112.
    [35] Casal C, Serratosa J, Tusell JM. Effects of beta-AP peptides on activation of the transcription factor NF2kappaB and in cell proliferation in glial cell cultures. Neurosci Res. 2004;48(3):315-323.
    [36] Kaltschmidt B, Uherek M, Wellmann H, Volk B, Kaltschmidt C. Inhibition of NF2kappa B potentiates amyloid beta2mediated neuronal apoptosis. Proec Natl Acad Sci USA. 1999;96(16):9409-9414.
    [37] Tan J, Town T, Placzek A, Kundtz A, Yu H, Mullan M. Bcl-X(L) inhibits apoptosis and necrosis produced by Alzheimer's beta-amyloid1-40 peptide in PC12 cells. Neurosci Lett. 1999;272(1):5-8.
    [38] Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, Lin MT. Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer's disease. FASEB J. 2009 Apr 3. [Epub ahead of print]
    [39] Siedlak SL, Casadesus G, Webber KM, Pappolla MA, Atwood CS, Smith MA, Perry G. Chronic antioxidant therapy reduces oxidative stress in a mouse model of Alzheimer's disease. Free Radic Res. 2009;43(2):156-164.
    [40] Limón ID, Díaz A, Mendieta L, Chamorro G, Espinosa B, Zenteno E, Guevara J. Amyloid-beta(25-35) impairs memory and increases NO in the temporal cortex of rats. Neurosci Res. 2009;63(2):129-137.
    [41] PraticòD. Evidence of oxidative stress in Alzheimer's disease brain and antioxidant therapy: lights and shadows. Ann N Y Acad Sci. 2008;1147:70-78.
    [42]苗建亭,李柱一,林宏,李宏增,朱琳. Aβ氧化应激损伤在Alzheimer病大鼠发病中的作用.第四军医大学学报. 2001;22(15):1378-1380.
    [43]李积荣,苗建亭,宿长军,李柱一,林宏,车宇. Aβ对原代培养海马神经元NO、NOS和LDH影响及bFGF保护作用.中国神经免疫学和神经病学杂志. 2003;10(2):79-82.
    [44] Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith MA, Zhu X. Oxidative stress signaling in Alzheimer's disease. Curr Alzheimer Res. 2008;5(6):525-532.
    [45] Bancher C, Lassmann H, Breitschopf H, Jellinger KA. Mechanisms of cell death in Alzheimer's disease. J Neural Transm Suppl. 1997;50:141-152.
    [46] Rowan MJ, Klyubin I, Wang Q, Anwyl R. Synaptic plasticity disruption by amyloid beta protein: modulation by potential Alzheimer's disease modifying therapies. Biochem Soc Trans. 2005;33 (Pt 4):563-567.
    [47] Selkoe DJ. Alzheimer disease is a synaptic failure. Science. 2002; 298(5594):789-791.
    [48] Wengenack TM, Curran GL, Poduslo JF. Targeting Alzheimer amyloid plaques in vivo. Nat Biotech. 2000;18(8):868-872.
    [49] Rowan MJ, Klyubin I, Cullen WK, Anwyl R. Synaptic plasticity in animal models of early Alzheimer's disease. Philos Trans R Soc Lond B Biol Sci. 2003;358(1432):821-828.
    [50] Rowan MJ, Klyubin I, Wang Q, Hu NW, Anwyl R. Synaptic memory mechanisms: Alzheimer's disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans. 2007;35(Pt 5):1219-1223.
    [51] Chen QS, Kagan BL, Hirakura Y, Xie CW. Impairment of hippocampal long-term potentiation by Alzheimer amyloid-βpeptide. J Neurosci Res. 2000;60(1):65-72.
    [52] Freir DB, Holscher C, Herron CE. Blockade of long-term potentiation by beta-amyloid peptides in the CA1 region of the rat hippocampus in vivo. J Neurophysiol. 2001;85(2):708-713.
    [53] Venkitaramani DV, Chin J, Netzer WJ, Gouras GK, Lesne S, Malinow R, Lombroso PJ. Beta-amyloid modulation of synaptic transmission andplasticity. J Neurosci. 2007;27(44):11832-11837.
    [54]马波,张建军.与阿尔茨海默病密切相关的α-,β-和γ-分泌酶的研究进展.国外医学(药学分册). 2005;32(1):22-25.
