用户名: 密码: 验证码:
对JAK2V617F突变所导致的骨髓增生性疾病的小鼠心脏肥大的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨髓增生性疾病(MPNs)是一种慢性恶性血液病,特点是一个或多个骨髓系统异常增生。这些疾病包括真性红细胞增多症(PV),血小板增多症(ET),和原发性骨髓纤维化(PMF)。PV病人三种类型血细胞均有增加,ET病人主要表现在血小板增多。由于骨髓增生异常,PMF病人会形成骨髓纤维化(瘢痕形状)。MPNs主要影响老年人群,平均发病年龄为55岁。目前没有针对该疾病的有效治疗方法。MPNs并发症主要有血栓形成、出血、心脏病发作、中风、骨髓组织髓样化生和急性白血病。由这些疾病引起的中风和心脏病发作通常是致命的。事实上,心血管事件代表PV和ET过程中发病率和死亡率的主要原因。然而,关于与MPNs相关的血液异常所导致的心脏改变,其原因目前尚不清楚。
     JAK2V617F,酪氨酸激酶JAK2的突变形式,代表MPNs中主要的分子缺陷。在超过95%的PV和超过50%的ET和PMF病例中可发现该现象。在早期研究中,我们的合作单位美国俄克拉荷马大学健康科学中心病理实验室利用vav-1助催化剂,在造血系统中促进转基因表达,培养了JAK2V617F转基因小鼠。JAK2V617F转基因小鼠表现出与MPNs相似的表型,红细胞、血小板和白细胞的增多。因此这些小鼠可做为研究MPNs和相关并发症的模型系统。在目前的研究中,我们在这些小鼠身上通过MPNs表型的发展来研究心脏的变化和重构。
     材料和方法
     动物
     用前面所述方法形成的JAK2V617F转基因小鼠。vav-1催化剂控制下的JAK2V617F转基因,其中vav-1催化剂只有在造血细胞里才能驱动基因表达。这些小鼠是与C57BL/6野生型小鼠十代杂交之后的后代。本研究中使用了携带纯合子A组的JAK2V617F转基因小鼠。这些小鼠携带26个JAK2V617F转基因复制物。野生型C57BL/6是从杰克逊实验室购买的,与没有进行转基因的JAK2V617F转基因小鼠的同胞一起做为对照组小鼠。至少有雌雄均匀的十只小鼠被用于对照组或实验组。所有的动物都被安置在通风的笼子里,处于标准的环境下。本研究严格遵守美国国立卫生研究院编订的实验动物护理和使用指南。
     鼠组织的收集、固定和切片
     通过使小鼠吸入异氟烷使其陷入深度麻醉状态进行测量。通过移除眼球来进行末梢血液采集。之后将心脏移除,去除血迹之后测量。紧接着将其固定在浓度10%的与室内温度相同的中性福尔马林中一夜,之后以石蜡封住。组织切片是从各种部位切下来的。
     组织化学染色,图像采集和数字量化
     将组织切片脱蜡,之后按照标准程序使用Sigma-Aldrich试剂进行H&E染色,马松三色染色,网状染色和甲苯胺蓝色染色。使用奥林巴斯BX-51直立显微镜配备萤石物镜观察目标切片。使用DP71数码相机获取图像,DP-BSW-V3.1作为摄像机控制软件(奥林巴斯),用AdobePhotoshop软件进行处理。组织化学染色图像的量化是用NIH Image程序完成的。每个小组至少分析十只小鼠的心脏部分。测量每个心脏的左心室钝缘厚度,肌小梁除外。随机选择心肌细胞上有H&E染色域的横截面测量评估心肌细胞大小。
     总RNA提取和R-T PCR分析
     使用RNeasy Mini Kit从小鼠组织中提取总RNAs,使用Qiagen的逆转录量化技术将等量的总RNAs合成单链cDNA。R-T PCR与绿色荧光定量PCR试剂(Bio-Rad)、小鼠內生的Jak2引物、转基因JAK2V617F、之前提到过的鼠磷酸甘油醛脱氢酶(GAPDH)能共同作用。
     结果:
     1、JAK2V617F转基因小鼠表现出心脏肥大
     在40-45周期间,JAK2V617F转基因小鼠的心脏几乎比对照组小鼠的心脏重30%。小鼠在五周大时,心脏质量方面没有区别,在低倍镜下,用显微镜检查H&E染色部分,在JAK2V617F转基因小鼠身上有明显的左心室壁增厚。在高倍镜下继续检查发现心肌细胞体积增大。平均来讲,转基因小鼠的细胞面积比对照组小鼠大30%。
     2、JAK2V617F转基因小鼠心脏中纤维化的发生
     对JAK2V617F转基因小鼠心脏进行马松三色染色,可观察到转基因小鼠心脏左心室有突出的胶原纤维。在组织间隙和血管周围都有纤维化现象。与此相反,对照组小鼠相同区域的三色染色则是边缘化的。进一步利用网状染色研究III型胶原蛋白,转基因小鼠组织间隙的网状纤维集中,厚度很厚。对照组小鼠的心脏中细胞连接处的网状染色很明显,但是薄很多。
     3、JAK2V617F转基因小鼠心脏中出现冠状动脉血栓及炎症细胞侵润
     对20组年龄在40-70周的JAK2V617F转基因小鼠及20组对照组小鼠的超过5组H&E染色心脏切片进行进一步的检查。发现4只转基因小鼠的冠状动脉出现血栓症,但对照组中没有一只小鼠出现血栓症。我们还发现5只JAK2V617F转基因小鼠的心脏切片呈现炎症细胞侵润,而对照组小鼠中并没有出现。三色染色与网状染色可以在影响区域内显示出胶原蛋白纤维化。甲苯胺蓝染色可以在侵润炎症细胞中显示出肥大细胞。
     4、实时PCR分析可以揭示JAK2V617F转基因小鼠心脏的最小表达
     为了确定心脏中内因性Jak2和转基因JAK2V617F的表现,我们用特异引物来进行PCR实时分析这些基因在造血组织中的表现[3]。包括骨髓,周边血液和脾脏都用来作比对。心脏中转基因JAK2V617F的表现要弱的很多,大约是造血组织中内因性小鼠Jak2表达水平的1/200。此数据体现出小鼠心脏细胞中JAK2V617F转基因的最小表现。虽然我们不能完全排除心肌细胞中JAK2V617F表现能够导致心脏肥大,但这种可能性也相当之小。
     结论:
     我们已经表明小鼠体内JAK2V617F突变引发的骨髓增生性疾病(MPNs)能进一步导致心脏肥大。这对我们了解MPNs患者的并发症具有重大意义。我们的数据帮助解释了MPNs患者发病率和死亡率的原因,即心血管事件。我们进一步证明了,JAK2V617F转基因小鼠的心脏显然是发生了心肌纤维化,不仅涉及I型胶原蛋白,还涉及到网状纤维。JAK2V617F转基因小鼠将恶性血液病与心脏病联系起来,是研究心血管疾病和血液紊乱的独特模型系统。
Myeloproliferative neoplasms (MPNs) are chronic hematopoieticmalignancies characterized by abnormal amplification of one or moremyeloid lineages. These diseases include polycythemia vera (PV),essential thrombocythemia (ET), and primary myelofibrosis (PMF). PVpatients have increased production of all three types of blood cells,whereas ET patients mainly show elevations of platelets. Patients withPMF develop fibrous (scar-like) tissues in the bone marrow as a result ofabnormal myeloid proliferation. MPNs mainly affect older people with anaverage onset of55years. So far, there is no effective cure for the diseases.Complications associated with MPNs include thrombosis, hemorrhage,heart attacks, strokes, myeloid metaplasia, and acute leukemia. Strokesand heart attacks caused by these diseases are usually fatal. In fact,cardiovascular events represent the leading cause of morbidity andmortality in the course of PV and ET. However, how the bloodabnormality associated with MPNs leads to cardiac changes is not wellunderstood.
