用户名: 密码: 验证码:
甲磺酸法舒地尔Rho激酶抑制剂对缺血性脑损伤的保护作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察甲磺酸法舒地尔(fasudil mesylate,FM)对犬脑血管痉挛的舒张作用,并探讨其对缺血性脑损伤的保护作用及机制研究。方法1.经十二指肠给予麦角胺咖啡因片建立犬脑血管痉挛模型,观察给予FM后两小时内脑血流量、脑血管阻力、股动脉血流量、股动脉血管阻力、心率、收缩压、舒张压及平均动脉压的变化;用离体血管环实验方法观察FM对血管舒缩功能的影响;2.大鼠局灶性脑缺血采用大脑中动脉栓塞(middle cerebral artery occlusion,MCAO)2 h再灌注24 h模型,模型成功后观察神经行为学评分,检测脑梗死体积,脑组织形态学变化,及诱导型一氧化氮合酶(inducednitric oxide synthetase,iNOS)和内皮型一氧化氮合酶(endothelium nitric oxide synthetase,eNOS)的表达;3.采用急性离体脑片培养氧糖剥夺(oxygen-glucose deprivation,OGD)/再氧合(Reoxygenation,REO)模型,观察FM对脑片组织细胞活力的影响,并检测脑片组织中iNOS及过氧化物歧化酶(superoxide dismutase,SOD)的活性;4.利用过氧化氢(hydrogen peroxide,H_2O_2)造氧化应激模型,观察FM对PCl2细胞活力的影响。通过Hoechst染色,丫啶橙(Acridine orange,AO)/溴化乙啶(Ethidium bromide,EB)荧光双染观察细胞凋亡,2,7-二氯氢化荧光素(2’,7’-dichlorodihydrofluorescindiacetate,DHCF-DA)荧光染色观察细胞内过氧化物的生成,硝基四氮唑蓝(nitrobluetetrazolium,NBT)定量检测细胞内过氧化物水平;并通过qPCR及Western blot的方法检测凋亡相关基因Bax/bcl-2的表达。结果(1)FM(0.35、1.2、3.5 mg·kg~(-1))给药后可依剂量地降低脑血管阻力,增加脑血流量,作用持续2h;最大流量增加值与模型对照组比较可达27%;而其对股动脉血流量、股动脉血管阻力、心率、收缩压、舒张压及平均动脉压的影响较轻微;在离体血管环实验中,FM对甲氧胺(methoxamine,Met)及氯化钾(postassium,KCl)所致的血管收缩均有明显的舒张作用,其舒张作用在有内皮组与去内皮组之间无统计学差异;FM能使Met量效曲线非平行右移,E_(max)降低。(2)FM可改善大鼠大脑中动脉栓塞引起的神经行为学障碍,减少脑梗死体积,显著减少皮层神经元丢失,同时检测到皮层脑组织中eNOS蛋白表达明显增加,iNOS蛋白表达降低。(3)FM可显著改善大鼠皮层及海马脑片OGD/REO损伤后的脑片组织活性,同时抑制脑片组织中炎症相关蛋白iNOS的活性并增加SOD的活性。(4)FM可显著抑制H_2O_2所致PCl2细胞活力下降并抑制细胞凋亡,同时降低细胞内过氧化物的水平,并在mRNA及蛋白水平均降低Bax/bcl-2的比率。结论(1)FM静脉输注给药对犬痉挛脑血管有扩张作用,可明显降低脑血管阻力,增加脑血流量;与其对外周血管的作用比较,FM对脑血管作用选择性强,起效剂量低,起效亦较快;FM的舒血管作用与血管内皮细胞无明显关联,此作用为非内皮依赖性舒张作用。(2)在整体动物和离体脑片水平均观察到FM对脑缺血损伤有明显的保护作用,此作用可能与eNOS/iNOS有关;而进一步在细胞水平发现FM对脑损伤的保护作用可能与其直接抑制细胞损伤和细胞凋亡有关,而降低细胞内过氧化物的水平及抑制线粒体Bcl-2家族成员介导的细胞凋亡可能参与了此作用。
Aim To investigate the neuroprotective effect of fasudil mesylate (FM) and the underlyingmechanisms.Methods 1.The relaxation effect of FM was studied using cerebralvasospasm (CVS) in vivo and isolated aortic rings in vitro.2.FM was investigated for itsneuroprotective potential in rats with ischemia following middle cerebral artery occlusion(MCAO) and reperfusion.Rats were randomly assigned to sham,vehicle or FM groups.Infarct volume,neurological deficit score,morphology and molecular biological markerswere assessed.FM (10 mg·kg~(-1)) or NS was administered at 48h,24h and 2h before MCAO.Immunohistochemistry and western blot were used for detection of inducible nitric oxidesynthase (iNOS) and endothelium nitric oxide synthase (eNOS).3.The model of oxygenand glucose deprivation (OGD) insult in rat cortical and hippocampal brain slices was usedto investigate the neuroprotective effect of FM in vitro.FM (10,100μM) wereco-incubated with the slices for 30 min prior to and during OGD insult respectively.Brainslices viability was evaluated by using the 2,3,5-triphenyl tetrazolium chloride (TTC)method;The fluorescence of propidium iodide (PI) staining was used for quantification ofcellular survival,and lactate dehydrogenase (LDH) activity in incubation medium wasassessed to evaluate the degree of injury.Brain slices were collected at the end of theexperiment and stored at -70℃for analysis of iNOS and superoxide dismutase (SOD).4.The effect of FM on hydrogen peroxide (H_2O_2)induced neurotoxicity in PC12 cells wasinvestigated.PC12 cells were damaged by 300μM H_2O_2 for 12 h.Thiazoyl bluetetrazolium bromide (MTT) method and LDH release were detected to determine cellactivity.Hoechst 33258 staining and Acridine orange (AO)/Ethidium bromide (EB)double-staining were used to observe morphology changes of the cells. 2',7'-dichlorodihydrofluorescin diacetate (DHCF-DA) staining and nitroblue tetrazolium(NBT) method were used for quantification of intracellular ROS in PC12 cells.The qPCRand western blot method were used to test the mRNA and protein expression of Bax andbcl-2.ResultsⅠ(1) FM (0.35、1.2、3.5 mg·kg~(-1)) decreased cerebrovascular resistance(CVR) and increased cerebral blood flow (CBF) dose-dependently,and the relaxationeffects of FM on cerebral vessels were much stronger than on peripheral vessels.(2) FMshowed dose-dependent relaxation of isolated aortic rings contracted by pretreatment withMethoxamine (Met) or KCL.The relaxation IC_(50) of FM to the rabbit and rat aortic ringscontracted by KCL are 37.15μtM and 0.74μM respectively,and the relaxation IC_(50) of FMand Prasozin (Pra) to the rabbit aortic rings contracted by Met are 27.54μM and 0.01μMrespectively.In addition,the relaxation action of FM had no obvious difference inendothelium-intact and endothelium-removal groups.(3) The Met dose-effect relationshipcurve was significantly shifted to the right by 0.3μM and 3μM of FM,and E_(max) wasdecreased.