    [55] Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M. Beta–secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999;286(5440):735-741.
    [56]肖飞,罗焕酶.靶向β和γ分泌酶治疗阿尔茨海默氏病的研究进展.国外医学(药学分册). 2002;29(5):272-278.
    [57] Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J, Jacobson-Croak K, Jewett N, Keim P, Knops J, Lieberburg I, Power M, Tan H, Tatsuno G, Tung J, Schenk D, Seubert P, Suomensaari SM, Wang S, Walker D, Zhao J, McConlogue L, John V. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature. 1999;402(6761):537-540.
    [58]郭远,苗懿德.阿尔茨海默病的药物治疗研究进展.药物流行病学杂志. 2004;13(6):309-312.
    [59] Wolfe MS, Citron M, Diehl TS, Xia W, Donkor IO, Selkoe DJ. A substrate-based difluoroketone selectively inhibits Alzheimer’s gamma-secretase activity. J Med Chem. 1998;41(1):629-632.
    [60]谷峰,罗焕敏.阿尔茨海默病治疗新途径—抑制β淀粉样蛋白聚集及纤维化.中国药学杂志. 2004;39(12):887-890.
    [61] Camilleri P, Haskins NJ, Howlett DR. Beta-Cyclodextrin interacts with the Alzheimer amyloid beta-A4 peptide. FEBS Lett. 1994;341(2-3):256-259.
    [62] Tomiyama T, Asano S, Suwa Y. Rifampicin prevents the aggregation and neurotoxicity of amyloid L protein in vitro. Biochem Biophys Res Commun. 1994;204(1):761-768.
    [63] Salomon AR, Marcinowski KJ, Friedland RP, Zagorski MG. Nicotine inhibits amyloid formation by the beta peptide. Biochemistry. 1996;35(42):13568-13571.
    [64] Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, Maeda T, Akaike A. Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol. 1997;42(2):159-164.
    [65] Lorenzo A, Yankner BA. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc Natl Acad Sci USA. 1994;91(25):12243-12247.
    [66] Podlisny MB, Walsh DM, Amarante P, Ostaszewski BL, Stimson ER, Maggio JE, Teplow DB, Selkoe DJ. Oligomerization of endogenous and synthetic amyloid L-protein at nanomolar levels in cell culture and stabilization of monomer by Congo red. Biochemistry. 1998;37 (11):3602-3607.
    [67] Merlini G, Ascari E, Amboldi N, Bellotti V, Arbustini E, Perfetti V, Ferrari M, Zorzoli I, Marinone MG, Garini P, et al. Interaction of the anthracycline 4’- iodo-4’-iodo-4’-deoxydoxorubicin with amyloid fibrils: inhibition of amyloidogenesis. Proc Natl Acad Sci USA . 1995;92(7):2959-2965.
    [68] Forloni G, Colombo L, Girola L, Tagliavini F, Salmona M. Anti-amyloidogenic activity of tetracycline: studies in vitro. FEBS Letter. 2001;487(3):404-409.
    [69] Morgan C, Bugue?o MP, Garrido J, Inestrosa NC. Laminin affectspolymerization, de polymerization and neurotoxicity of Aβpeptide. Peptide. 2002;23 (7):1229-1235.
    [70] Monji A, Tashiro K, Yoshida I, Kaname H, Hayashi Y, Matsuda K, Tashiro N. Laminin inhibits both Abeta40 and Abeta42 fibril formation but does not affect Abeta40 or Abeta42-induced cytotoxicity in PC12 cells. Neurosci Lett. 1999;266(2):85-89.
    [71] Kiuchi Y, Isobe Y, Fukushima K. TypeⅣcollagen prevents amyloidβprotein fibril formation. Life Sci. 2002;70(13):1555-1561.
    [72] Soto C, Kindy MS, Baumann M, Frangione B. Inhibition of Alzheimer’s amyloidosis by peptides that prevent beta-sheet conformation. Biochem Biophys Res Commun. 1996;226(3):672-677.
    [73] Soto C, Sigurdsson EM, Morelli L, Kumar RA, Casta?o EM, Frangione B. Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer’s therapy. Nat Med. 1998;4(7):822-828.