     JAK2V617F, a mutant form of tyrosine kinase JAK2, represents amajor molecular defect in MPNs. It is found in over95%of PV and over50%of ET and PMF cases. In early studies, we have generatedJAK2V617F transgenic mice by using the vav-1promoter which drivestransgene expressions in the hematopoietic system. JAK2V617Ftransgenic mice display MPN-like phenotypes with increased levels of redblood cells, platelets, and white blood cells. These mice thus represent amodel system to study MPNs and associated complications. In the present study, we investigated cardiac changes and remodeling during the courseof MPN phenotype development in these mice.
     Materials and methods
     Animals
     JAK2V617F transgenic mice were generated as previously described.The JAK2V617F transgene is under the control of the vav-1promoterwhich drives gene expression only in hematopoietic cells. These mice havebeen crossed with wild type C57BL/6mice for over10generations.Homozygous line A JAK2V617F mice were used in this study. These micecarry26copies of the JAK2V617F transgene. Wild type C57BL/6werepurchased from The Jackson Laboratory and used as control together withnon-transgenic siblings of JAK2V617F transgenic mice. At least10micewith about equal male and female representations were used for eachcontrol or experimental group. Animals were housed in ventilated cagesunder standard conditions. This study was carried out in strict accordancewith the recommendations in the Guide for the Care and Use of LaboratoryAnimals of the National Institutes of Health.
     Mouse tissue collection, fixation, and sectioning
     Mice were weighed and put under deep anesthesia through inhalationof isoflurane. Terminal blood collection was performed by removing theeyeball from the socket. Hearts were then removed, blotted free of blood,and weighed. This is followed by fixation in10%neutral bufferedformalin overnight at room temperature and subsequent embedding inparaffin. Tissue sections (5μm) were cut from various positions.
     Histochemical staining, image acquisition, and digitalquantification
     Tissue sections were deparaffinized and then subjected to H&E,Masson’s trichrome, reticulin, and toluidine blue staining by usingreagents and kits from Sigma-Aldrich following standard protocols. Slideswere viewed with an Olympus BX-51upright microscope equipped withU Plan Fluorite objectives. Images were acquired using a DP71digitalcamera with the DP-BSW-V3.1camera control software (Olympus) andwere processed with the Adobe Photoshop software. Quantification ofhistochemical stain images was done by using the NIH ImageJ program.Cardiac sections from at least10mice per group were analyzed. Thethickness at the obtuse margin of the left ventricle of each heart wasmeasured, excluding trabeculations. Cardiomyocyte size was assessed bymeasuring cross-sectional area of cardiomyocytes from H&E-stainedfields randomly selected.
     Total RNA isolation and real time PCR analysis
     Total RNAs were isolated from mouse tissues by using the RNeasyMini kit (Qiagen), and single strand cDNAs were synthesized with equalamounts of total RNAs by using the QuantiTect reverse transcription kitfrom Qiagen. Real time PCR was performed with iQ SYBR GreenSupermix (Bio-Rad) and primers specific for endogenous mouse Jak2,transgenic human JAK2V617F, and mouse glyceral-dehyde-3-phosphatedehydrogenase (GAPDH) as previously described.
     Results
     1.JAK2V617F transgenic mice displayed cardiomegaly
     We employed mice of40–45weeks to characterize the cardiomegaly further. Microscopic examinations of hematoxylin and eosin(H&E)-stained cardiac sections under low magnification revealedsignificant thickening of the left ventricular wall in the JAK2V617Ftransgenic mice (P <0.01). Further exanimation under high magnificationdemonstrated enlarged cardiomyocytes (P <0.001). On average, the cellsfrom the transgenic mice were30%bigger in area than the control.
     2. JAK2V617F transgenic mice developed fibrosis in the heart
     we performed Masson’s trichrome staining, a commonly usedmethod to detect collagen fibers.As indicated by the bright blue staining,prominent collagen fibrosis was observed in the left ventricle of transgenicmouse hearts. The fibrosis occurred in both interstitial and perivascularregions. In contrast, trichrome staining in the cor respondent regions ofcontrol mouse hearts was marginal.We further employed reticulin stainingto investigate type III collagen. veryintensive and thick interstitial reticulinfibers were observed with the transgenic mice. Reticulin staining in thecell-cell junction of control mouse hearts was also apparent but were muchthinner.
     3.Coronary artery thrombosis and inflammatory cell infiltrationwere found in the heart of JAK2V617F transgenic mice
     We further examined at least5selected H&E-stained cardiac sectionsfrom each of20control and20JAK2V617F transgenic mice of40–70weeks of age. We found occurrence of thrombosis in the coronary arteryof4transgenic, but not a single control mice. We also noticed that cardiacsections from5JAK2V617F transgenic mice but not at all from controlmice had infiltration of inflammatory cells. Trichrome and reticulinstaining revealed collagen fibrosis in the affected regions, toluidine blue staining showed that mast cells were among the infiltrated inflammatorycells.
     4. Real time PCR analyses revealed a minimal expression oftransgenic JAK2V167F in the mouse heart
     To determine the expression of endogenous Jak2and transgenicJAK2V617F in the heart, we performed real time PCR analysis withspecific primers as described previously. Expression of these genes inhematopoietic tissues including bone marrow, peripheral blood, andspleen were included for comparison. However, expression of transgenicJAK2V617F in the heart was much lower, about200-fold below the levelof mouse Jak2in the heart or of JAKV617F in the hematopoietic tissues.The data thus demonstrate a minimal expression of JAK2V617F transgenein mouse heart cells. Although we cannot totally rule out the contributionof JAK2V617F expression in cardiomyocytes to the development ofcardiac hypertrophy phenotypes, the possibility for this is very low.
     Conclusions
     We have demonstrated that JAK2V617F-induced MPNs can furtherlead to cardiac hypertrophy in mice. This has major implications for ourunderstanding of complications that occur in MPN patients. Our data helpto explain the high morbidity and mortality of MPN patients due tocardiovascular events. We have further demonstrated that the cardiacremodeling in JAK2V617F transgenic mice is manifest in fibrosisinvolving not only type I collagen but also type III reticulin fibers. Bylinking a hematological malignancy with heart diseases, JAK2V617Ftransgenic mice thus represent a unique model system to studycardiovascular diseases as well as blood disorders.
引文
[1] Dameshek W. Some speculations on the myeloproliferative syndromes. Blood.1951;6:372-5.
