用户名: 密码: 验证码:
激动β3肾上腺素受体对动脉粥样硬化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     动脉粥样硬化(atherosclerosis,As)所致的心血管疾病成为威胁人类生命的重要疾病之一,目前已知的主要危险因素有:1、高脂血症,2、高血压,3、糖尿病,4、吸烟等。其中血脂异常主要表现为低密度脂蛋白胆固醇(LDL-C)、甘油三酯(TG)水平升高和高密度脂蛋白胆固醇(HDL-C)水平下降。,调节血脂是预防和治疗动脉粥样硬化性疾病的主要手段。目前,流行病学研究显示,LDL-C单一达标只能降低30%~45%主要冠状动脉事件,不能忽略的是,与高LDL-C水平一样,低HDL-C水平同样具有高心血管事件风险,HDL-C每升高1%,心血管事件发生率可降低2%~3%。HDL抗动脉硬化的作用主要与HDL功能有关,HDL通过参与胆固醇逆向转运,抑制胆固醇酯在巨噬细胞内聚集,阻止动脉内壁泡沫细胞的形成,将斑块中泡沫细胞内的胆固醇酯转运至肝脏,起到了延缓或逆转斑块的作用。此外,HDL还具有抗炎、抗氧化、抗凝和改善内皮功能等有益的作用。近年来,人们正在积极研发新的升高HDL水平并能增强其功能的药物。
     胆固醇逆转运环节中,HDL与细胞膜表面的B类1型清道夫受体(SR-B1)特异性结合后介导外周胆固醇转运至肝组织,以胆汁酸或游离胆固醇形式随胆汁和粪便排出体外,起到延缓或逆转粥样斑块的作用。其中,载脂蛋白A-I(ApoA-I)是HDL与SR-B1结合的基本结构区,只有适当定位和含量的ApoA-I才能有效发挥胆固醇逆转运作用,才能将外周过剩的胆固醇转运至肝脏。
     过氧化物酶增殖物激活受体(PPARs)也具有抗动脉粥样硬化的重要作用,PPARs属于核受体超家族成员,其中PPARα通过调节脂肪酸代谢,PPARγ通过影响脂肪细胞分化、脂肪贮存以及胰岛素的作用,参与脂代谢、糖尿病、炎症等过程,进而干预动脉粥样硬化的发生发展。
     β_3肾上腺素受体(β_3-AR)发现于20世纪80年代,主要分布在脂肪组织,通过Gs蛋白偶联激活腺苷酸环化酶,增加胞内环磷酸腺苷水平,激活蛋白激酶A,调节白色和棕色脂肪组织的脂肪分解和产热作用。有研究显示,β_3-AR具有调节糖、脂代谢的作用,能够降低TC和TG,升高HDL-C水平,但目前有关β_3-AR激动剂对动脉粥样硬化性疾病影响的研究甚少。
     目的
     本研究通过观察β_3-AR激动剂和拮抗剂对老龄ApoE~(-/-)小鼠血脂、血糖、胰岛素、脂肪组织β_3-AR mRNA和PPARγ mRNA水平、肝组织ApoA、SR-B1和PPARα水平及胸主动脉粥样硬化病变形成的影响,初步探讨激动β_3-AR在抗动脉粥样硬化中的作用及其可能机制。
     方法
     选用10周龄C57BL/6J10只作为正常对照组,给予普通饲料饲养,10周龄ApoE~(-/-)小鼠50只给予高脂饲料饲养。36周龄时ApoE~(-/-)小鼠随机分为ApoE~(-/-)高脂模型组(n=10)、阿托伐他汀组(n=10)、β_3-AR激动剂小剂量组(n=10)、β_3-AR激动剂大剂量组(n=10)、β_3-AR拮抗剂组(n=10),给予各组小鼠生理盐水或药物干预12周。48周龄时,观察各组小鼠血脂、血糖(Glu)和胰岛素(Ins)水平,Western blot法测定肝组织ApoA-I和SR-B1蛋白的表达,实时定量RT-PCR测定脂肪组织β_3-AR mRNA和PPARγ mRNA、肝组织ApoA-I mRNA、ApoA-IImRNA、SR-B1mRNA和PPARα mRNA表达水平,并取胸主动脉常规HE染色、Masson染色和油红O染色后行组织病理形态学观察,测定干预后胸主动脉粥样硬化斑块的改变。
     结果
     1.48周龄时,与正常对照组相比,Apo E~(-/-)高脂模型组小鼠血脂水平、Glu及Ins水平升高(P<0.01),HDL-C/TC比值下降(P<0.01),病理可见胸主动脉粥样硬化斑块形成(P<0.01),脂肪组织β_3-AR mRNA水平下调(P<0.01),肝脏组织ApoA-I、ApoA-II和PPARα水平上调(P<0.01),SR-BI水平下调(P<0.01),脂肪组织PPARγ mRNA水平无明显变化(P>0.05)。
     2.与Apo E~(-/-)高脂模型组相比,阿托伐他汀组小鼠血TC、VLDL/LDL-C、HDL-C和Ins水平均明显降低(P<0.01),TG和Glu水平无明显变化(P>0.05),胸主动脉粥样硬化斑块面积减小(P<0.01),肝组织ApoA-I、ApoA–II、SR-BI和PPARα表达水平上调(P<0.01),脂肪组织PPARγ mRNA表达水平上调(P<0.01),脂肪组织β_3-AR mRNA表达水平无明显改变(P>0.05)。
     3.与Apo E~(-/-)高脂模型组相比,β_3-AR激动剂小剂量和大剂量组小鼠血TC、VLDL/LDL-C、TG、Glu和Ins水平均明显降低(P<0.01),HDL-C/TC比值升高(P<0.01),胸主动脉粥样硬化斑块面积减小(P<0.01),脂肪组织β_3-AR mRNA水平、肝组织ApoA-I和SR-BI表达水平上调(P<0.01),肝组织ApoA-II和PPARαmRNA水平下调(P<0.01),脂肪组织PPARγ mRNA水平无明显改变(P>0.05),但β_3-AR激动剂大剂量组作用明显优于小剂量组(P<0.01)。
     4.β_3-AR激动剂大剂量组减小胸主动脉粥样硬化斑块面积的作用与阿托伐他汀组相似(P>0.05),升高HDL-C、HDL-C/TC、降低Ins水平的作用则显著优于阿托伐他汀(P<0.01),大剂量β_3-AR激动剂促进脂肪组织β_3-AR mRNA表达水平上调(P<0.01),肝组织ApoA-I、ApoA-II、SR-BI、PPARα和脂肪组织PPARγmRNA表达水平明显下调(P<0.01)。
     5.与Apo E~(-/-)高脂模型组相比,β_3-AR拮抗剂组血脂、Glu、Ins水平及胸主动脉粥样硬化斑块面积无明显变化(P>0.05),脂肪组织PPARγ mRNA水平明显上调(P<0.01),脂肪组织β_3-AR、肝组织ApoA-I、ApoA-II、SR-BI和PPARα mRNA表达水平均无明显变化(P>0.05)。结论
     1.激动β_3-AR显著改善老年Apo E~(-/-)小鼠血脂代谢,降低TC、VLDL/LDL-C和TG,升高HDL;
     2.激动β_3-AR显著改善老年Apo E~(-/-)小鼠血糖代谢,降低Glu和Ins水平;
     3.激动β_3-AR明显上调老年Apo E~(-/-)小鼠脂肪组织β_3-AR mRNA、肝组织ApoA-I和SR-BI表达水平;
     4.激动β_3-AR显著下调老年Apo E~(-/-)小鼠肝组织ApoA-II和PPARα mRNA的表达水平;
     5.激动β_3-AR对老年Apo E~(-/-)小鼠脂肪组织PPARγ mRNA表达水平无显著影响;
     6.激动β_3-AR明显缩小老年Apo E~(-/-)小鼠胸主动脉动脉粥样硬化斑块面积,提示其具有抗动脉粥样硬化的作用。
Background