    [74] Ghanta J, Shen CL, Kiessling LL, Murphy RM. A strategy for designing inhibitors of beta-amyloid toxicity. J Biol Chem. 1996;271(47):29525-29530.
    [75] Wouters MA, Curmi PM. An analysis of side chain interactions and pair correlations within antiparallel beta sheets: the differences between backbone hydrogen-bonded and non-hydrogen bonded residue pairs. Proteins. 1995;22(2):119-131.
    [76] Poduslo JF, Curran GL, Kumar A, Frangione B, Soto C. Beta-sheet breaker peptide inhibitor of Alzheimer’s amyloidogenesis with increased blood-brain barrier permeability and resistance to proteolytic degradation in plasma. J Neurobiol. 1999;39(5):371-378.
    [77]庾照学,姚志彬.天然抗氧化剂TA9901抑制β-淀粉样肽1-40聚集和纤维形成.中国神经科学杂志. 2000;16(3):215-217.
    [78]庾照学,汪华侨,袁群芳,李光武,姚志彬.抗氧化剂TA9901抑制加速老化鼠脑淀粉样颗粒的沉积.解剖学报. 2002;33(1):28-31.
    [79] Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis M, Yednock T, Games D, Seubert P. Immnunization with amyloid-beta attenuates Alzheimer-disease 1ike pathology in the PDAPP mouse. Nature. 1999;400(6740):l73-l77.
    [80] Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, St George-Hyslop P, Westaway D. A beta peptide immunization reduces behavioural impairm ent and plaques in a model of Alzheimer disease. Nature. 2000;408(6815):979-982.
    [81] Bard F, Cannon C, Barbour R, Burke RL, Games D, Grajeda H, Guido T, Hu K, Huang J, Johnson-Wood K, Khan K, Kholodenko D, Lee M, Lieberburg I, Motter R, Nguyen M, Soriano F, Vasquez N, Weiss K, Welch B, Seubert P, Schenk D, Yednock T. Peripherally administered antibodies against amyloid beta—peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimers disease. Nat Med. 2000;6(8):916-919.
    [82] DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-Abeta antibody alters CNS and plasma Abeta clearance and decreases brain Abeta burden in a mouse model of Alzheimer’s disease. Proc Nail Acad Sci USA. 200l;98(15):8850-8855
    [83] Wilcock DM, Rojiani A, Rosenthal A, Levkowitz G, Subbarao S, Alamed J, Wilson D, Wilson N, Freeman MJ, Gordon MN, Morgan D. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci. 2004;24(270):6144-6151.
    [84] Gelinas DS, DaSilva K, Fenili D, St George-Hyslop P, McLaurin J. Immunotherapy for Alzheimer disease. Pro Natl Acad Sci USA. 2004;101(sup1-2):14657-14662.
    [85] Brendza RP, Bacski BJ, Cirrito JR, Simmons KA, Skoch JM, Klunk WE, Mathis CA, Bales KR, Paul SM, Hyman BT, Holtzman DM. Anti-Abeta antibody treatment promotes the rapid recovery of amyloid-associated neuritic dystrophy in PDAPP transgenic mice. J Clin Invest. 2005;115(2):428-433.
    [86] Levites Y, Das P, Price RW, Rochette MJ, Kostura LA, McGowan EM, Murphy MP, Golde TE. Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest. 2006;116(1):193-201.
    [87] Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO. Nenmpathology of human Alzheimer disease after inmaunization with amyloid-beta peptide: a case report. Nat Med.2003;9(4):448-452.
    [88] Patton RL, Kalback WM, Esh CL, Kokjohn TA, Van Vickle GD, Luehrs DC, Kuo YM, Lopez J, Brune D, Ferrer I, Masliah E, Newel AJ, Beach TG, Casta?o EM, Roher AE. Amyloid-beta peptide remnants in AN-1792-immunized Alzheimer's disease patients: a biochemical analysis. Am J Pathol. 2006;169(3):1048-1063.
    [89]苗建亭,林宏,李柱一,游国雄. Alzheimer病与免疫治疗.中国神经免疫学和神经病学杂志. 2005;12(1):31-33.
    [90]陈生弟,任汝静.阿尔茨海默病免疫治疗的前景.上海交通大学学报(医学版). 2006;26(7):705-708.