    [2] Vardiman JW, Thiele J, Arber DA, et al. The2008revision of the World HealthOrganization (WHO) classification of myeloid neoplasms and acute leukemia:rationale and important changes.Blood.2009;114(5):937-51.
    [3] Xing S, Wanting TH, Zhao W, et al. Transgenic expression of JAK2V617Fcauses myeloproliferative disorders in m ice. Blood.2008;111(10):5109-17.
    [4] Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferativeneoplasms: the2008World Health Organization criteria and point-of-carediagnostic algorithms. Leukemia.2008;22(1):14-22.
    [5] Tefferi A. Novel mutations and their functional and clinical relevance inmyeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH andIKZF1. Leukemia.2010;24(6):1128-38.
    [6] Rollison DE, Howlader N, Smith MT, et al. Epidemiology of myelodysplasticsyndromes and chronic myeloproliferative disorders in the United States,2001-2004, using data from the NAACCR and SEER programs. Blood.2008;112(1):45-52.
    [7] Kvasnicka HM, Thiele J. Prodromal myeloproliferative neoplasms: the2008WHO classification. Am J Hematol.2010;85(1):62-9.
    [8] Barbui T, Thiele J, Passamonti F, et al. Survival and disease progressioninessential thrombocythemia are significantly influenced by accuratemorphologic diagnosis: an international study. J Clin Oncol.2011;29(23):3179-84.
    [9] Hussein K, Huang J, Lasho T, et al. Karyotype complements theInternational Prognostic Scoring System for primary myelofibrosis. Eur JHaematol.2009;82(4):255-9.
    [10] Gangat N, Strand J, Lasho TL, et al. Cytogenetic studies at diagnosis inpolycythemia vera: clinical and JAK2V617F allele burden correlates. Eur JHaematol.2008;80(3):197-200.
    [11] Gangat N, Tefferi A, Thanarajasingam G, et al. Cytogenetic abnormalities inessential thrombocythemia: prevalence and prognostic significance. Eur JHaematol.2009;83(1):17-21.
    [12] Berlin NI. Diagnosis and classification of the polycythemias. Semin Hematol.1975;12(4):339-51
    [13] Anía BJ, Suman VJ, Sobell JL, et al. Trends in the incidence of polycythemiavera among Olmsted County, Minnesota residents,1935-1989. Am J Hematol.1994;47(2):89-93.
    [14] Tefferi A, Skoda R, Vardiman JW. Myeloproliferative neoplasms: contemporarydiagnosis using histology and genetics. Nat Rev Clin Oncol.2009;6(11):627-37.
    [15] Kim J, Haddad RY, Atallah E:Myeloproliferative neoplasms. Dis Mon2012;58:177–194.
    [16] Spivak JL:Polycythemia vera: myths, mechanisms, and management. Blood2002;100:4272–4290.
    [17] Finazzi G, Barbui T: Risk-adapted therapy in essential thrombocythemia andpolycythemia vera.Blood Rev2005,19:243–252.
    [18] van Genderen PJ, Michiels JJ. Erythromelalgia: a pathognomonicmicrovascular thrombotic complication in essential thrombocythemia andpolycythemia vera Semin Thromb Hemost.1997;23(4):357-63.
    [19] Tefferi A, Thiele J, Orazi A, et al. Proposals and rationale for revision of theWorld Health Organization diagnostic criteria for polycythemia vera, essentialthrombocythemia, and primary myelofibrosis: recommendations from an adhoc international expert panel. Blood.2007;110(4):1092-7.
    [20] Pardanani A, Lasho TL, Finke C, et al. Prevalence and clinicopathologiccorrelates of JAK2exon12mutations in JAK2V617F-negative polycythemiavera. Leukemia.2007;21(9):1960-3.
    [21] Mossuz P, Girodon F, Donnard M, et al. Diagnostic value of serumerythropoietin level in patients with absolute erythrocytosis. Haematologica.2004;89(10):1194-8.
    [22] Vakil E, Tefferi A. BCR-ABL1--negative myeloproliferative neoplasms: areview of molecular biology, diagnosis, and treatment. Clin LymphomaMyeloma Leuk.2011;11Suppl1:S37-45.
    [23] Swerdlow S, Campo E, Harris NL. World Health Organization Classification ofTumours of Haematopoietic and Lymphoid Tissues,4th ed. Lyon: InternationalAgency for Research on Cancer,2008.
    [24] Kvasnicka HM, Thiele J. Classification of Ph-negative chronicmyeloproliferative disorders--morphology as the yardstick of classification.Pathobiology.2007;74(2):63-71.
    [25] Kim J, Haddad RY, Atallah E. Myeloproliferative neoplasms. Dis Mon.2012;58(4):177-94
    [26] Copelan E, Balcerzac SP. Secondary Polycythemia, Inc: Polycythemia Vera andthe Myeloproliferative Disorders. Philadelphia: WB Saunders,1995; p.195.
    [27] McMullin MF. The classification and diagnosis of erythrocytosis. Int J LabHematol.2008;30(6):447-59.
    [28] Landolfi R, Marchioli R, Kutti J, et al. Efficacy and safety of low-dose aspirinin polycythemia vera. N Engl J Med.2004;350(2):114-24.
    [29] Berk PD, Wasserman LR, Fruchtman SM, Goldberg JD. Treatment ofpolycythemia vera: a summary of clinical trials conducted by the polycythemiavera study group. In: Wasserman LR, Berk PD, Berlin NI, eds. PolycythemiaVera and the Myeloproliferative Disorders. Philadelphia, PA: WB Saunders;1995:166-94.
    [30] Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecularpathophysiology, essential clinical understanding, and treatment strategies.!JClin Oncol.2011;29(5):573-82.
    [31] Mesa RA, Silverstein MN, Jacobsen SJ, et al. Population-based incidence andsurvival figures in essential thrombocythemia and agnogenic myeloidmetaplasia: an Olmsted County Study,1976-1995. Am J Hematol.1999;61(1):10-5.
    [32] Gugliotta L, Marchioli R, Fiacchini M, et al. Epidemiological, diagnostic,therapeutic and prognostic aspects of essential thrombocythemia in aretrospective study of the GIMMC group in two thousand patients. Blood.1997;90(suppl1):348a.
    [33] Fenaux P, Simon M, Caulier MT, et al. Clinical course of essentialthrombocythemia in147cases. Cancer.1990;66(3):549-56.
    [34] Tefferi A, Fonseca R, Pereira DL, et al. A long-term retrospective study ofyoung women with essential thrombocythemia. Mayo Clin Proc.2001;76(1):22-8.
    [35] Tefferi A, Skoda R, Vardiman JW. Myeloproliferative neoplasms: contemporarydiagnosis using histology and genetics. Nat Rev Clin Oncol.2009;6(11):627-37.
    [36] Neu N, Rose NR, Beisel KW, et al. Cardiac myosin induces myocarditis ingenetically predisposed mice. J Immunol.1987;139(11):3630-6.
    [37] Wilkins BS, Erber WN, Bareford D, et al. Bone marrow pathology in essentialthrombocythemia: interobserver reliability and utility for identifying diseasesubtypes. Blood.2008;111(1):60-70.