ⅡGross anatomy showed that cerebral infarct size was significantly smaller inthe FM-treated than in the non FM-treated ischemic rats.In the brain regions vulnerableto ischemia of ischemic rats,FM was also found to significantly restore the enzyme proteinexpression level of endothelial nitric oxide synthase (eNOS),which was decreased inischemia.However,it remarkably reduced the protein synthesis of inducible nitric oxidesynthase (iNOS) that was induced by ischemia and reperfusion.ⅢIn rat brain slices treatedwith OGD/REO injury,FM increased the neuronal cell viability by 40 % for cortex and by61% for hippocampus respectively.Finally,in the presence of OGD and FM,superoxidedismutase (SOD) activity was increased by 50 % for cortex and by 58 % for hippocampus,compared to OGD only group.ⅣPretreatment with FM prior to H_2O_2 exposuresignificantly elevated cell viability,reduced H_2O_2-induced cell apoptosis,and decreasedintracellular accumulation of reactive oxygen species (ROS).Furthermore,FM alsoreversed the upregulation of Bax/Bcl-2 ratio,the downstream cascade following ROS.
     Conclusions These results suggest that:1) The relaxation effects of FM on cerebral vessels were much stronger than on peripheral vessels in vivo,and the action was in anendothelium-independent manner;2) FM not only provided neuroprotective effects onneurological deficit and cerebral infarct size after MCAO/Reperfusion,but also amelioratedcell apoptosis induced by oxidative stress insult on PC12 cells directly.The mechanismsmay be involved in the increasing CBF,ameliorating vascular endothelium function,alleviation of intracellular ROS and reactive nitrogen species (RNS) generation,anddepressing of Bcl-2 family-related apoptotic signaling pathway.
引文
1. White BC, Sullivan JM, DeGracia DJ, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J. Neurol. Sci., 2000; 179:1-33.
    2. Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: novel cellular targets that govern survival during neurodegenerative disease. Prog. Neurobiol, 2005; 75: 207-46.
    3. Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem, 1994; 63: 175-178.
    4. Bredt DS, Snyder SH. Nitric oxide: a novel neuronal messenger. Neuron, 1992; 8: 3-5.
    5. Bon CL, Garthwaite J. On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci, 2003; 23: 1941.
    6. Crack, P. J.; Taylor, J. M. Reactive oxygen species and the modulation of stroke. Free Radic. Biol. Med. 2005; 38:1433-1444.
    7. Dawson VL, Brahmbhatt HP, Mong JA, Dawson TM. Expression of inducible nitric oxide synthase causes delayed neurotoxicity in primary mixed neuronal-glial cortical cultures. Neuropharmacology 1994; 33:1425-1430.
    8. Hewett SJ, Csernansky CA, Choi DW. Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 1994; 13:487-494.
    9. Vaughan CJ, Delanty N. Neuroprotective properties of statins in cerebral ischemia and stroke. Stroke 1999; 30:1969-1973.
    10. Doyle, K. P.; Simon, R. P.; Stenzel-Poore, M. P. Mechanisms of ischemic brain damage. Neuropharmacology 2008; 55:310-318.
    11. Mehta, S. L.; Manhas, N.; Raghubir, R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res. Rev. 2007; 54:34-66.
    12. Sugawara, T.; Fujimura, M.; Noshita, N.; Kim, G. W.; Saito, A.; Hayashi, T.; Narasimhan, P.; Maier, C. M.; Chan, P. H. Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 2004; 1:17-25.
    13. Slemmer, J. E.; Shacka, J. J.; Sweeney, M. I.;Weber, J. T. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr. Med. Chem 2008; 15:404-414.
    14. Rient, K., Ridley, A.J. ROCKS: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol. 2003; 4,446-56.
    15. Masahiro T, Hiroshi N, Hideo Y, et al. Development of specific Rho-kinase inhibitors and their clinical application. Biochimica et Biophysica Acta 2005; 1754: 245-252.
    16. Satoh, S., Kobayashi, T., Hitomi, A., Ikegaki, I., Suzuki, Y., Shibuya, M, Yoshida, J.,Asano, T. Inhibition of neutrophilmigration by a protein kinase inhibitor for the treatment of ischemic brain infarction. Jpn. J. Pharmacol. 1999; 30, 41-48.
    17. Satoh, S., Utsunomiya, T., Tsurui, K., Kobayashi, K., Ikegaki, I., Sasaki, Y., Asano, T. Pharmacological profile of hydroxyphasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sci. 2001; 69, 1441-1453.
    18. Hitomi, A., Satoh, S., Ikegaki, I., Suzuki, Y., Shibuya, M., Asano, T. Hemorheological abnormalities in experimental cerebral ischemia and effects of protein kinase inhibitor on blood fluidity. Life Sci. 2000; 67, 1929-1939.
    19. Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T, Moskowitz MA, Liao JK. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 2005; 36:2251-2257.