    [91] Yamagishi Y, Hashimoto Y, Niikura T, Nishimoto I. Identification of essential amino acids in Humanin, a neuroprotective factor against Alzheimer's disease-relevant insults. Peptides. 2003;24(4):585-595.
    [92] Nishimoto I, Matsuoka M, Niikura T. Unravelling the role of Humanin. Trends Mol Med. 2004;10(3):102-105.
    [93] Nikura T, Chiba T, Aiso S, Matsuoka M, Nishimoto I. Humanin: after the discovery. Mol Neurobiol. 2004;30(3):327-340.
    [94]胥显民,王廷杰,陈显久,张悦红,程牛亮,蔡大勇,解军,牛勃. [Gly14]-humanin多肽对β淀粉样蛋白引起的神经干细胞毒性的拮抗作用研究.中国病理生理杂志. 2006;22(8):1623-1627.
    [95] Mamiya T, Ukai M. [Gly14]-Humanin improved the learning and memory impairment induced by scopolamine in vivo. Br J Pharmacol. 2001;134(8): 1597-1599.
    [96]尹榕,苗建亭,李柱一,杨金升. Humanin及其衍生物神经保护作用的研究进展.国外医学(老年医学分册). 2008;29(3):103-106.
    [97] Terashita K, Hashimoto Y, Niikura T, Tajima H, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T, Kanekura K, Yamada M, Nawa M, Kita Y, Aiso S, Nishimoto I. Two serine residues distinctly regulate the rescue function of Humanin, an inhibiting factor of Alzheimer’s disease - related neurotoxicity: functional potentiation by isomerization and dimerization. J Neurochem. 2003;85(6):1521-1538.
    [98] Hashimoto Y, Suzuki H, Aiso S, Niikura T, Nishimoto I, Matsuoka M. Involvement of tyrosine kinases and STAT3 in Humanin-mediatedneuroprotection. Life Sci. 2005;77(24):3092-3104.
    [99] Choi J, Zhai D, Zhou X, Satterthwait A, Reed JC, Marassi FM. Mapping the specific cytoprotective interaction humanin with the pro-apoptotic protein bid. Chem Biol Drug Des. 2007;70(5):383-392.
    [100] Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature. 2003;423(6938):456-461.
    [101] Kariya S, Takahashi N, Ooba N, Kawahara M, Nakayama H, Ueno S. Humanin inhibits cell death of serum-deprived PC12 cells. Neuroreport. 2002;13(6):903-907.
    [102] Sponne I, Fifre A, Koziel V, Kriem B, Oster T, Pillot T. Humanin rescues cortical neurons from prion-peptide-induced apoptosis. Mol Cell Neurosci. 2004;25(1):95-102.
    [103] Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I. Mechanism of neuropretection by a novel rescue factor humanin from Swedish mutant amyloid precursor protein. Biochem Biophys Res Commun. 2001;283(2):460-468.
    [104] Zou P, Ding Y, Sha Y, Hu B, Nie S. Humanin peptides block calcium influx of rat hippocampal neurons by altering fibrogenesis of Abeta(1-40). Peptides. 2003;24(5):679-685.
    [105]崔爱玲,赵丽,李灵敏,乔健天,张策. Humanin拮抗AD相关毒性作用的研究进展.生理科学进展. 2006;37(4):302-306.
    [106]罗焕敏,谷峰,李晓光.牛膝醇提物对Aβ42聚集的抑制作用. 2003;26(6):412-415.
    [107] Krejcova G, Patocka J, Slaninova J. Effect of humanin analogues on experimentally induced impairment of spatial memory in rats. J Pept Sci.2004;10(10):636-639.
    [108] Tajima H, Kawasumi M, Chiba T, Yamada M, Yamashita K, Nawa M, Kita Y, Kouyama K, Aiso S, Matsuoka M, Niikura T, Nishimoto I. A humanin derivative, S14G-HN, prevents amyloid-beta-induced memory impairment in mice. J Neurosci Res. 2005;79(5):714-723.
    [109] Pike CJ, Burdick D, Walencewicz AJ, Glabe CG., Cotman CW. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci. 1993;13(4):1676-1687.