    [38] Van Genderen PJ, Mulder PG, Waleboer M, et al. Prevention and treatment ofthrombotic complications in essential thrombocythaemia: efficacy and safety ofaspirin. Br J Haematol.1997;97(1):179-84.
    [39] Harrison CN, Campbell PJ, Buck G, et al. Hydroxyurea compared withanagrelide in high-risk essential thrombocythemia. N Engl J Med.2005;353:33-45.
    [40] Alvarez-Larrán A, Cervantes F, Pereira A, et al. Observation versus antiplatelettherapy as primary prophylaxis for thrombosis in low-risk essentialthrombocythemia. Blood.2010;116(8):1205-10.
    [41] Beer PA, Erber WN, Campbell PJ, Green AR. How I treat essentialthrombocythemia. Blood.2011;117(5):1472-82.
    [42] Mesa RA, Silverstein MN, Jacobsen SJ, et al. Population-based incidence andsurvival figures in essential thrombocythemia and agnogenic myeloid metaplasian Olmsted county study,1976-1995. Am J Hematol.1999;61(1):10-5.
    [43] Wanless IR, Peterson P, Das A, et al. Hepatic vascular disease and portalhypertension in polycythemia vera and agnogenic myeloid metaplasia: aclinicopathological study of145patients examined at autopsy. Hepatology.1990;12(5):1166.
    [44] Passamonti F, Cervantes F, Vannucchi AM, et al. A dynamic prognostic modelto predict survival in primary myelofibrosis: a study by the IWG-MRT(International Working Group for myeloproliferative neoplasms research andtreatment). Blood.2010;115(9):1703-8.
    [45] Kim J, Haddad RY, Atallah E. Myeloproliferative neoplasms. Dis Mon.2012;58(4):177-94
    [46] Huang J, Tefferi A. Erythropoiesis stimulating agents have limited therapeuticactivity in transfusion-dependent patients with primary myelofibrosisregardless of serum erythropoietin level. Eur J Haematol.2009;83:154-5.
    [47] Tefferi A. How I treat myelofibrosis. Blood.2011;117:3494–504.
    [48] Tefferi A, Jimma T, Gangat N, et al. Predictors of greater than80%2-yearmortality in primary myelofibrosis: a Mayo Clinic study of884karyotypicallyannotated patients. Blood.2011;118:4595–8.
    [49] Verstovsek S, Kantarjian H, Mesa RA, et al. Safety and efficacy ofINCB018424, a JAK1and JAK2inhibitor, in myelofibrosis. N Engl J Med.2010;363(12):1117-27.
    [50] Tefferi A. Myeloproliferative neoplasms2012: the John M. Bennett80thbirthday anniversary lecture. Leuk Res.2012;36(12):1481-9.
    [51] Vannucchi AM, Antonioli E, Guglielmelli P, et al. Clinical correlates ofJAK2V617F presence or allele burden in myeloproliferative neoplasms: acritical reappraisal. Leukemia2008;22:1299–307.
    [52] Carobbio A, Thiele J, Passamonti F, et al. Risk factors for arterial and venousthrombosis in WHO-defined essential thrombocythemia: an international studyof891patients. Blood.2011;117:5857–9.
    [53] Passamonti F, Rumi E, Pietra D, et al. A prospective study of338patients withpolycythemia vera: the impact of JAK2(V617F) allele burden and leukocytosison fibrotic or leukemic disease transformation and vascular complications.Leukemia.2010;24:1574–9.
    [54] Pardanani A, Lasho TL, Finke C, et al. Prevalence and clinicopathologiccorrelates of JAK2exon12mutations in JAK2V617F-negative polycythemiavera. Leukemia.2007;21:1960–3.
    [55] Passamonti F, Elena C, Schnittger S, et al. Molecular and clinical features ofthe myeloproliferative neoplasm associated with JAK2exon12mutations.Blood.2011;117:2813–6.
    [56] Lasho TL, Finke CM, Hanson CA, et al. SF3B1mutations in primarymyelofibrosis: clinical, histopathology and genetic correlates among155patients. Leukemia.2012;26(5):1135–7.
    [57] Abdel-Wahab O, Pardanani A, Patel J, et al. Concomitant analysis of EZH2andASXL1mutations in myelofibrosis, chronic myelomonocytic leukemia andblastphase myeloproliferative neoplasms. Leukemia.2011;25:1200–2.
    [58] Quintás-Cardama A. The role of Janus kinase2(JAK2) inmyeloproliferative neoplasms: therapeutic implications. Leuk Res.2013;37(4):465-72.
    [59] Ghoreschi K, Laurence A, O’Shea JJ. Janus kinases in immune cell signaling.Immunol Rev2009;228:273–87.
    [60] Levine RL, Wadleigh M, Cools J, et al. Activating mutation in the tyrosinekinase JAK2in polycythemia vera, essential thrombocythemia, and myeloidmetaplasia with myelofibrosis.!Cancer Cell.2005;7(4):387-97.
    [61] Baxter EJ, Scott LM, Campbell PJ, et al. Acquired mutation of the tyrosinekinase JAK2in human myeloproliferative disorders. Lancet.2005;365(9464):1054-61.
    [62] Kralovics R, Passamonti F, Buser AS, et al. A gain-of-function mutation ofJAK2In myeloproliferative disorders. N Engl J Med.2005;352(17):1779-90.
    [63] James C, Ugo V, Le Couédic JP, et al. A unique clonal JAK2mutation leadingto constitutive signalling causes polycythaemia vera. Nature.2005;434(7037):1144-8.
    [64] Scott LM, Campbell PJ, Baxter EJ, et al. The V617F JAK2mutation isuncommon in cancers and in myeloid malignancies other than the classicmyeloproliferative disorders. Blood.2005;106:2920-21.
    [65] Xu X, Zhang Q, Luo J, et al. JAK2(V617F): prevalence in a large Chinesehospital population. Blood.2007;109:339-42.
    [66] Ghoreschi K, Laurence A, O'Shea JJ. Janus kinases in immune cellsignaling. Immunol Rev.2009;228(1):273-87.
    [67] Ungureanu D, Wu J, Pekkala T, et al. The pseudokinase domain of JAK2is adual-specificity protein kinase that negatively regulates cytokine signaling. NatStruct Mol Biol.2011;18(9):971-6.
    [68] Bandaranayake RM, Ungureanu D, Shan Y, et al. Crystal structures of theJAK2pseudokinase domain and the pathogenic mutant V617F. Nat Struct MolBiol.2012;19(8):754-9.
    [69] Williams NK, Bamert RS, Patel O, et al. Dissecting specificity in the Januskinases: the structures of JAK-specific inhibitors complexed to the JAK1andJAK2protein tyrosine kinase domains. J Mol Biol.2009;387(1):219-32.
    [70] Argetsinger LS, Kouadio JL, Steen H, et al. Autophosphorylation of JAK2ontyrosines221and570regulates its activity. Mol Cell Biol.2004;24(11):4955-67.
    [71] Levine RL, Pardanani A, Tefferi A, Gilliland DG. Role of JAK2in thepathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer.2007;7(9):673-83.