    20. Yano K, Kawasaki K, Hattori T, Tawara S, Toshima Y, Ikegaki I, Sasaki Y, Satoh S, Asano T, Seto M. Demonstration of elevation and localization of Rho-kinase activity in the brain of a rat model of cerebral infarction. Eur J Pharmacol. 2008; Oct 10;594(l-3):77-83.
    21. Yamashita K, Kotani Y, Nakajima Y, Shimazawa M, Yoshimura S, Nakashima S, Iwama T, Hara H. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res 2007; 1154:215-224.
    22. Huang L, Li Q, Li H, He Z, Cheng Z, Chen J, Guo L. Inhibition of intracellular Ca_(2+) release by a Rho-kinase inhibitor for the treatment of ischemic damage in primary cultured rat hippoeampal neurons. Eur J Pharmacol. 2009 Jan 14;602(2-3):238-44.
    1.Satoh S,Suzuki Y,Ikegaki I,et al.The effects of HA1077 on thecerebral circulation after sugarachnoid haemorrhage in dogs.Acta Neurochir,1991,110 (3-4):185-188.
    2.黄琳,李琴,郭莲军等。盐酸法舒地尔对血管舒缩功能的调节作用,中国药理学通报,2007,23(2):251—256。
    3.Asano T,Ikegaki I,Satoh S,et al.Endothelin:a potential modulator of cerebral vasospasm.Eur J Pharmaco,1990,190(3):365-72.
    4.Fasolato C,Innocenti B,Pozzan T.Receptor-activated Ca2+influx:how many mechanisms for how many channels.[J].Trends-Pharmacol-Sci,1994,15(3):77-83
    5.Shimokawa H,Seto M,Katsumata Net al.Rho-kinase-mediated pathway induces enhanced myosin light chain phosphorylations in a swine model of coronary artery spasm[J].Cardiovascular Research,1999,43:1029-1039.
    6.Vane J R.Regulatory functions of the vascular endothelium[J].New Engl J Meb,1990,323:27.
    7.Moncada S.Nitric oxide:physiology,pathophysiology and pharmacology[J].Pharm acol Rev,1991,43:109.
    8.Vaandrager AB,Jonge HR.Signalling by cGMP-dependent protein kinase.[J].Mol Cel Biochem,1996,157:23-30
    9.Mistry DK,Garland CJ.Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+channels(BKCa) in smooth muscle cells isolated from the rat mesenteric artery[J].Br J Paarmacol,1998,124:1131-40
    10.Masahiro T,Hiroshi N,Hideo Y,et al.Development of specific Rho-kinase inhibitors and their clinical application.Biochimica et Biophysica Acta 2005;1754:245-252.
    1.E.Zea Longa,P.R.Weinstein,S.Carlson,R.Cummins.Reversible middle cerebral artery occlusion without craniectomy in rats,Stroke.1989;20:84-91.
    2.Eliasson MJL,Huang Z,Ferrante RJ,Sasamanta M,Molliver ME,Snyder SH,Moskowitz MA.Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage.J Neurosci 1999;19:5910-5918.
    3.Suzuki M,Tabuchi M,Ikeda M,Tomita T.Concurrent formation of peroxynitrite with the expression of inducible nitric oxide synthase in the brain during middle cerebral artery occlusion and reperfusion in rats.Brain Res.2002;951:113-120.
    4.Satoh,S.,Kobayashi,T.,Hitomi,A.,Ikegaki,I.,Suzuki,Y.,Shibuya,M.,Yoshida,J.,Asano,T.Inhibition of neutrophilmigration by a protein kinase inhibitor for the treatment of ischemic brain infarction.Jpn.J.Pharmacol.1999;30,41-48.
    5.Satoh,S.,Utsunomiya,T.,Tsurui,K.,Kobayashi,K.,Ikegaki,I.,Sasaki,Y.,Asano,T.Pharmacological profile of hydroxyphasudil as a selective rho kinase inhibitor on ischemic brain damage.Life Sci.2001;69,1441-1453.
    6.Hitomi,A.,Satoh,S.,Ikegaki,I.,Suzuki,Y.,Shibuya,M.,Asano,T.Hemorheological abnormalities in experimental cerebral ischemia and effects of protein kinase inhibitor on blood fluidity.Life Sci.2000;67,1929-1939.
    7.Rikitake Y,Kim HH,Huang Z,Seto M,Yano K,Asano T,Moskowitz MA,Liao JK.Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection.Stroke 2005;36:2251-2257.
    8. Yamashita K, Kotani Y, Nakajima Y, Shimazawa M, Yoshimura S, Nakashima S, Iwama T, Hara H. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res 2007; 1154:215-224.
    9. Yano K, Kawasaki K, Hattori T, Tawara S, Toshima Y, Ikegaki I, Sasaki Y, Satoh S, Asano T, Seto M. Demonstration of elevation and localization of Rho-kinase activity in the brain of a rat model of cerebral infarction. Eur J Pharmacol. 2008 Oct 10;594(1-3):77-83.
    10. Colasanti M and Suzuki H. The dual personality of NO. Trends Pharmacol Sci 2000; 21:249-252.
    11. Iadecola, C. Bright and dark sides of nitric oxide in ischemic injury. Trends Neurosci 1997; 20:132-139.
    12. Johansson R, Persson K. Phenotypic modulation of cultured bladder smooth muscle cells and the expression of inducible nitric oxide synthase. Am.J.Physiol Regul.Integr.Comp Physiol 2004; 286:R642-R648.
    13. Dobashi K, Araki S, Kubo K, Kawagoe R, Yamamoto Y, Shirahata A. Hydroxymethylglutaryl--CoA reductase inhibitor inhibits induction of nitric oxide synthase in 3T3--L1 preadipocytes. Life Sci 2008; 82:85-90
    1. Cohen MM , Pettegrew JW, kopp SJ, Minshew N, Glonek T. P-31 nuclear magnetic resonance analysis of brain: normoxic and anoxic brain slices. Neurochem.Res 1984;9:785-801.