    [110] Cheng G, Whitehead SN, Hachinski V, Cechetto DF. Effects of pyrrolidine dithiocarbamate on beta-amyloid (25-35)-induced inflammatory responses and memory deficits in the rat. Neurobiol. Dis. 2006;23(1):140-151.
    [111] Yamada K, Nabeshima T. Animal models of Alzheimer’s disease and evaluation of anti-dementia drugs. Pharmacol Ther. 2000;88(2):93-113.
    [112] Stepanichev MY, Zdobnova IM, Zarubenko II, Moiseeva YV, Lazareva NA, Onufriev MV, Gulyaeva NV. Amyloidbeta(25-35)-induced memory impairments correlate with cell loss in rat hippocampus. Physiol Behav. 2004;80(5):647-655.
    [113] Maurice T, Lockhart BP, Privat A. Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res. 1996;706(2):181-193.
    [114] Wang D, Noda Y, Zhou Y, Mouri A, Mizoguchi H, Nitta A, Chen W, Nabeshima T. The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25-35 i.c.v.-injected mice: involvement of dopaminergic systems. Neuropsychopharmacology. 2007;32(6):1261-1271.
    [115] Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron.1991;6(4):487-498.
    [116] Walsh DM, Selkoe DJ. Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron. 2004;44(1):181-193.
    [117] Rojo LE, Fernandez JA, Maccioni AA, Jimenez JM, Maccioni RB. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch Med Res. 2008;39(1):1-16.
    [118] Xu F, Grande AM, Robinson JK, Previti ML, Vasek M, Davis J, Van Nostrand WE. Early-onset subicular microvascular amyloid and neuroinflammation correlate with behavioral deficits in vasculotropic mutant amyloid beta-protein precursor transgenic mice. Neuroscience. 2007;146(1):98-107.
    [119] Eikelenboom P, Veerhuis R, Familian A, Hoozemans JJ, van Gool WA, Rozemuller AJ. Neuroinflammation in plaque and vascular beta-amyloid disorders: clinical and therapeutic implications. Neurodegener Dis. 2008;5(3-4):190-193.
    [120] Lim GP, Yang F, Chu T, Chen P, Beech W, Teter B, Tran T, Ubeda O, Ashe KH, Frautschy SA, Cole GM. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer’s disease. J Neurosci. 2000;20(15):5709-5714.
    [121] Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, van Gool WA, Hoozemans JJ. The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Trans. 2006;113(11):1685-1695.
    [122] Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Bruck W, Jellinger K, Lassmann H. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer’s disease. Evidence for apoptotic cell death. Am J Pathol.1999;155(5):1459-1466.
    [123] Grace EA, Rabiner CA, Busciglio J. Characterization of neuronal dystrophy induced by fibrillar amyloid beta: implications for Alzheimer’s disease. Neuroscience. 2002;114(1):265-273.
    [124] Golde TE. Alzheimer disease therapy: can the amyloid cascade be halted? J Clin Invest. 2003;111(1):11-18.
    [125] Ikonen M, Liu B, hashimoto Y, Ma L, Lee KW, Niikura T, Nishimoto I, Cohen P. Interaction between the Alzheimer's survival peptide humanin and insulin-like growth factor-binding protein 3 regulates cell survival and apoptosis. Proc Natl Acad Sci U S A. 2003;100(22):13042-13047.
    [126] Luciano F, Zhai D, Zhu X, Bailly-Maitre B, Ricci JE, Satterthwait AC, Reed JC. Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax family protein BimEL. J Biol Chem. 2005;280(16):15825-15835.
    [127] Wang D, Li H, Yuan H, Zheng M, Bai C, Chen L, Pei X. Humanin delays apoptosis in K562 cells by downregulation of P38MAP kinase. Apoptosis. 2005;10(5):963-971.
    [128] Bradl M, Hohlfeld R. Molecular pathogenesis of neuroinflammation. J Neurol Neurosurg Psychiatr. 2003;74(10):1364-1370.
    [129] Dorr J, Roth K, Zurbuchen U, Deisz R, Bechmann I, Lehmann TN, Meier S, Nitsch R, Zipp F. Tumor-necrosis-factor related apoptosis-inducing-ligand (TRAIL)-mediated death of neurons in living human brain tissue is inhibited by flupirtinemaleate. J Neuroimmunol. 2005;167(1-2):204-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700