    [72] Dawson MA, Bannister AJ, G ttgens B, et al. JAK2phosphorylates histoneH3Y41and excludes HP1alpha from chromatin. Nature.2009;461(7265):819-22.
    [73] Rui L, Emre NC, Kruhlak MJ, et al. Cooperative epigenetic modulation bycancer amplicon genes. Cancer Cell.2010;18(6):590-605.
    [74] Bumm TG, Elsea C, Corbin AS, et al. Characterization of murineJAK2V617Fpositive myeloproliferative disease. Cancer Res.2006;66(23):11156-65.
    [75] Wernig G, Mercher T, Okabe R, et al. Expression of Jak2V617F causes apolycythemia vera-like disease with associated myelofibrosis in a murine bonemarrow transplant model. Blood.2006;107(11):4274-81.
    [76] Zaleskas VM, Krause DS, Lazarides K, et al. Molecular pathogenesis andtherapy of polycythemia induced in mice by JAK2V617F. PLoS One.2006;1:e18.
    [77] Lacout C, Pisani DF, Tulliez M, et al. JAK2V617F expression in murinehematopoietic cells leads to MPD mimicking human PV with secondarymyelofibrosis. Blood.2006;108(5):1652-60.
    [78] Shide K, Shimoda HK, Kumano T, et al. Development of ET, primarymyelofibrosis and PV in mice expressing JAK2V617F. Leukemia.2008;22(1):87-95.
    [79] Tiedt R, Hao-Shen H, Sobas MA, et al. Ratio of mutant JAK2-V617F towild-type Jak2determines the MPD phenotypes in transgenic mice. Blood.2008;111(8):3931-40.
    [80] Akada H, Yan D, Zou H, et al. Conditional expression of heterozygous orhomozygous Jak2V617F from its endogenous promoter induces a polycythemiavera-like disease. Blood.2010;115(17):3589-97.
    [81] Mullally A, Lane SW, Ball B, et al. Physiological Jak2V617F expression causesa lethal myeloproliferative neoplasm with differential effects on hematopoieticstem and progenitorcells. Cancer Cell.2010;17(6):584-96.
    [82] Marty C, Lacout C, Martin A, et al. Myeloproliferative neoplasm induced byconstitutive expression of JAK2V617F in knock-in mice. Blood.2010;116(5):783-7.
    [83] Quintás-Cardama A, Vaddi K, Liu P, et al. Preclinical characterization of theselective JAK1/2inhibitor INCB018424: therapeutic implications for thetreatment of myeloproliferative neoplasms. Blood.2010;115(15):3109-17.
    [84] Koppikar P, Abdel-Wahab O, Hedvat C, et al. Efficacy of the JAK2inhibitorINCB16562in a murine model of MPLW515L-induced thrombocytosis andmyelofibrosis. Blood.2010;115(14):2919-27.
    [85] Pardanani A, Gotlib JR, Jamieson C, et al. Safety and efficacy of TG101348,Aselective JAK2inhibitor, in myelofibrosis. J Clin Oncol.2011;29(7):789-96.
    [86] Pardanani A, Laborde RR, Lasho TL, et al.Safety and efficacy of CYT387, aJAK1and JAK2inhibitor, in myelofibrosis. Leukemia.2013;27(6):1322-7.
    [87] Tefferi A. JAK inhibitors for myeloproliferative neoplasms: clarifying factsfrom myths. Blood.2012;119(12):2721-30.
    [88] Nag AC. Study of non-muscle cells of the adult mammalian heart: a finestructural analysis and distribution. Cytobios.1980;28:41–61.
    [89] Gersch C, Dewald O, Zoerlein M, Michael LH, Entman ML, Frangogiannis NG.Mast cells and macrophages in normal C57/BL/6mice. Histochem Cell Biol.2002;118:41–9.
    [90] Zeisberg EM, Kalluri R. Origins of cardiac fibroblasts. Circ Res.2010;107:1304–12.
    [91] Weber KT. Cardiac interstitium in health and disease: the fibrillar collagennetwork. J Am Coll Cardiol.1989;13:1637–52
    [92] Shirwany A, Weber KT. Extracellular matrix remodeling in hypertensive heartdisease. J Am Coll Cardiol.2006;48:97–8
    [93] Berk BC, Fujiwara K, Lehoux S. ECM remodeling in hypertensive heartdisease. J Clin Invest.2007;117:568–75
    [94] Anderson KR, Sutton MG, Lie JT. Histopathological types of cardiac fibrosis inmyocardial disease. J Pathol.1979;128:79–85
    [95] Isoyama S, Nitta-Komatsubara Y. Acute and chronic adaptation tohemodynamic overload and ischemia in the aged heart. Heart Fail Rev.2002;7:63–9.
    [96] Hasenfuss G. Animal models of human cardiovascular disease, heart failure andhypertrophy. Cardiovasc Res.1998;39:60–76
    [97] Chen MA. Heart failure with preserved ejection fraction in older adults. Am JMed.2009;122:713–23
    [98] Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aginghuman heart. Myocyte loss and reactive cellular hypertrophy. Circ Res.1991;68:1560–8.
    [99] Lakatta EG. Age-associated cardiovascular changes in health: impact oncardiovascular disease in older persons. Heart Fail Rev.2002;7:29–49
    [100]100.Anversa P, Palackal T, Sonnenblick EH, Olivetti G, Meggs LG, CapassoJM. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophiedaging rat heart. Circ Res.1990;67:871–85.
    [101] Eghbali M, Robinson TF, Seifter S, Blumenfeld OO. Collagen accumulation inheart ventricles as a function of growth and aging. CardiovascRe.1989;23:723–9.
    [102] Orlandi A, Francesconi A, Marcellini M, Ferlosio A, Spagnoli LG. Role ofageing and coronary atherosclerosis in the development of cardiac fibrosis inthe rabbit. Cardiovasc Res.2004;64:544–52.
    [103] Lin J, Lopez EF, Jin Y, Van Remmen H, Bauch T, Han HC, Lindsey ML.Age-related cardiac muscle sarcopenia: Combining experimental andmathematical modeling to identify mechanisms. Exp Gerontol.2008;43:296–306.
    [104] Mays PK, Bishop JE, Laurent GJ. Age-related changes in the proportion oftypes I and III collagen. Mech Ageing Dev.1988;45:203–12.
    [105] Gazoti Debessa CR, Mesiano Maifrino LB, Rodrigues de Souza R. Age relatedchanges of the collagen network of the human heart. Mech Ageing Dev.2001;122:1049–58.
    [106] Bujak M, Dobaczewski M, Chatila K, Mendoza LH, Li N, Reddy A,Frangogiannis NG. Interleukin-1receptor type I signaling critically regulatesinfarct healing and cardiac remodeling. Am J Pathol.2008;173:
    [107] Mays PK, McAnulty RJ, Campa JS, Laurent GJ. Age-related changes incollagen synthesis and degradation in rat tissues. Importance of degradation ofnewly synthesized collagen in regulating collagen production. Biochem J.1991;276(Pt2):307–13.
    [108] Annoni G, Luvara G, Arosio B, Gagliano N, Fiordaliso F, Santambrogio D,Jeremic G, Mircoli L, Latini R, Vergani C, Masson S. Age-dependentexpression of fibrosis-related genes and collagen deposition in the ratmyocardium. Mech Ageing Dev.1998;101:57–72.