    2. Huang X, Li Q, Zhang Y, Lu Q, Guo L, Huang L, He Z Neuroprotective Effects of Cactus Polysaccharide on Oxygen and Glucose Deprivation Induced Damage in Rat Brain Slices. Cell Mol.Neurobiol 2008; Jun;28(4):559-68.
    3. De AJ, Cardenas A, Moro MA, Leza JC, Lorenzo P, Lizasoain Ⅰ. Use of brain slices in the study of pathogenic role of inducible nitric oxide synthase in cerebral ischemia-reperfusion. Gen.Pharmacol 1999; 32:577-581.
    4. Ye YL, Wang ML, Chen LP, Liu LY, Zhang LH, Chen Z, Wei EQ. H2 receptor mediates the protective effect of histamine against the cellular edema and viability reduction induced by oxygen-glucose deprivation in rat hippocampal slices. Yao Xue Xue Bao. 2006; Apr;41(4):333-7.
    5. Doug, L. Comparison of the LDH and MTT assays for quantifying cell death validity for neuronal apoptosis. J. Neurosci. Methods 2000; 96, 147-152.
    6. Macklis JD, Madison RD. Progressive incorporation of propidium iodide in cultured mouse neurons correlates with declining electrophysiological status: a fluorescence scale of membrane integrity. J.Neurosci.Methods 1990; 31:43-46.
    7. Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T, Moskowitz MA, Liao JK. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 2005; 36:2251-2257.
    8. Yamashita K, Kotani Y, Nakajima Y, Shimazawa M, Yoshimura S, Nakashima S,Iwama T, Hara H. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res 2007;1154:215-224.
    9. Moro,M.A.,De Alba, J., Leza, J.C., Lorenzo,P., Fernandez,A.P., Bentura,M.L.,
    Bosca(?),L., Rodrigo,J., Lizasoain,I. Neuronal expression of inducible nitric oxide synthase after oxygen and glucose depression in rat forebrain slices. The European Journal of Neuroscience 1998; 10:445-446.
    10. Xie Q-W, Nathan C. The high-output nitric oxide pathway: role and regulation. J Leukoc Biol. 1994;56:576-582.
    
    11. Karen S. Christopherson and David S. Bredt. Nitric Oxide in Excitable Tissues: Physiological Roles and Disease. Christopherson and Bredt. 1997; 100(10):2424-2429.
    12. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science. 1994; 265:1883-1885.
    13. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993; 262: 689-95.
    14. Bailey SR, Mitra S, Flavahan S, et al. Reactive oxygen species from smooth muscle mitochondria initiate cold-induced constriction of cutaneous arteries. Am J Physiol Heart Circ Physiol. 2005; 289: H243-50.
    15. Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of Rho-kinase suppresses angiotensin Il(??)-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003; 93: 767-775.
    16. Huang L, Li Q, Li H, He Z, Cheng Z, Chen J, Guo L. Inhibition of intracellular Ca~(2+) release by a Rho-kinase inhibitor for the treatment of ischemic damage in primary cultured rat hippocampal neurons. Eur J Pharmacol. 2009; Jan 14;602(2-3):238-44
    1.Yan Wu,You Shang,Shenggang Sun,Rengang Liu.Antioxidant effect of erythropoietin on 1-methyl-4-phenylpyridiniuminduced neurotoxicity in PCl2 cells.European Journal of Pharmacology 2007;564:47-56.
    2.Eun Sun Choa,Ki Won Lee,Hyong Joo Lee.Cocoa procyanidins protect PC12 cells from hydrogen-peroxide-induced apoptosis by inhibiting activation of p38 MAPK and JNK.Mutation Research 2008;640:123-130.
    3.Mizuno A,Umemura K,Nakashima M.Inhibitory effect ofMCI-186,a free radical scavenger,on cerebral ischemia following rat middle cerebral artery occlusion.Gen Pharmacol,1998;30(4):575~578.
    4.Chen.JX,Zhao T,Huang DX.Protective effects of edaravone against cobalt chloride-induced apoptosis in PC12 cells Neurosci Bull.2009;Apr;25(2):67-74.
    5.Yamashita K,Kotani Y,Nakajima Y,Shimazawa M,Yoshimura S,Nakashirna S,
    Iwama T, Hara H. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res 2007; 1154:215-224.
    6. Huang L, Li Q, Li H, He Z, Cheng Z, Chen J, Guo L. Inhibition of intracellular Ca~(2+) release by a Rho-kinase inhibitor for the treatment of ischemic damage in primary cultured rat hippocampal neurons. Eur J Pharmacol. 2009; Jan 14;602(2-3):238-44.
    7. Higashi M, Shimokawa H, Hattori T, et al. Long-term inhibition of Rho-kinase suppresses angiotensin Ⅱ-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003; 93: 767-775.
    8. Cory, S., Adams, J.M. The Bcl-2 family: regulators of cellular life-ordeath switch. Nat. Rev., Cancer 2002; 2, 647-656.
    9. Lud Cadet, J., Harrington, B., Ordonez, S. Bcl-2 overexpression attenuates dopamine-induced apoptosis in an immortalized neural cell line by suppressing the production of reactive oxygen species. Synapse 2000; 35, 228-233.
    10. Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S, Ord, T., Bredesen, D.E. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Sciencel993; 262, 1274-1277.
    11. Kirkland, R.A., Windelborn, J.A., Kasprzak, J.M., Franklin, J.L. A Bax induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death. J. Neurosci. 2002; 22, 6480-6490.
    12. Fukushima M, Nakamuta M, Kohjima M, Kotoh K, Enjoji M, Kobayashi N, Nawata H. Fasudil hydrochloride hydrate, a Rho-kinase (ROCK) inhibitor, suppresses collagen production and enhances collagenase activity in hepatic stellate cells. Liver Int. 2005 Aug;25(4):829-38.