     Atherosclerotic (AS) disease is the leading cause of morbidity and mortality inthe western world and developing countries. It is associated with a metabolic andvascular cluster of disorders. The major risk factors of atherosclerosis includehyperlipidemia, glucose intolerance, hypertension, smoking and aging.Hyperlipidemia is summarized as raised trigIyceride (TG), total cholesterol (TC) andlow density lipoprotein-cholesteroI (LDL-C) levels, reduced (high densitylipoprotein-cholesteroI) HDL-C level. Studies indicate that reducing LDL-C levelsand/or increasing HDL-C levels can decrease efficiently the incidence of AS disease.Recently, the epidemiology showed that the single standard of LDL-C level can onlyreduce the30%to45%of major coronary events. AS the raised LDL-C level, thereduced HDL-C levels also have high cardiovascular event risk. The increase ofHDL-C level with every1%would reduce the incidence of cardiovascular eventswith2%to3%. HDL involves in reverse cholesterol transport (RCT) which HDLinhibites the aggregation of cholesteryl ester in macrophages and prevents theformation of foam cells in the plaque. In addition, HDL also has anti-inflammatory,antioxidant, anticoagulant and improves the endothelial function. In recent years, thenew medcines are actively developed which could elevated HDL levels and enhanceits functionality.
     As the most important anti—atherosclerotic mechanism in vivo RCT,is aprocess which dynamically transport of excess cholesterol from the periphery into theliver, followed by excretion in the feces or the bile.Scavenger receptor class B type I (SR-BI) had already proved in molecular level as the sole HDL receptor whichlocates on celluar membrane.As the HDL specific receptor, SR-BI plays an importantrole in the HDL metabolism and the process of RCT. Apolipoprotein A-I (ApoA-I) isthe basic structure area of HDL combinated with SR-B1. It is essential that theappropriate position and content of ApoA-I in order to work effectively in the processof RCT. In addition, peroxisome proliferator-activated receptors (PPARs) recently areone of the main mechanisms of anti-atherosclerotic. PPARs belong to the members ofthe nuclear receptor superfamily including PPARα, PPARβand PPARγ. PPARαregulates fatty acid metabolism. PPARγ involve in lipid metabolism, glucosemetabolism and inflammation process by affecting fat cells differentiation andstorage.Thus PPARs interfere with the development of atherosclerosis.
     During the1980s, the classification of β-adrenoceptor (β-AR) was modifiedfollowing the discovery of a third β-AR primarily in rat adipose tissue. β_3-ARmediates the major effects of adrenaline and noradrenaline in adipose tissues, such aslipolysis in white adipose tissue and thermogenesis in brown adipose tissue. Itbelongs to the G-protein coupled receptor family which involves the activation ofadenylyl cyclase, cAMP/protein kinase A (PKA) pathway and recruits a PI3-kinasepathway. Previous studies have shown that chronic treatments of β_3-AR agonists wereeffective in improving glycaemic control, insulin sensitivity and reducing plasma TG,free fatty acid levels and body weight in obese diabetic animals. However the effectsof β_3-AR on atherosclerosis disease are largely unknown.