    [109] Robert V, Besse S, Sabri A, Silvestre JS, Assayag P, Nguyen VT, SwynghedauwB, Delcayre C. Differential regulation of matrix metalloproteinases associatedwith aging and hypertension in the rat heart. Lab Invest.1997;76:729–38.
    [110] Gagliano N, Arosio B, Grizzi F, Masson S, Tagliabue J, Dioguardi N, Vergani C,Annoni G. Reduced collagenolytic activity of matrix metalloproteinases anddevelopment of liver fibrosis in the aging rat. Mech Ageing Dev.2002;123:413–25.
    [111] Van der Rest M, Garrone R. Collagen family of proteins. FASEB J.1991;5:2814–23.
    [112] Thomas DP, Cotter TA, Li X, McCormick RJ, Gosselin LE. Exercise trainingattenuates aging-associated increases in collagen and collagen crosslinking ofthe left but not the right ventricle in the rat. Eur J Appl Physiol.2001;85:164–9.
    [113] Thomas DP, Zimmerman SD, Hansen TR, Martin DT, McCormick RJ.Collagen gene expression in rat left ventricle: interactive effect of age andexercise training. J Appl Physiol.2000;89:1462–8.
    [114] Aronson D. Cross-linking of glycated collagen in the pathogenesis of arterialand myocardial stiffening of aging and diabetes. J Hypertens.2003;21:3–12.
    [115] Dannenberg AL, Levy D, Garrison RJ. Impact of age on echocardiographic leftventricular mass in a healthy population (the Framingham Study) Am J Cardiol.1989;64:1066–8.
    [116] Vanoverschelde JJ, Essamri B, Vanbutsele R, d’Hondt A, Cosyns JR, Detry JR,Melin JA. Contribution of left ventricular diastolic function to exercise capacityin normal subjects. J Appl Physiol.1993;74:2225–33.
    [117] Iwanaga Y, Aoyama T, Kihara Y, Onozawa Y, Yoneda T, Sasayama S. Excessiveactivation of matrix metalloproteinases coincides with left ventricularremodeling during transition from hypertrophy to heart failure in hypertensiverats. J Am Coll Cardiol.2002;39:1384–91.
    [118] Janicki JS, Brower GL. The role of myocardial fibrillar collagen in ventricularremodeling and function. J Card Fail.2002;8:S319–25.
    [119] Baicu CF, Stroud JD, Livesay VA, Hapke E, Holder J, Spinale FG, Zile MRChanges in extracellular collagen matrix alter myocardial systolic performance.Am J Physiol Heart Circ Physiol.2003;284:H122–32.
    [120] Wang J, Hoshijima M, Lam J, Zhou Z, Jokiel A, Dalton ND, Hultenby K,Ruiz-Lozano P, Ross J, Jr, Tryggvason K, Chien KR. Cardiomyopathyassociated with microcirculation dysfunction in laminin alpha4chain-deficientmice. J Biol Chem.2006;281:213–20.
    [121] Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F,Sonnenblick EH, Olivetti G, Anversa P. Structural basis of end-stage failure inischemic cardiomyopathy in humans. Circulation.1994;89:151–63.
    [122] Song Y, Yao Q, Zhu J, Luo B, Liang S. Age-related variation in the interstitialtissues of the cardiac conduction system; and autopsy study of230HanChinese. Forensic Sci Int.1999;104:133–42
    [123] Khan R, Sheppard R. Fibrosis in heart disease: understanding the role oftransforming growth factor-beta in cardiomyopathy, valvular disease andarrhythmia. Immunology.2006;118:10–24.
    [124] Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol2008;214:199–210.
    [125] Cieslik KA, Taffet GE, Carlson S, Hermosillo J, Trial J, Entman ML.Immune-inflammatory dysregulation modulates the incidence of progressivefibrosis and diastolic stiffness in the aging heart. J Mol Cell Cardiol.2011;50:248–56.
    [126] Besse S, Robert V, Assayag P, Delcayre C, Swynghedauw B. Nonsynchronouschanges in myocardial collagen mRNA and protein during aging: effect ofDOCA-salt hypertension. Am J Physiol.1994;267:H2237–44.
    [127] Metalloproteinases by cytokines and reactive oxygen/nitrogen species in themyocardium. Heart Fail Rev2004;9:43–51.
    [128] Li YY, McTiernan CF, Feldman AM. Proinflammatory cytokines regulate tissueinhibitors of metalloproteinases and disintegrin metalloproteinase in cardiaccells. Cardiovasc Res1999;42:162–72.
    [129] Siwik DA, et al. Interleukin-1beta and tumor necrosis factor-alpha decreasecollagen synthesis and increase matrix metalloproteinase activity in cardiacfibroblasts in vitro. Circ Res2000;86:1259–65.
    [130] KapadiaSR, OralH,Lee J, et al. Hemodynamic regulation of tumor necrosisfactor-alpha gene and protein expression in adult feline myocardium. Circ Res1997;81:187–95
    [131] Fine A, Poliks CF, Donahue LP, et al. The differential effect of prostaglandinE2on transforming growth factor-beta and insulin-induced collagen formationin lung fibroblasts. J Biol Chem1989;264:16988–91.
    [132] RaghowR, Postlethwaite AE, Keski-Oja J, et al. Transforming growthfactor-beta increases steady state levels of type I procollagen and fibronectinmessenger RNAs posttranscriptionally in cultured human dermal fibroblasts. JClin Invest1987;79:1285–8.
    [133] Edwards DR, et al. Transforming growth factor beta modulates the expressionof collagenase and metalloproteinase inhibitor. Embo J1987;6:1899–904.
    [134] Schiemann WP, et al. Context-specific effects of fibulin-5(DANCE/EVEC) oncellproliferation, motility, and in vasion.Fibulin-5is induced by transforminggrowth factor-beta and affects proteinkinase cascades. J Biol Chem2002;277:27367–77.
    [135] Fishman DA, et al. Membrane-type matrix metalloproteinase expression andmatrix metalloproteinase-2activation in primary human ovarian epithelialcarcinoma cells. Invasion Metastasis1996;16;150–9.
    [136] Parks WC, Wilson CL, Lopez-Boado YS. Matrix metalloproteinases asmodulators of inflammation and innate immunity. Nat Rev Immunol2004;4:617–29.
    [137] EgebladM, Werb Z. New functions for the matrix metalloproteinases in cancerprogression. Nat Rev Cancer2002;2:161–74.
    [138] Mann DL, Spinale FG. Activation of matrix metalloproteinases in the failinghuman heart: breaking the tie that binds. Circulation1998;98:1699–702
    [139] Chapman RE, Spinale FG. Extracellular activation and unraveling of themyocardial interstitium: critical steps to ward clinical applications. Am JPhysiol Heart Circ Physiol2004;286: H1-H10
    [140] Sternlicht MD, Werb Z. How matrix metalloproteinases regulate cellbehavior.Annu RevCellDev Biol2001;17:463–516
    [141] VincentiMP, CoonCI, Mengshol JA,etal. Cloning of the gene for interstitialcollagenase-3(matrix metalloproteinase-13) from rabbit synovial fibroblasts:differential expression with collagenase-1(matrix metalloproteinase-1). Biochem J1998;331:341–6.