    13. Del Re DP, Miyamoto S, Brown JH. RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis. J Biol Chem. 2007 Mar 16;282(11):8069-78.
    1. Etienne-Manneville S, Hall A Rho GTPases in cell biology. Nature. 2002; 420: 629-635.
    2. Sahai E, Marshall CJ. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol. 2002; 4: 408-15.
    3. Takemoto M, Liao JK. Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol. 2001; 21: 1712-1719.
    4. Leung T, Manser E, Tan L, Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem. 1995; 270: 29051-29054.
    5. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 1996; 15: 2208-2216.
    6. Nakagawa O, Fujisawa K, Ishizaki T, Saito Y, Nakao K, Narumiya S. ROCK-I and ROCK-II(??), two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 1996; 392: 189-193.
    7. Leung T, Chen XQ, Manser E, Lim L. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol. 1996; 16: 5313-5327.
    8. Wibberley A, Chen Z, Hu E, Hieble JP, Westfall TD. Expression and functional role of Rho-kinase in rat urinary bladder smooth muscle. Br J Pharmacol. 2003; 138: 757-766.
    9. Hiroki J, Shimokawa H, Higashi M, Morikawa K, Kandabashi T, Kawamura N, Kubota T, Ichiki T, Amano M, Kaibuchi K, Takeshita A. Inflammatory stimuli upregulate Rho-kinase in human coronary vascular smooth muscle cells. J Mol Cell Cardiol. 2004; 37: 537-546.
    10. Hiroki J, Shimokawa H, Mukai Y, Ichiki T, Takeshita A. Divergent effects of estrogen and nicotine on Rho-kinase expression in human coronary vascular smooth muscle cells. Biochem Biophys Res Commun. 2005; 326: 154-159.
    11. Kosako H, Goto H, Yanagida M, Matsuzawa K, Fujita M, Tomono Y, Okigaki T, Odai H, Kaibuchi K, Inagaki M. Specific accumulation of Rho-associated kinase at the cleavage furrow during cytokinesis: cleavage furrow-specific phosphorylation of intermediate filaments. Oncogene. 1999; 18: 2783-2788.
    12. Kawabata S, Usukura J, Morone N, Ito M, Iwamatsu A, Kaibuchi K, Amano M. Interaction of Rho-kinase with myosin Ⅱ at stress fibres. Genes Cells. 2004; 9: 653-660.
    13. Sin WC, Chen XQ, Leung T, Lim L. RhoA-binding kinase alpha translocation is facilitated by the collapse of the vimentin intermediate filament network. Mol Cell Biol. 1998; 18:6325-6339.
    
    14. Shimizu Y, Thumkeo D, Keel J, Ishizaki T, Oshima H, Oshima M, Noda Y, Matsumura F, Taketo MM, Narumiya S. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles. J Cell Biol. 2005; 168: 941-953.
    15. Thumkeo D, Keel J, Ishizaki T, Hirose M, Nonomura K, Oshima H, Oshima M, Taketo MM, Narumiya S. Targeted disruption of the mouse rho-associated kinase 2 gene results in intrauterine growth retardation and fetal death. Mol Cell Biol. 2003; 23: 5043-5055.
    16. Amano M, Chihara K, Nakamura N, Kaneko T, Matsuura Y, Kaibuchi K. The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. J Biol Chem. 1999; 274:32418-32424.
    17. Amano M, Fukata Y, Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp Cell Res. 2000; 261: 44-51.
    18. Doran JD, Liu X, Taslimi P, Saadat A, Fox T. New insights into the structure-function relationships of Rho-associated kinase: a thermodynamic and hydrodynamic study of the dimer-to-monomer transition and its kinetic implications. Biochem J. 2004; 384: 255-262.
    19. Feng J, Ito M, Kureishi Y, Ichikawa K, Amano M, Isaka N, Okawa K, Iwamatsu A, Kaibuchi K, Hartshorne DJ, Nakano T. Rho-associated kinase of chicken gizzard smooth muscle. J Biol Chem. 1999; 274: 3744-3752.
    20. Shirao S, Kashiwagi S, Sato M, Miwa S, Nakao F, Kurokawa T, Todoroki N-Ikeda, Mogami K, Mizukami Y, Kuriyama S, Haze K, Suzuki M, Kobayashi S.Sphingosylphosphorylcholine is a novel messenger for Rho-kinase-mediated Ca2+ sensitization in the bovine cerebral artery: unimportant role for protein kinase C. Circ Res, 2002; 91: 112-119.
    21. Sebbagh M, Renvoize C, Hamelin J, Riche N, Bertoglio J, Breard J.Caspase-3-mediated cleavage of ROCK Ⅰ induces MLC phosphorylation and apoptotic membrane blebbing. Nat CellBiol. 2001; 3: 346-352.
    22. Sebbagh M, Hamelin J, Bertoglio J, Solary E, Breard J. Direct cleavage of ROCK Ⅱ by granzyme B induces target cell membrane blebbing in a caspase-independent manner. J ExpMed. 2005; 201: 465-471.
    23. Riento K, Guasch RM, Garg R, Jin B, Ridley AJ. RhoE binds to ROCK I and inhibits downstream signaling. Mol CellBiol. 2003; 23: 4219-4229.
    24. Ward Y, Yap SF, Ravichandran V, Matsumura F, Ito M, Spinelli B, Kelly K. The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway.J CellBiol. 2002; 157: 291-302.
    25. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K.Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). JBiol Chem. 1996; 271: 20246-20249.
    26. Goto H, Kosako H, Tanabe K, Yanagida M, Sakurai M, Amano M, Kaibuchi K,Inagaki M. Phosphorylation of vimentin by Rho-associated kinase at a unique amino-teiminal site that is specifically phosphorylated during cytokinesis. J Biol Chem.1998;273:11728-11736.
    27. Matsui T, Maeda M, Doi Y, Yonemura S, Amano M, Kaibuchi K, Tsukita S, Tsukita S.Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM)proteins and regulates their head-to-tail association. J Cell Biol. 1998; 140: 647-657.