     Objective
     To study the effects of β_3-adrenoceptor (β_3-AR) activation on lipid, glucosemetabolism, the β_3-AR mRNAexpressions in withe adipose tissue, ApoA-I, ApoA-II,SR-BI expressions in liver tissue and atherosclerotic plaque development in agedapolipoprotein E-deficient (ApoE~(-/-)) mice. The study discussed β_3-AR possible mechanisms and provided the evidenceand which its function of HDL metabolism,the RCT process and atherosderosis.
     Methods
     Ten10-week-old wild-type C57BL/6J mice (A group) were fed normal chow.Fifty10-week-old ApoE~(-/-)mice were fed high-fat diet. At36-week-old, ApoE~(-/-)micewere randomly given normal saline (B group), atorvastatin (10mg kg-1d-1, C group),β_3-AR agonist BRL37344(1.65μg kg-1, twice a week, D group), BRL37344(3.30μg kg-1, twice a week, E group) and β_3-AR antagonist SR52390A (50μg kg-1,twice a week, F group) for12weeks. The serum lipid, glucose and insulin levels weremeasured. The protein expressions of ApoA-I, SR-BI in the liver tissue by westernblot.Real-time quantitative PCR was used to determine the expressions of ApoA-ImRNA, ApoA-II mRNA, SR-BI mRNAand PPARα mRNA in the liver tissue and theexpression of β_3-AR mRNA and PPARγ mRNA in withe adipose tissue of mice. Theatherosclerotic plaque area in the thoracic aortic was determined withHematoxy-Eosin stain, and level of fibrosis in the plaque was assessed with Massonstain.
     Results
     1. Compared with wild-type C57BL/6J mice, ApoE~(-/-)mice showed a significanthyperlipidemia, insulin résistance, the downregulation expression of β_3-AR mRNAand SR-BI (P <0.01), the upregulation expression of ApoA-I, ApoA-II and PPARαmRNA (P <0.01), PPARγ mRNA levels in adipose tissue was no significant changes(P>0.05), atherosclerotic plaque formation with obvious fibrosis in the thoracicaortic (P <0.01).
     2. Compared withApoE~(-/-)control mice with saline, atorvastatin obviouslydecreased the serum levels ofTC, VLDL/LDL-C, HDL-C and Ins (P <0.01), but hadno effect on TG and Glu (P>0.05). In additionally, atorvastatin significiantly upregulated the expression ofApoA-I, ApoA–II, SR-BI and PPARα in liver tissueand the expression of PPARγ mRNA in adipose tissue (P <0.01). β_3-AR mRNAlevelsof adipose tissue did not change significantly (P>0.05).Atorvastatin could decreasethe atherosclerotic plaque size (P <0.01).
     3. Compared with ApoE~(-/-)control mice with saline, low or high dose β_3-ARagonist significantly decreased the serum levels of TG, Glu and Ins, and obviouslyelevated HDL-C level and HDL-C/TC ratio. Simultaneously, β_3-AR agonist coulddistinctly up-regulate β_3-AR mRNA, ApoA-I and SR-BI levels, down-regulateApoA-II and PPARα mRNA levels and decrease the atherosclerotic plaque size(P<0.01). PPARγ mRNA levels of adipose tissue did not change significantly (P>0.05). Effect of high dose β_3-AR agonist was significantly superior to low dose(P<0.01).
     4. Compared with atorvastatin group, the effects of high dose β_3-AR agonistwere similar in decreasing the atherosclerotic plaque size(P>0.05), but high doseβ_3-AR agonist was better than atorvastatin in increasing levels of HDL-C, HDL-C/TCand in reducing levels of insulin(P<0.01). β_3-AR agonist obviously up-regulated theβ_3-AR expression and down-regulated the expression ofApoA-I, ApoA-II, SR-BI,PPARα and PPARγ (P<0.01).
     5. Compared with ApoE~(-/-)control mice,β_3-AR antagonist had no effect on lipids、Glu、Ins and the atherosclerotic plaque size (P>0.05). PPARγ mRNA levels wasincreased significiantly in β_3-AR antagonist group(P<0.01). There was no obviouschange about ApoA-I, ApoA-II, SR-BI, β_3-AR and PPARα expression (P>0.05).
     Conclusion
     1. β_3-AR activation can improve the aged ApoE~(-/-)mice lipid metabolism,reducing levels of TC, VLDL/LDL-C and TG,increasing level of HDL;
     2. β_3-AR activation can improve the aged ApoE~(-/-)mice glucose metabolism,reducing levels of glucose and insulin;
     3. β_3-AR activation can up-regulate levels of β_3-AR mRNAexpression in whiteadipose tissue, ApoA-I and SR-BI expression in the liver tissue;
     4. β_3-AR activation can down-regulate levels of ApoA-II and PPARα mRNAexpression in the liver tissue;
     5. β_3-AR activation had no obvious effect on PPARγ mRNA expression of theaged ApoE~(-/-)mice;
     6. β_3-AR activation can significantly decrease the atherosclerotic plaque sizeand play a role of anti-atherosclerosis.
引文
[1] Chernogubova E, Cannon B, and Bengtsson T. Norepinephrine increasesglucose transport in brown adipocytes via beta3-adrenoceptors through acAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional andnovel PKCs. Endocrinology,2004;145(1):269-280.
    [2] Kim H, Pennisi PA, Gavrilova O, Pack S, Jou W, Setser-Portas J, East-PalmerJ, Tang Y, Manganiello VC, Leroith D. Effect of adipocyte beta3-adrenergicreceptor activation on the type2diabetic MKR mice. Am J PhysiolEndocrinol Metab.2006;290(6): E1227-1236.