    [142] Nuttall RK, et al. Expression analysis of the entire MMP and TIMP genefamilies during mouse tissue development. FEBS Lett2004;563:129–34.
    [143] Brooks PC, et al. Localization of matrix metalloproteinase MMP-2to thesurface of in vasive cells by interaction with integrin αv β3. Cell1996;85:683–93.
    [144] Yu Q, Stamenkovic I. Localization of matrix metalloproteinase9to thecellsurface provides amechanism for CD44-mediated tumor invasion. GenesDev1999;13:35–48.
    [145] Chapman RE, et al. Matrixmetalloproteinase abundance in human myocardialfibroblasts: effects of sustained pharmacologic matrix metalloproteinaseinhibition. J Mol Cell Cardiol2003;35:539–48.
    [146] Coker ML, et al. Matrix metalloproteinase synthesis and expression in isolatedLV myocytepreparations. Am J Physiol1999;277: H777–87.
    [147] Wang W, Schulze CJ, Suarez-Pinzon WL, et al. Intracellular action of matrixmetalloproteinase-2accountsfor acute myocardial ischemia and reperfusioninjury.Circulation2002;106:1543–9
    [148] SealsDF, Courtneidge SA. The ADAMs family of metalloproteases:multidomainproteins with multiple functions. Genes Dev2003;17:7–30
    [149] Hougaard S, et al. Trafficking of human ADAM12-L: retention in thetrans-Golginetwork. Biochem Biophys Res Commun2000;275:261–7
    [150] Werb Z, YanY. A cellularstriptease act.Science1998;282:1279–80
    [151] Reddy P, et al. Functional analysis of the domain structure of tumor necrosisfactor-alpha converting enzyme. J Biol Chem2000;275:14608–14.
    [152] Latchman DS.Cardiotrophin-1(CT-1): a novel hypertrophic and cardioprotective agent. Int J Exp Pathol1999;80:189–96.
    [153] Asakura M, Kitakaze M, TakashimaS,etal. Cardiac Hypertrophy is inhibited byantagonism of ADAM12processing of HB-EGF: metalloproteinase inhibitorsas anew therapy. Nat Med2002;8:35–40
    [154] SahinU,W eskamp G, KellyK,etal. Distinct roles for ADAM10and ADAM17inectodomain shedding of six EGFR ligands. JCellBiol2004;164:769–79.
    [155] Sottrup-Jensen L, Birkedal-Hansen H. Human fibroblast collagenase-alpha-macroglobulin interactions. Localization of cleavage sites in the baitregions of five mammalianalpha-macroglobulins. JBiolChem1989;264:393–401.
    [156] Mott JD,Thomas CL,Rosenbach MT,etal. Posttranslational proteolyticprocessing of procollagen C-terminal proteinase enhancer releases ametalloproteinase inhibitor. J BiolChem2000;275:1384–90.
    [157] Petitclerc E, et al. New functions for non-collagenous domains of humancollagen type IV. Novel integrin ligands inhibiting angiogenesis and tumorgrowth in vivo. J BiolChem2000;275:8051–61.
    [158] Herman MP, Sukhova GK, KisielW,etal. Tissue factor pathway inhibitor-2is anovel inhibitor of matrix metalloproteinases with implications foratherosclerosis. J Clin Invest2001;107:1117–26
    [159] Yu WH, Yu S, Meng Q, et al. TIMP-3binds to sulfated glycosaminoglycans ofThe extracellular matrix. J BiolChem2000;275:31226–32.
    [160] Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biologicalactions and therapeutic opportunities. J Cell Sci2002;115:3719–27.
    [161] Kashiwagi M, et al.TIMP-3is apotent inhibitor of aggrecanase1(ADAM-TS4)and aggrecanase2(ADAM-TS5). J BiolChem2001;276:12501–4.
    [162] Amour A, Knight CG,W ebster A, et al.The in vitro activity of ADAM-10isinhibitedbyTIMP-1and TIMP-3.FEBS Lett2000;473:275–9.
    [163] Tortorella MD, et al. Purification and cloning of aggrecanase-1: a member ofthe ADAMTS family of proteins. Science1999;284:1664–6.
    [164] Li YY, F et al. Differential expression of tissue inhibitors of metalloproteinasesin the failing human heart. Circulation1998;98:1728–34.
    [165] SpinaleFG. Matrix metalloproteinases: regulation and dysregulation in thefailing heart. CircRes2002;90:520–30
    [166] Tyagi SC, et al. Different ialgene expression of extracellular matrixcomponents in dilated cardiomyopathy.J CellBiochem1996;63.185–98.
    [167] Thomas CV, et al. Increased matrix metalloproteinase activity and selectiveupregulation in L V myocardium from patients with end-stage dilatedcardiomyopathy.Circulation1998;97:1708–15.
    [168] Brilla CG, Zhou G, Matsubara L, et al. Collagen metabolism in cultured adultrat cardiac fibroblasts: response to angiotensin II and aldosterone. J Mol CellCardiol1994;26:809–20
    [169] Yokoseki O, Yazaki Y, Suzaki J, et al. Association of matrix metalloproteinaseexpression and left ventricular function in idiopathic dilated cardiomyopathy.Jpn Circ J2000;64:352–7
    [170] Noji Y, ShimizuM, Ino H, et al. Increased circulating matrixmetalloproteinase-2in patients with hypertrophic cardiomyopathy with systolicdysfunction. Circ J2004;68:355–60.
    [171] BartonPJ, BirksEJ, Felkin LE, et al. Increased expression of extracellularmatrix regulators TIMP1and MMP1in deteriorating heart failure. J Heart LungTransplant2003;22:738–44.
    [172] Wang X, Yang L, Qi F, et al. Myocardial matrix metalloproteinase-3and matrixmetalloproteinase inhibitor-1expression in congestive heart failure. ZhonghuaNeiKeZaZhi2002;41:453–5
    [173] Lindsay MM, et al.TIMP-1:a marker of left ventricular diastolic dysfunctionand fibrosis in hypertension. Hypertension2002;40:136–41.
    [174] Timms PM, et al. Plasma tissue inhibitor of metalloproteinase-1levels areelevated in essential hypertension and related to left ventricular hypertrophy.Am J Hypertens2002;15:269–72
    [175] Wilson EM, et al. Plasma matrix metalloproteinase and inhibitor profiles inpatients with heart failure. J Card Fail2002;8:390–8.
    [176] Yamazaki T, Lee JD, Shimizu H, et al. Circulating matrix metalloproteinase-2is elevated in patients with congestive heart failure. Eur J Heart Fail2004;6:41–5
    [177] Roten L, et al. Effects of gene deletion of the tissue inhibitor of the matrixmetalloproteinase-type1(TIMP-1) on left ventricular geometry and function inmice. J Mol Cell Cardiol2000;32:109–20.
    [178] Creemers EE, Davis JN, Parkhurst AM, et al. Deficiency of TIMP-1exacerbates LV remodeling after myocardial infarction in mice. Am J PhysiolHeart Circ Physiol2003;284: H364–71.