    28. Fukata Y, Oshiro N, Kinoshita N, Kawano Y, Matsuoka Y, Bennett V, Matsuura Y,Kaibuchi K. Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility.J Cell Biol. 1999; 145:347-361.
    29. Riento K, Ridley AJ. Rocks: multifunctional kinases in cell behavior. Nat Rev Mol Cell Biol. 2003; 4: 446-456.
    30. Mueller BK, Mack H, Teusch N. Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov. 2005; 4: 387-398.
    31. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996; 273: 245-248.
    32. Kitazawa T, Eto M, Woodsome TP, Brautigan DL. Agonists trigger G protein-mediated activation of the CPI-17 inhibitor phosphoprotein of myosin light chain phosphatase to enhance vascular smooth muscle contractility. J Biol Chem. 2000; 275:9897-9900.
    33. Kaneko T, Amano M, Maeda A, Goto H, Takahashi K, Ito M, Kaibuchi K. Identification of calponin as a novel substrate of Rho-kinase. Biochem Biophys Res Commun. 2000; 273: 110-116.
    34. Vahebi S, Kobayashi T, Warren CM, de Tombe PP, Solaro RJ. Functional effects of rho-kinase-dependent phosphorylation of specific sites on cardiac troponin. Circ Res. 2005; 96: 740-747.
    35. Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y, Tang L, Hla T, Zeng R, Li L, Wu D. Regulation of PTEN by Rho small GTPases. Nat Cell Biol. 2005; 7: 399-404.
    36. Wolfrum S, Dendorfer A, Rikitake Y, Stalker TJ, Gong Y, Scalia R, Dominiak P, Liao JK. Inhibition of Rho-kinase leads to rapid activation of phosphatidylinositol 3-kinase/protein kinase Akt and cardiovascular protection. Arterioscler Thromb Vasc Biol. 2004; 24: 1842-1847.
    37. Begum N, Sandu OA, Ito M, Lohmann SM, Smolenski A. Active Rho kinase (ROK-alpha) associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem. 2002; 277: 6214-6222.
    38. Riento K, Totty N, Villalonga P, Garg R, Guasch R, Ridley AJ. RhoE function is regulated by ROCK I-mediated phosphorylation. EMBOJ. 2005; 24: 1170-1180.
    39. Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin Ⅱ. Modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev. 2003; 83: 1325-1358.
    40. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth
    muscle mediated by a Rho-associated protein kinase in hypertension. Nature. 1997; 389: 990-994.
    41. Pfitzer G. Signal transduction in smooth muscle: invited review: regulation of myosin phosphorylation in smooth muscle. J Appl Physiol. 2001; 91: 497-503.
    42. Fu X, Gong MC, Jia T, Somlyo AV, Somlyo AP. The effects of the Rho-kinase inhibitor Y-27632 on arachidonic acid-, GTPgammaS-, and phorbol ester-induced Ca2+-sensitization of smooth muscle. FEBS Lett. 1998; 440: 183-187.
    43. Bolz SS, Vogel L, Sollinger D, Derwand R, Boer C, Pitson SM, Spiegel S, Pohl U. Sphingosine kinase modulates microvascular tone and myogenic responses through activation of RhoA/Rho kinase. Circulation. 2003; 108: 342-347.
    44. Dubroca C, You D, Levy BI, Loufrani L, Henrion D. Involvement of RhoA/Rho kinase pathway in myogenic tone in the rabbit facial vein. Hypertension. 2005; 45: 974-979.
    45. Gokina NI, Park KM, McElroy-Yaggy K, Osol G. Effects of Rho kinase inhibition on cerebral artery myogenic tone and reactivity. J Appl Physioi. 2005; 98: 1940-1948.
    46. VanBavel E, van der Meulen ET, Spaan JA. Role of Rho-associated protein kinase in tone and calcium sensitivity of cannulated rat mesenteric small arteries. Exp Physioi. 2001; 86: 585-592.
    47. Schubert R, Kalentchuk VU, Krien U. Rho kinase inhibition partly weakens myogenic reactivity in rat small arteries by changing calcium sensitivity. Am J Physiol Heart Circ Physiol. 2002; 283: H2288-H2295.
    48. Lagaud G, Gaudreault N, Moore ED, Van Breemen C, Laher I. Pressure-dependent myogenic constriction of cerebral arteries occurs independently of voltage-dependent activation. Am J Physioi Heart Circ Physioi. 2002; 283: H2187-H2195.
    49. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physioi Rev. 1995; 75:487-517.
    50. Miano JM. Serum response factor: toggling between disparate programs of gene expression. J Mol Cell Cardiol 2003; 35: 577-593.
    51. Mack CP, Somlyo AV, Hautmann M, Somlyo AP, Owens GK. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J Biol Chem. 2001; 276: 341-347.
    52. Liu HW, Halayko AJ, Fernandes DJ, Harmon GS, McCauley JA, Kocieniewski P, McConville J, Fu Y, Forsythe SM, Kogut P, Bellam S, Dowell M, Churchill J, Lesso H, Kassiri K, Mitchell RW, Hershenson MB, Camoretti-Mercado B, Solway J. The RhoA/Rho kinase pathway regulates nuclear localization of serum response factor. Am J Respir Cell Mol Biol. 2003; 29: 39-47.
    53. Seko T, Ito M, Kureishi Y, Okamoto R, Moriki N, Onishi K, Isaka N, Hartshorne DJ, Nakano T. Activation of RhoA and inhibition of myosin phosphatase as important components in hypertension in vascular smooth muscle. Circ Res. 2003; 92: 411-418.
    54. Mukai Y, Shimokawa H, Matoba T, Kandabashi T, Satoh S, Hiroki J, Kaibuchi K, Takeshita A. Involvement of Rho-kinase in hypertensive vascular disease: a novel therapeutic target in hypertension. FASEB J. 2001; 15: 1062-1064.