    [3] Kato H, Ohue M, Kato K, Nomura A, Toyosawa K, Furutani Y, KimuraS, Kadowaki T. Mechanism of amelioration of insulin resistance bybeta3-adrenoceptor agonist AJ-9677in the KK-Ay/Ta diabetic obese mousemodel. Diabetes.2001;50(1):113-122.
    [4] Fu L, Isobe K, Zeng Q, Suzukawa K, Takekoshi K, Kawakami Y. The effectsof beta(3)-adrenoceptor agonist CL-316,243on adiponectin, adiponectinreceptors and tumor necrosis factor-alpha expressions in adipose tissues ofobese diabetic KKAy mice. Eur J Pharmacol.2008;584(1):202-206.
    [5] Johnson J, Carson K, Williams H, Karanam S, Newby A, Angelini G, GeorgeS, Jackson C. Plaque rupture after short periods of fat feeding in theapolipoprotein E-knockout mouse: model characterization and effects ofpravastatin treatment. Circulation.2005;111(11):1422-1430.
    [6] Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R. ApoE-deficientmice develop lesions of all phases of atherosclerosis throughout the arterialtree. Arterioscler Thromb Vasc Biol.1994;14(1):133-140.
    [7] Tamminen M, Mottino G, Qiao JH, Breslow JL, Frank JS. Ultrastructure of earlylipid accumulation in ApoE-deficient mice. Arterioscler Thromb Vasc Biol.1999;19(4):847-53.
    [8] Fu L, Isobe K, Zeng Q, Suzukawa K, Takekoshi K, Kawakami Y. Beta-adrenoceptor agonists downregulate adiponectin, but upregulate adiponectinreceptor2and tumor necrosis factor-alpha expression in adipocytes. Eur JPharmacol.2007;569(1-2):155-162.
    [9] Livak KJ and Schmittgen TD. Analysis of relative gene expression data usingreal-time quantitative PCR and the2(-Delta Delta C(T)) Method. Methods.2001;25(4):402-408.
    [10] Jawien J, Nastalek P, Korbut R. Mouse models of experimental atherosclerosis.J Physiol Pharmacol.2004;55(3):503-517.
    [11] Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Centraladministration of oleic acid inhibits glucose production and food intake.Diabetes.2002;51(2):271-275.
    [12] Kawashima Y, Chen J, Sun H, Lann D, Hajjar RJ, Yakar S, Leroith D.Apolipoprotein E deficiency abrogates insulin resistance in a mouse model oftype2diabetes mellitus. Diabetologia.2009;52(7):1434-1441.
    [13] Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van derHoorn J, Princen HM, Kooistra T. Mouse models for atherosclerosis andpharmaceutical modifiers. Arterioscler Thromb Vasc Biol.2007;27(8):1706-1721.
    [14] Koh KK, Sakuma I, Quon MJ. Differential metabolic effects of distinct statins.Atherosclerosis.2011;215(1):1-8
    [15] Tchivileva IE, Tan KS, Gambarian M, Nackley AG, Medvedev AV, RomanovS, Flood PM, Maixner W, Makarov SS, Diatchenko L. Signaling pathwaysmediating beta3-adrenergic receptor-induced production of interleukin-6inadipocytes. Mol Immunol.2009;46(11-12):2256-2266.
    [16] Margareto J, Larrarte E, Marti A, Martinez JA. Up-regulation of a thermog-enesis-related gene (UCP1) and down-regulation of PPARgamma and aP2genes in adipose tissue: possible features of the antiobesity effects of abeta3-adrenergic agonist. Biochem Pharmacol.2001;61(12):1471-1478.
    [17] Granneman JG, Burnazi M, Zhu Z, Schwamb LA. White adipose tissuecontributes to UCP1-independent thermogenesis. Am J Physiol EndocrinolMetab.2003;285(6): E1230-1236.
    [18] Cao W, Medvedev AV, Daniel KW, Collins S. beta-Adrenergic activation ofp38MAP kinase in adipocytes: cAMP induction of the uncoupling protein1(UCP1) gene requires p38MAP kinase. J Biol Chem.2001;276(29):27077-27082.
    [19] Mottillo EP, Shen XJ, and Granneman JG. Role of hormone-sensitive lipase inbeta-adrenergic remodeling of white adipose tissue. Am J Physiol EndocrinolMetab.2007;293(5): E1188-1197.
    [20] Robidoux J, Kumar N, Daniel KW, Moukdar F, Cyr M, Medvedev AV, CollinsS. Maximal beta3-adrenergic regulation of lipolysis involves Src andepidermal growth factor receptor-dependent ERK1/2activation. J Biol Chem.2006;281(49):37794-37780214.
    [21] Oana F, Takeda H, Matsuzawa A, Akahane S, Isaji M, Akahane M. Adipon-ectin receptor2expression in liver and insulin resistance in db/db mice givena beta3-adrenoceptor agonist. Eur J Pharmacol.2005;518(1):71-76..
    [22] Coman OA, Takeda H, Matsuzawa A, Coman L, B d r ru A, Fulga I. Beta3adrenergic receptors: molecular, histological, functional and pharmac-ological approaches. Rom J Morphol Embryol.2009;50(2):169-179.
    [23] Suzuki M, Kakuta H, Takahashi A, Shimano H, Tada-Iida K, Yokoo T, KiharaR, Yamada N. Effects of atorvastatin on glucose metabolism and insulinresistance in KK/Ay mice. J Atheroscler Thromb.2005;12(2):77-84.