    [179] Caterina J, et al. Murine TIMP-2gene-targeted mutation. Ann N Y Acad Sci1999;878:528–30.
    [180] Fedak PW, et al. TIMP-3Deficiency leads to dilated cardiomyopathy.Circulation2004;110:2401–9.
    [181] Leco KJ,W aterhouseP,Sanchez OH, et al. Spontaneous airspace enlargementin the lungs of mice lacking tissue inhibitor of metalloproteinases-3(TIMP-3).J Clin Invest2001;108:817–29.
    [182] Fata JE, Leco KJ, Voura EB, et al. Accelerated apoptosis in theTimp-3-deficientmammary gland. J ClinInvest2001;108:831–41.
    [183] Kim HE, DalalSS, Young E, et al. Disruption of the myocardial extracellularmatrix leads to cardiac dysfunction. J Clin Invest2000;106:857–66.
    [184] Hayashidani S, et al. Targeted deletion of MMP-2attenuates early LV ruptureand late remodeling after experimental myocardial infarction. Am J PhysiolHeart Circ Physiol2003;285: H1229–35.
    [185] Zhou Z, Apte SS, Soininen R, et al. Impaired endochondral ossification andangiogenesis in mice deficient in membrane-type matrix metalloproteinase I.Proc Natl Acad Sci USA2000;97:4052–7.
    [186] Holmbeck K, Bianco P, Caterina J, et al. MT1-MMP-deficient mice developdwarfism, osteopenia, arthritis, and connective tissue disease due to inadequatecollagen turnover. Cell1999;99:81–92.
    [187] Levine RL, Gilliland DG: Myeloproliferative disorders.Blood2008,112:2190–2198.
    [188] Tefferi A: The history of myeloproliferative disorders: before and afterDameshek. Leukemia2008,22:3–13
    [189] Campbell PJ, Green AR: The myeloproliferative disorders. N Engl J Med2006,355:2452–2466.
    [190] Kvasnicka HM, Thiele J: Prodromal myeloproliferative neoplasms: the2008WHO classification. Am J Hematol2010,85:62–69
    [191] Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, Hanson CA, Barosi G,Verstovsek S, Birgegard G, Mesa R, Reilly JT, Gisslinger H, Vannucchi AM,Cervantes F, Finazzi G, Hoffman R, Gilliland DG, Bloomfield CD, VardimanJW: Proposals and rationale for revision of the World Health Organizationdiagnostic criteria for polycythemia vera, essential thrombocythemia, andprimary myelofibrosis: recommendations from an ad hoc international expertpanel. Blood2007,110:1092–1097.
    [192] Tefferi A, Vainchenker W: Myeloproliferative neoplasms: molecularpathophysiology, essential clinical understanding, and treatment strategies. JClin Oncol2011,29:573–582
    [193] Finazzi G, Barbui T: How I treat patients with polycythemia vera. Blood2007,109:5104–5111.
    [194] Beer PA, Erber WN, Campbell PJ, Green AR:How I treat essentialthrombocythemia. Blood2011,117:1472–1482.
    [195] Tefferi A: How I treat myelofibrosis. Blood2011,117:3494–3504
    [196] Zhao W, Gao R, Lee J, Xing S, Ho WT, Fu X, Li S, Zhao ZJ:Relevance ofJAK2V617F positivity to hematological diseases–survey of samples from aclinical genetics laboratory. J Hematol Oncol2011,4:4..
    [197] Gattenlohner S, Ertl G, Einsele H, Kircher S, Muller-Hermelink HK, Marx A:Cardiac JAK2mutation V617F in a patient with cardiomyopathy andmyeloproliferative disease.Ann Intern Med2008,149:69–71.
    [198] Foshay K, Rodriguez G, Hoel B, Narayan J, Gallicano GI: JAK2/STAT3directscardiomyogenesis within murine embryonic stem cells in vitro. Stem Cells2005,23:530–543
    [199] Ogilvy S, Elefanty AG, Visvader J, Bath ML, Harris AW, Adams JM:Transcriptional regulation of vav, a gene expressed throughout thehematopoietic compartment. Blood1998,91:419–430.
    [200] Nicoletti A, Michel JB: Cardiac fibrosis and inflammation: interaction withhemodynamic and hormonal factors. Cardiovasc Res1999,41:532–543.
    [201] Castellar A, Remedio RN, Barbosa RA, Gomes RJ, Caetano FH:Collagen andreticular fibers in left ventricular muscle in diabetic rats: Physical exerciseprevents its changes? Tissue Cell2011,43:24–28.
    [202] Kennedy S, Wu J, Wadsworth RM, Lawrence CE, Maffia P: Mast cells andvascular diseases. Pharmacol Ther2013,138:53–65.
    [203] Jin X, Zhao W, Shi K, Ho WT, Zhao ZJ: Generation of a new congenic mousestrain with enhanced chymase expression in mast cells. PLoS One2013,8:e84340.
    [204] Letcher RL, Chien S, Pickering TG, Sealey JE, Laragh JH: Direct relationshipbetween blood pressure and blood viscosity in normal and hypertensivesubjects. Role of fibrinogen and concentration. Am J Med1981,70:1195–1202
    [205] Fowkes FG, Lowe GD, Rumley A, Lennie SE, Smith FB, Donnan PT: Therelationship between blood viscosity and blood pressure in a random sample ofthe population aged55to74years. Eur Heart J1993,14:597–601
    [206] Cinar Y, Demir G, Pa M, Cinar AB:Effect of hematocrit on blood pressure viahyperviscosity. Am J Hypertens1999,12:739–743
    [207] Ciuffetti G, Schillaci G, Lombardini R, Pirro M, Vaudo G, Mannarino E:Prognostic impact of low-shear whole blood viscosity in hypertensive men. EurJ Clin Invest2005,35:93–98
    [208] Verstovsek S, Kantarjian H, Mesa RA, Pardanani AD, Cortes-Franco J, ThomasDA, Estrov Z, Fridman JS, Bradley EC, Erickson-Viitanen S, Vaddi K, Levy R,TefferA: Safety and efficacy of INCB018424, a JAK1and JAK2inhibitor, inmyelofibrosis. N Engl J Med2010,363:1117–1127.
    [209] Mesa RA, Cortes J: Optimizing management of ruxolitinib in patients withmyelofibrosis: the need for individualized dosing. J Hematol Oncol2013,6:79.
    [210] Randhawa J, Ostojic A, Vrhovac R, Atallah E, Verstovsek S:Splenomegaly inmyelofibrosis—new options for therapy and the therapeutic potential of Januskinase2inhibitors. J Hematol Oncol2012,5:43.
    [211] Talpaz M, Paquette R, Afrin L, Hamburg SI, Prchal JT, Jamieson K, TerebeloHR,Ortega GL, Lyons RM, Tiu RV, Winton EF, Natrajan K, Odenike O,Claxton D, Peng W, O’Neill P, Erickson-Viitanen S, Leopold L, Sandor V, LevyRS, Kantarjian HM, Verstovsek S:Interim analysis of safety and efficacy ofruxolitinib in patients with myelofibrosis and low platelet counts. J HematolOncol2013,6:81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700