    55. Kataoka C, Egashira K, Inoue S, Takemoto M, Ni W, Koyanagi M, Kitamoto S, Usui M, Kaibuchi K, Shimokawa H, Takeshita A. Important role of Rho-kinase in the pathogenesis of cardiovascular inflammation and remodeling induced by long-term blockade of nitric oxide synthesis in rats. Hypertension. 2002; 39: 245-250.
    56. Higashi M, Shimokawa H, Hattori T, Hiroki J, Mukai Y, Morikawa K, Ichiki T, Takahashi S, Takeshita A. Long-term inhibition of Rho-kinase suppresses angiotensin Ⅱ-induced cardiovascular hypertrophy in rats in vivo: effect on endothelial NAD(P)H oxidase system. Circ Res. 2003; 93: 767-775.
    57. Funakoshi Y, Ichiki T, Shimokawa H, Egashira K, Takeda K, Kaibuchi K, Takeya M, Yoshimura T, Takeshita A. Rho-kinase mediates angiotensin Ⅱ-induced monocyte chemoattractant protein-1 expression in rat vascular smooth muscle cells. Hypertension. 2001;38: 100-104.
    58. Takeda K, Ichiki T, Tokunou T, Iino N, Fujii S, Kitabatake A, Shimokawa H, Takeshita A. Critical role of Rho-kinase and MEK/ERK pathways for angiotensin Ⅱ-induced plasminogen activator inhibitor type-1 gene expression. Arterioscler Thromb Vase Biol. 2001; 21: 868-873.
    59. Hishikawa K, Nakaki T, Marumo T, Hayashi M, Suzuki H, Kato R, Saruta T. Pressure promotes DNA synthesis in rat cultured vascular smooth muscle cells. J Clin Invest. 1994;93:1975-1980.
    60.Numaguchi K,Eguchi S,Yamakawa T,Motley ED,Inagami T.Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments.Circ Res.1999;85:5-11.
    61.Zeidan A,Nordstrom I,Albinsson S,Malmqvist U,Sward K,Hellstrand P.Stretch-induced contractile differentiation of vascular smooth muscle:sensitivity to actin polymerization inhibitors.Am J Physiol Cell Physiol.2003;284:C 1387-C 1396.
    62.Yee HF Jr.Rho directs activation-associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton.HepatologY,1998,28..843-850.
    63.Kato M,lwamoto H,Higashi N,et al.Role of Rho small GTP binding protein in the regulation of actin cytoskeleton in hepatic stellate cells.J Hepatol.1999,31:91-99.
    64.M urata T,Arii S,M ori A,et al.Therapeutic significance of Y 27632.A Rho-kinase inhibitor,on the established liver fibrosis.J Surg Res,2003,114..64-71.
    65.苏明,万钧,黄志强等,肝星状细胞的激活和Rho—ROCK信号通路在纤维化大鼠小肝移植中的作用。中华实验外科杂志2005年12月第22卷第12期。
    66.Fusao Ikeda,Hiroaki Terajima,Yasuyuki Shimahara,Tadashi Kondo,Yoshio Yamaoka.Reduction of Hepatic Ischemia/Reperfusion-Induced Injury by a Specific ROCK/Rho Kinase Inhibitor Y-27632.Journal of Surgical Research.2003;109:155-160.
    67.Niggli,V.Rho-kinase in human neutrophils:A role in signaling for myosin light chain phosphorylation and cell migration.FEBS Lett.1999;445:69.
    68.Atsuhiro Kawaguchi,Masami Ohmori,Akio Fujimura.Partial protective effect of Y-27632,a Rho kinase inhibitor,against hepatic ischemia-reperfusion injury in rats.European Journal of Pharmacology.2004;493:167-171.
    69.Bao W,Hu E,Tao L,Boyce R,Mirabile R,Thudium DT,Ma XL,Willette RN,Yue TL.Inhibition of Rho-kinase protects the heart against ischemia/reperfusion injury.Cardiovasc Res.2004;61:548-558.
    70.Toyotaka Yada,Hiroaki Shimokawa,Osamu Hiramatsu,.Beneficial Effect of Hydroxyfasudil,a Specific Rho-Kinase Inhibitor,on Ischemia/Reperfusion Injury in Canine Coronary Microcirculation In Vivo.Journal of the American College of Cardiology.2005;45.
    71. S.eniz Demiryu(?)rek, Ali F. Kara, Ahmet C, elik, Mehmet Tarakc,1og(?)lu,Cahit Bag(?)c1, Abdullah T. Demiryu(?)rek, Effects of Y-27632, a selective Rho-kinase inhibitor, on myocardial preconditioning in anesthetized rats. Biochemical Pharmacology. 2005;69:49-58.
    72. Sato M, Tani E, Fujikawa H, Kaibuchi K. Involvement of Rho-kinase-mediated phosphorylation of myosin light chain in enhancement of cerebral vasospasm. Circ Res. 2000; 87: 195-200.
    73. Wickman G, Lan C, Vollrath B. Functional roles of the rho/rho kinase pathway and protein kinase C in the regulation of cerebrovascular constriction mediated by hemoglobin: relevance to subarachnoid hemorrhage and vasospasm. Circ Res. 2003; 92: 809-816.
    74. Negishi M, Katoh H. Rho family GTPases as key regulators for neuronal network formation. J Biochem Tokyo. 2002;132:157-166
    75. Luo L. Rho GTPases in neuronal morphogenesis. Nat Rev Neurosci. 2000; 1:173-180.
    76. Redmond L, Ghosh A. The role of Notch and Rho GTPase signaling in the control of dendritic development. Curr Opin Neurobiol. 2001; 11:111-117.
    77. Jin Z, Strittmatter SM. Racl mediates collapsin-1-induced growth cone collapse. J Neurosci. 1997;17:6256-6263.
    78. Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L. Rho signaling pathway targeted to promote spinal cord repair. J Neurosci. 2002;22:6570-6577.
    79. Trapp T, Olah L, Holker I, et al. GTPase RhoB: an early predictor of neuronal death after transient focal ischemia in mice. Mol Cell Neurosci. 2001; 17:883-894.