    [24] Nakata M, Kakuta H, Takahashi A, Matsuoka H, Ishibashi S, Yada T. Effectsof statins on the adipocyte maturation and expression of glucose transporter4(SLC2A4): implications in glycaemic control. Diabetologia.2006;49(8):1881-1892.
    [25] Gettys TW, Watson PM, Seger L, Padgett M, Taylor IL. Adrenalectomy afterweaning restores beta3-adrenergic receptor expression in white adipocytesfrom C57BL/6J-ob/ob mice. Endocrinology.1997;138(7):2697-2704.
    [26] Collins S, Daniel KW, Rohlfs EM, Ramkumar V, Taylor IL, Gettys TW.Impaired expression and functional activity of the beta3-and beta1-adrenergic receptors in adipose tissue of congenitally obese (C57BL/6Job/ob) mice. Mol Endocrinol.1994;8(4):518-527.
    [27] Feve B, Elhadri K, Quignard-Boulange A, Pairault J. Transcriptional down-regulation by insulin of the beta3-adrenergic receptor expression in3T3-F442A adipocytes: a mechanism for repressing the cAMP signalingpathway. Proc NatlAcad Sci U S A.1994;91(12):5677-5681.
    [28] Capurso C and Capurso A. From excess adiposity to insulin resistance: Therole of free fatty acids. Vascul Pharmacol.2012;135(45):2456-2460.
    [29] Wang H and Peng DQ. New insights into the mechanism of low high-density lipoprotein cholesterol in obesity. Lipids Health Dis.2011;10(24):176-179.
    [1] Mineo C, Shaul PW. Novel biological functions of high-density lipoproteincholesterol. Circ Res.2012;111(8):1079-1090.
    [2] Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoproteinfunction, dysfunction, and reverse cholesterol transport. Arterioscler ThrombVasc Biol.2012;32(12):2813-2820.
    [3] López-Velázquez JA, Carrillo-Córdova LD, Uribe M, Méndez-Sánchez N.Nuclear receptors in nonalcoholic Fatty liver disease. J Lipids.2012;2012:139875
    [4]. Sahi S, Tewatia P, Malik BK. Modeling and Simulation Studies of Humanbeta3Adrenergic Receptor and its Interactions with Agonists. Curr ComputAided Drug Des.2012;8(4):283-295.
    [5] Jawien J, Nastalek P, Korbut R. Mouse models of experimental atherosclerosis.J Physiol Pharmacol.2004,55(3):503-517.
    [6] Arch JR, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, ThodyVE, Wilson C, Wilson S. Atypical beta-adrenoceptor on brown adipocytes astarget for anti-obesity drugs. Nature.1984;309(5964):163-165.
    [7] Unno Y, Sakai M, Sakamoto Y, Kuniyasu A, Nakayama H, Nagai R, HoriuchiS. Advanced glycation end products-modified proteins and oxidized LDLmediate down-regulation of leptin in mouse adipocytes via CD36. BiochemBiophys Res Commun.2004;325(1):151-156.
    [8] Livak K.J and Schmittgen TD. Analysis of relative gene expression data usingreal-time quantitative PCR and the2(-Delta Delta C(T)) Method. Methods.2001;25(4):402-408.
    [9] Meyers CD, Kashyap ML.Pharmacologic elevation of high-density lipopro-teins: recent insights on mechanism of action and atherosclerosis protection.Curr Opin Cardiol.2004;19(4):366-373.
    [10] Latruffe N, Vamecq J. Peroxisome proliferators and peroxisome proliferatoractivated receptors (PPARs) as regulators of lipid metabolism. Biochimie.1997;79(2-3):81-94.
    [11] Sun X, Tang Y, Tan X, Li Q, Zhong W, Sun X, Jia W, McClain CJ, Zhou Z.Activation of peroxisome proliferator-activated receptor-γ by rosiglitazoneimproves lipid homeostasis at the adipose tissue-liver axis in ethanol-fed mice.Am J Physiol Gastrointest Liver Physiol.2012;302(5):G548-557.
    [12] Huang Z, Zhou X, Nicholson AC, Gotto AM Jr, Hajjar DP, Han J.Activationof peroxisome proliferator-activated receptor-alpha in mice inducesexpression of the hepatic low-density lipoprotein receptor. Br J Pharmacol.2008;155(4):596-605.
    [13] Tao H, Aakula S, Abumrad NN, Hajri T. Peroxisome proliferator-activatedreceptor-gamma regulates the expression and function of very-low-densitylipoprotein receptor. Am J Physiol Endocrinol Metab.2010;298(1):E68-79.
    [14] Nakaya H, Summers BD, Nicholson AC, Gotto AM Jr, Hajjar DP, Han J.Atherosclerosis in LDLR-knockout mice is inhibited, but not reversed, by thePPARgamma ligand pioglitazone.Am J Pathol.2009;174(6):2007-2014.
    [15] Bartelt A, Orlando P, Mele C, Ligresti A, Toedter K, Scheja L, Heeren J, DiMarzo V. Altered endocannabinoid signalling after a high-fat diet in Apoe(-/-)mice: relevance to adipose tissue inflammation, hepatic steatosis and insulinresistance. Diabetologia.2011;54(11):2900-2910.
    [16] Wang J, Perrard XD, Perrard JL, Mukherjee A, Rosales C, Chen Y, Smith CW,Pownall HJ, Ballantyne CM, Wu H. ApoE and the role of very low densitylipoproteins in adipose tissue inflammation. Atherosclerosis.2012;223(2):342-349.
    [17] Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J,Feve B. Recent advances in the relationship between obesity, inflammation,and insulin resistance. Eur Cytokine Netw.2006;17(1):4-12.
    [18] Yancey PG, Kawashiri MA, Moore R, Glick JM, Williams DL, ConnellyMA, Rader DJ, Rothblat GH. In vivo modulation of HDL phospholipid hasopposing effects on SR-BI-and ABCA1-mediated cholest-erol efflux. JLipid Res.2004;45(2):337-346.
    [19] van der Westhuyzen DR, Cai L, de Beer MC. Serum amyloid A promotescholesterol efflux mediated by scavenger receptor B-I. J Biol Chem.2005;280(43):35890-35895.
    [20] Lorenzi I, von Eckardstein A, Cavelier C, Radosavljevic S, Rohrer L.Apolipoprotein A-I but not high-density lipoproteins are internalised by RAWmacrophages: roles of ATP-binding cassette transporter A1and scavengerreceptor BI. J Mol Med (Berl).2008;86(2):171-183.
    [21] Kimura R, Takahashi N, Murota K, Yamada Y, Niiya S, Kanzaki N, Murak-ami Y, Moriyama T, Goto T, Kawada T. Activation of peroxisome prolif-erator activated receptor-α (PPARα) suppresses postprandial lipidemiathrough fatty acid oxidation in enterocytes. Biochem Biophys ResCommun.2011;410(1):1-6.
    [22] Park JH, Lee SH, Chung IM, Park Y. Sorghum extract exerts an anti-diabeticeffect by improving insulin sensitivity via PPAR-γ in mice fed a high-fat diet.Nutr Res Pract.2012;6(4):322-327.
    [23] Huang ZH, Gu D, Mazzone T. Role of adipocyte-derived apoE in modulatingadipocyte size, lipid metabolism, and gene expression in vivo. Am J PhysiolEndocrinol Metab.2009;296(5):E1110-9.
    [24] Argmann CA, Edwards JY, Sawyez CG, O'Neil CH, Hegele RA, PickeringJG, Huff MW. Regulation of macrophage cholesterol efflux throughhydroxymethylglutaryl-CoA reductase inhibition: a role for RhoA inABCA1-mediated cholesterol efflux. J Biol Chem.2005;280(23):22212-22221.
    [25] Planavila A, Laguna JC, Vázquez-Carrera M. Atorvastatin improves peroxis-ome proliferator-activated receptor signaling in cardiac hypertrophy bypreventing nuclear factor-kappa B activation. Biochim Biophys Acta.2005;1687(1-3):76-83.
    [26] Koh KK, Sakuma I, Quon MJ. Differential metabolic effects of distinct statins.Atherosclerosis.2011.215(1):1-8
    [27]. Asterholm IW, Scherer PE. Enhanced metabolic flexibility associated withelevated adiponectin levels. Am J Pathol.2010,176(3):1364-1376.
    [28] Oku H, Matsuura F, Koseki M, Sandoval JC, Yuasa-Kawase M, Tsubakio-Yamamoto K, Masuda D, Maeda N, Ohama T, Ishigami M, Nishida M, HiranoK,Kihara S, Hori M, Shimomura I, Yamashita S. Adiponectin deficiencysuppresses ABCA1expression and ApoA-I synthesis in the liver. FEBS Lett.2007;581(26):5029-5033.
    [29] Frazier-WoodAC, Ordovas JM, Straka RJ, Hixson JE, Borecki IB, TiwariHK, Arnett DK. The PPAR alpha gene is associated with triglyceride,low-density cholesterol and inflammation marker response to fenofibrateintervention: the GOLDN study. Pharmacogenomics J.2012; doi:10.1038.
    [30] Hodis J, Vaclavíková R, Farghali H. Beta-3agonist-induced lipolysis andnitric oxide production: relationship to PPARgamma agonist/antagonist andAMP kinase modulation. Gen Physiol Biophys.2011;30(1):90-99.
    [31] Pereira TM, Nogueira BV, Lima LC, Porto ML, Arruda JA, Vasquez
    EC, Meyrelles SS. Cardiac and vascular changes in elderly atheroscl
    -erotic mice: the influence of gender. Lipids Health Dis.2010;9:87-97.
    [1] Borja I, Gemma V, Giovanni C, Speidl WS, Pinero A, Choi BG, ZafarMU, Santos-Gallego CG, Krause B, Badimon L, Fuster V, Badimon JJ. Rapidchange in plaque size, composition, and molecular footprint after recombinantapolipoproteinA-I Milano (ETC-216) administration: magnetic resonanceimaging study in an experimental model of atherosclerosis. JAm Coll Cardiol.2008;51(11):1104-1109.
    [2] Navab M,Anamharamalah GM,Hama S,Hough G, Reddy ST, FrankJS, Garber DW, Handattu S, Fogelman AM. D-4F and statins synergize torender HDL anti—inflammatory in mice and monkeys and cause lesionregression in old apolipoprotein E-null mice.Arterinseler Thromb VaseBi01.2005;25(6):1426-1432.
    [3] Bloedon L, Dunbar R, Duffy D, Pinell-Salles P, Norris R, DeGrootBJ, Movva R, Navab M, Fogelman AM, Rader DJ. Safety, pharmacokineticsand pharmacodynamics of a single dose of oral apolipoprotein A-I mimeticpeptide D-4F in high-risk cardiovascular patients. J Lipid Res.2008;49(6):1344-1352.