    80. Laufs U, Endres M, Stagliano N, et al. Neuroprotection mediated by changes in the endothelial actin cytoskeleton. J Clin Invest. 2000; 106:15-24.
    81. Christine Brabeck, MD; Michel Mittelbronn, MD; Kubrom Bekure, TA; Richard Meyermann, MD; Hermann J. Schluesener, PhD; Jan M. Schwab. Effect of Focal Cerebral Infarctions on Lesional RhoA and RhoB Expression. Arch Neurol. 2003;60:1245-1249.
    82. Donovan FM, Pike CJ, Cotman CW, Cunningham DD. Thrombin induces apoptosis in cultured neurons and astrocytes via a pathway requiring tyrosine kinase and RhoA activities. J Neurosci. 1997;17:5316-5326.
    83. Neumann H, Schweigreiter R, Yamashita T, Rosenkranz K, Wekerle H, Barde YA. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J Neurosci. 2002;22:854-862.
    84. Woolf CJ, Bloechlinger S. It takes more than two to Nogo. Science. 2002;297:1132-1134.
    85. Fournier AE, Strittmatter SM. Repulsive factors and axon regeneration in the CNS. Curr Opin Neurobiol. 2001 ;11:89-94.
    86. Rubin EJ, Gill DM, Boquet P, Popoff MR. Functional modification of a 21-kilodalton G protein when ADP-ribosylated by exoenzyme C3 of Clostridium botulinum. Mol Cell Biol. 1988;8:418-426.
    87. Chardin P, Boquet P, Madaule P, Popoff MR, Rubin EJ, Gill DM. The mammalian G protein rhoC is ADP-ribosylated by Clostridium botulinum exoenzyme C3 and affects actin microfilaments in Vero cells. EMBO J. 1989;8:1087-1092.
    88. Satoh, S., Kobayashi, T., Hitomi, A., Ikegaki, I., Suzuki, Y., Shibuya, M., Yoshida, J.,Asano, T. Inhibition of neutrophilmigration by a protein kinase inhibitor for the treatment of ischemic brain infarction. Jpn. J. Pharmacol. 1999; 30, 41-48.
    89. Satoh, S., Utsunomiya, T., Tsurui, K., Kobayashi, K., Ikegaki, I., Sasaki, Y., Asano, T. Pharmacological profile of hydroxyphasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sci. 2001; 69, 1441-1453.
    90. Hitomi, A., Satoh, S., Ikegaki, I., Suzuki, Y., Shibuya, M., Asano, T. Hemorheological abnormalities in experimental cerebral ischemia and effects of protein kinase inhibitor on blood fluidity. Life Sci. 2000; 67, 1929-1939.
    91. Rikitake Y, Kim HH, Huang Z, Seto M, Yano K, Asano T, Moskowitz MA, Liao JK. Inhibition of Rho kinase (ROCK) leads to increased cerebral blood flow and stroke protection. Stroke 2005; 36:2251-2257.
    92. Yamashita K, Kotani Y, Nakajima Y, Shimazawa M, Yoshimura S, Nakashima S, Iwama T, Hara H. Fasudil, a Rho kinase (ROCK) inhibitor, protects against ischemic neuronal damage in vitro and in vivo by acting directly on neurons. Brain Res 2007; 1154:215-224.
    93.Yano K,Kawasaki K,Hattori T,Tawara S,Toshima Y,Ikegaki I,Sasaki Y,Satoh S,Asano T,Seto M.,2008.Demonstration of elevation and localization of Rho-kinase activity in the brain of a rat model of cerebral infarction.Eur J Pharmacol.2008 Oct 10;594(1-3):77-83.
    94.Huang L,He Z,Guo L,Wang H.Improvement of Cognitive Deficit and Neuronal Damage in Rats with Chronic Cerebral Ischemia via Relative Long-term Inhibition of Rho-kinase.Cell Mol.Neurobiol 2007;28:757-768.
    95.Huang L,Li Q,Li H,He Z,Cheng Z,Chen J,Guo L.Inhibition of intracellular Ca~(2+) release by a Rho-kinase inhibitor for the treatment of ischemic damage in primary cultured rat hippocampal neurons.Eur J Pharmacol.2009;Jan 14;602(2-3):238-44.
    96.郑玉萍 孙乃学 熊全臣等,视紫红质蛋白激酶抑制剂对兔增生性玻璃体视 网膜病变的作用。中华眼科杂志2005年12月第41卷第12期
    97.于月成,辛晓燕,吴维光等Rho和ROCK蛋白在上皮性卵巢癌中的表达及临床意义。现代肿瘤医学2006年4月 第14卷第4期
    98.王颢陈玉霞卢建,Rho家族在肿瘤组织的表达及临床意义。《中国癌症杂志》2005年第15卷第4期
    99.Shimokawa H,Hiramori K,Iinuma H,Hosoda S,Kishida H,Osada H,Katagiri T,Yamauchi K,Yui Y,Minamino T,Nakashima M,Kato K.Anti-anginal effect of fasudil,a Rho-kinase inhibitor,in patients with stable effort angina:a multicenter study.J Cardiovasc Pharmacol.2002;40:751-761.
    100.Mohri M,Shimokawa H,Hirakawa Y,Masumoto A,Takeshita A.Rho-kinase inhibition with intracoronary fasudil prevents myocardial ischemia in patients with coronary microvascular spasm.JAm Coll Cardiol.2003;41:15-19.
    101.Kishi T,Hirooka Y,Masumoto A,Ito K,Kimura Y,Inokuchi K,Tagawa T,Shimokawa H,Takeshita A,Sunagawa K.Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure.Circulation.2005;111:2741-2747.
    102.Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart. 2005; 91: 391-392.
    103.Gervaise Loirand, Patrice Gue(?)rin, Pierre Pacaud. Rho kinases in cardiovascular physiology and pathophysiology. Circulation Research. 2006;98:322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700