    [4] Amar MJ, D'Souza W, Turner S, Demosky S, Sviridov D, Stonik J, Lucho-omun J, Voogt J, Hellerstein M, Sviridov D, RemaleyAT.5Aapolipoproteinmimetic peptide promotes cholesterol efflux and reduces atherosclerosis inmice. J Pharmacol Exp Ther.2010;334(2):634-641.
    [5] McNeill E. RVX-208, a stimulator of apolipoproteinAI gene expression for thetreatment of cardiovascular diseases. Curr Opin Investig Drugs.2010;11(3):357-364.
    [6] Stein EA, Stroes ES, Steiner G. Safety and tolerability of dalcetrapib.Am JCardiol.2009;104(1):82-91
    [7] Stein EA, Roth EM, Rhyne JM. Safety and tolerability of dalcetrapib(RO4607381/JTT-705): results from a48-week trial. Eur Heart J.2010;31(4):480-488.
    [8] Schwartz GG, Olsson AG, Ballantyne CM, Barter PJ, Holme IM, KallendD, Leiter LA, Leitersdorf E, McMurray JJ, Shah PK, Tardif JC, ChaitmanBR, Duttlinger-Maddux R, Mathieson J; dal-OUTCOMES Committees andInvestigators. Rationale and design of the dal-OUTCOMES trial: efficacy andsafety of dalcetrapib in patients with recent acute coronary syndrome. AmHeart J.2009;158(6):896-901.
    [9] KontushA, Guerin M, Chapman MJ. Spotlight on HDL-raising therapies:insights from the torcetrapib trials. Nature Clin Pract.2008;5(6):329–336.
    [10] Cannon CP, Shah SDansky HM, et al. Safety of Anacetrapib in Patients withor at High Risk for Coronary Heart Disease. N Engl J Med.2010;17(23):1456-1462.
    [11] Masterjohn C. Effect of cholesteryl ester transfer protein inhibitor on vitaminE transport should be studied. Am Heart J.2009;158(1):e11.
    [12] Saha SA, Arora RR. Fibrates in the prevention of cardiovascular disease inpatients withtype2diabetes mellitus-a pooled meta-analysis of randomizedplacebo-controlled clinical trials. Int J Cardiol.2010;141(2):157–166.
    [13] Hansen MK, McVey MJ, White RF, Legos JJ, Brusq JM, Grillot DA, Issan-dou M, Barone FC. Selective CETP inhibition and PPARalpha agonism incre-ase HDL cholesterol and reduce LDL cholesterol in human ApoB100/humanCETP transgenic mice. J Cardiovasc Pharmacol Ther.2010;15(2):196-202.
    [14] Wagner JD, Shadoan MK, Zhang L, Ward GM, Royer LJ, KavanaghK, Francone OL, Auerbach BJ, Harwood HJ Jr.Aselective peroxisomeproliferator-activated receptor alpha agonist, CP-900691, improves plasmalipids, lipoproteins, and glycemic control in diabetic monkeys. J PharmacolExp Ther.2010;333(3):844-853..
    [15] Vrins CL, van der Velde AE, van den Oever K, Levels JH, Huet S, OudeElferink RP, Kuipers F, GroenAK. Peroxisome proliferator-activated receptordelta activation leads to increased transintestinal cholesterol efflux. J LipidRes.2009;50(10):2046-2054.
    [16] Sprecher DL, Massien C, Pearce G, Billin AN, Perlstein I, WillsonTM, Hassall DG, Ancellin N, Patterson SD, Lobe DC, Johnson TG.Triglyceride: high-densitylipoprotein cholesterol effects in healthy subjectsadministered a peroxisome proliferatoractivated receptor delta agonist.Arterioscler Thromb Vasc Bio.2007;127(2):359–365.
    [17] Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-BenedettiM, Moules IK, Skene AM, Tan MH, Lefèbvre PJ, Murray GD, StandlE, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, HeineRJ, Korányi L, Laakso M, Mokán M, NorkusA, Pirags V, Podar T, ScheenA, Scherbaum W,Schernthaner G, Schmitz O, Skrha J, Smith U, TatonJ; PROactive investigators.Secondary prevention of macrovascular events inpatients with type2diabetes in the proactive Study (PROspectivepioglitAzone Clinical Trial In macroVascular Events): a randomisedcontrolled trial. Lancet.2005;366(9493):1279-1289.
    [18] Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT,D'Agostino RB Sr, PerezA, Provost JC, Haffner SM. Effect of pioglita-zone compared with glimepiride on carotid intima-media thickness in type2diabetes: a randomized trial. JAMA.2006;296(21):2572-2581.
    [19] Davidson M, Meyer PM, Haffner S, Feinstein S, D'Agostino R Sr, KondosGT, PerezA, Chen Z, Mazzone T.Increased high-density lipoproteincholesterol predicts the pioglitazone-mediated reduction of carotid intima-media thickness progression in patients with type2diabetes mellitus.Circulation.2008;117(8):2123-2130.
    [20] Nissen SE, Nicholls SJ, Wolski K Nesto R, Kupfer S, PerezA, Jure H, DeLarochellière R, Staniloae CS, Mavromatis K, Saw J, Hu B, LincoffAM, Tuzcu EM;PERISCOPE Investigators. Comparison of pioglitazone vsglimepiride on progression of coronary atherosclerosis in patients with type2diabetes: the PERISCOPE randomized controlled trial. JAMA.2008;299(13):1561-1573.
    [21] Schuster H, Fagerberg B, Edwards S, Halmos T, Lopatynski J, StenderS, Birketvedt GS, Tonstad S, Gause-Nilsson I, Halldórsdóttir S, OhmanKP; SIR Investigators.Tesaglitazar, a dual peroxisome proliferator-activatedreceptor alpha/gamma agonist, improves apolipoprotein levels in non-diabeticsubjects with insulin resistance. Atherosclerosis.2008;197(1):355-362.
    [22] Ratner RE, Parikh S, Tou C; GALLANT9Study Group.. Efficacy, safety andtolerability of tesaglitazar when added to the therapeutic regimen of poorlycontrolled insulin-treated patients with type2diabetes. Diab Vasc Dis Res.2007;4(3):214-221.
    [23] Kasai S, Inoue T, Yoshitomi H, Hihara T, Matsuura F, Harada H, ShinodaM, Tanaka I. Antidiabetic and hypolipidemic effects of a novel dual peroxi-some proliferator-activated receptor (PPAR) alpha/gamma agonist, E3030, indb/db mice and beagle dogs. J Pharmacol Sci.2008;108(1):40-48.
    [24] Jeong HW, Lee JW, Kim WS, Choe SS, Shin HJ, Lee GY, Shin D, LeeJH, Choi EB, Lee HK, Yon GH, Cho B, Kim HR, Choi SH, Chung YS, ParkSB, Chung H,Ro S, Kim JB. Anonthiazolidinedione peroxisome proliferator-activated receptor (alpha)/(gamma)dual agonist CG301360alleviates insulinresistance and lipid dysregulation in db/db mice. Mol Pharmacol.2010;78(5):877-885.
    [25] Cavender MA, Lincoff AM. Therapeutic potential of aleglitazar, a new dualPPAR-α/γ agonist: implications for cardiovascular disease in patients withdiabetes mellitus. Am J Cardiovasc Drugs.2010;10(4):209-216.
    [26] Calpe-Berdiel L, Rotllan N, Fievet C, Roig R, Blanco-Vaca F, Escolà-Gil JC.Liver X receptormediated activation of reverse cholesterol transport frommacrophages to feces in vivo requires ATP-binding cassette (ABC) G5/G8. JLipid Res.2008;49(9)1904-1911.
    [27] Srivastava RA. Evaluation of anti-atherosclerotic activities of PPAR-α,PPAR-γ, and LXR agonists in hyperlipidemic atherosclerosis-susceptibleF(1)B hamsters. Atherosclerosis.2011;214(1):86-93.
    [28] Pérez E, Bourguet W, Gronemeyer H, de Lera AR.. Modulation of RXRfunction through ligand design. Biochim Biophys Acta.2012;1821(1):57-69.
    [29] Hu X, Steffensen KR, Jiang ZY, Parini P, Gustafsson J, G fvelsM, Eggertsen G. LXRβ activation increases intestinal cholesterol absorption,leading to an atherogenic lipoprotein profile. J Intern Med.2012;272(5):452-464.
    [30] Feig JE, Pineda-Torra I, Sanson M, Bradley MN, Vengrenyuk Y, BogunovicD, Gautier EL, Rubinstein D, Hong C, Liu J, Wu C, van Rooijen N, BhardwajN,Garabedian M, Tontonoz P, Fisher EA. LXR promotes the maximal egressof monocyte-derived cells from mouse aortic plaques during atherosclerosisregression. J Clin Invest.2010;120(12):4415-4424.
    [31] Kratzer A, Buchebner M, Pfeifer T, Becker TM, Uray G, MiyazakiM, Miyazaki-Anzai S, Ebner B, Chandak PG, Kadam RS, Calayir E, RathkeN, Ahammer H,Radovic B, Trauner M, Hoefler G, Kompella UB, FaulerG, Levi M, Levak-Frank S, Kostner GM, Kratky D. Synthetic LXR agonistattenuates plaque formation in apoEK/K mice without inducing liver steatosisand hypertriglyceridemia. J Lipid Res.2009;50(2),312–326.
    [32] KatzA, Udata C, Ott E, Hickey L, Burczynski ME, Burghart P, VesterqvistO, Meng X. Safety, Pharmacokinetics, and Pharma-codynamics of SingleDoses of LXR-623, a Novel Liver X-Receptor Agonist, in HealthyParticipants. J Clin Pharmacol.2009;49(6),643-649.
    [33] Hu B, Unwalla RJ, Goljer I, Jetter JW, Quinet EM, Berrodin TJ, BassoMD, Feingold IB, NilssonAG, Wilhelmsson A, Evans MJ, Wrobel JE.Identifica-tion of phenylsulfone-substituted quinoxaline (WYE-672) as atissue selective liver X-receptor (LXR) agonist. J Med Chem.2010;53(8):3296-3304.
    [34] Tanaka H, Ishida T, Johnston TP, Yasuda T, Ueyama T, Kojima Y, KunduRK, Quertermous T, Ishikawa Y, Hirata K. Role of endothelial lipase inplasma HDL levels in a murine model of hypertrigly-ceridemia. JAtherosclerThromb.2009;16(4):327-338.
    [35] Kojima Y, Ishida T, Sun L, Yasuda T, Toh R, Rikitake Y, FukudaA, KumeN, Koshiyama H, TaniguchiA, Hirata K.Pitavastatin decreases the expressionof endothelial lipase both in vitro and in vivo. Cardiovasc Res.2010;87(2):385-393.
    [36] Lichtenstein L, Kersten S. Modulation of plasma TG lipolysis by Angio-poietin-like proteins and GPIHBP1. Biochim Biophys Acta.2010;1801(4):415-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700