用户名: 密码: 验证码:
PDZ结构域结合中间序列结合特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
·第一部分研究了PDZ结构域结合中间序列的结合特性
     蛋白质-蛋白质相互作用在生命活动中广泛存在,主要由蛋白质结构域来高效介导。大规模的蛋白质相互作用可以通过研究结构域的结合特性来实现。PDZ、SH3、WW等结构域通过一个或多个识别“口袋”来识别和结合配体蛋白的一段保守的短肽序列。然而蛋白质相互作用可能比我们现在认识到的复杂,还有很多的相互作用未被研究清楚。就PDZ结构域而言,它通常结合配体蛋白C末端4-5个氨基酸残基,近来研究发现其也能够结合配体蛋白的中间序列,与自身或其他结构域聚合,或与膜上的脂类结合。这些结合方式使蛋白质的相互作用呈现出多样性与复杂性。
     首先,为了系统地高通量地研究PDZ结构域结合中间序列的结合特性,我们在酵母双杂交系统中构建了中间序列随机八肽文库。文库的构建策略是将所有序列的C末端设计成相同的序列,从而保证PDZ结构域结合的是中间序列。而后,使用文库筛选了24个PDZ结构域,其中包括已知文献报道的能够结合中间序列的PDZ结构域;实验室已经构建好的PDZ结构域和一些能够结合脂类的PDZ结构域。实验表明有14个结构域具有结合中间序列的特性,其中6个结构域未曾被报道。序列具有偏好性,偏好较强的具有一致序列。与C末端序列的结合特性相比,中间序列的结合特性表现出多样性,只有ZO1-PDZ1结构域的中间序列特性与其C末端特性相似。筛选结果也反映出PDZ结构域对于中间序列和C末端序列的偏好性。另外,HtrA2-PDZ的偏好性较弱,没有一致序列,表现为结合疏水多肽。中间序列的筛选结果说明有更多的PDZ结构域可以结合中间序列。此外,应用中间序列的结合特性可以来寻找已知相互作用的结合位点,也可以利用中间序列或一致序列来搜索数据库发掘潜在的天然相互作用蛋白。
     ·第二部分研究了日本血吸虫蛋白GIPC3的分子特征及其PDZ结构域的配体结合特性
     血吸虫病仍然是一个全球性的严重的公共卫生问题,流行于77个国家和地区,感染者超过2.3亿。依赖于单一药物吡喹酮大规模长期治疗引起对抗药性问题的关注。PDZ结构域蛋白被认为是下一代药物开发的潜在靶点。在本论文的第二部分主要研究日本血吸虫PDZ结构域蛋白SjGIPC3的分子特征及利用随机多肽文库探索其PDZ结构域的结合特性。
     SjGIPC3是含有单个PDZ结构域的蛋白。多重序列比对分析显示SjGIPC3与其同源物在GH1与PDZ结构域相对保守,但PDZ结构域中的C末端结合环处并不保守,其中的经典的GLGF模体被SFGL替代。进化分析表明日本血吸虫SjGIPC3与吸虫同源物形成一分支,而与其他物种相距较远。分期转录分析显示,SjGIPC3基因在侵入宿主后转录水平显著升高;在雄性成虫的转录水平为最高。
     在酵母双杂交系统中,我们初步探索了SjGIPC3-PDZ结合C末端序列的结合特性。用SjGIPC3全长蛋白或其PDZ结构域为诱饵蛋白,筛选了本室利用人基因组构建的新型随机多肽文库,实验表明SjGIPC3PDZ结构域主要结合Ⅰ类和Ⅱ类配体,但以结合Ⅰ类配体为主;用SjGIPC3全长蛋白为诱饵筛选文库得到的C末端序列比用PDZ结构域为诱饵得到的序列的规律性更强,提示SjGIPC3蛋白的N端和C端区域可能对PDZ结构域的配体结合特性产生影响。根据PDZ结构域的结合规律,利用本室开发的Tailfit软件预测并在酵母双杂交系统中验证了4个潜在的SjGIPC3的天然配体,其中之一为NMDA受体。
●In Part I, we studied the non-canonical binding properties of PDZ domains to internal sequences.
     There are enormous protein-protein interaction that mainly mediated by protein domains in multiple biological processes. Large-scale protein interactions can be investigated by studying the binding properties of protein domain. Protein domains (such as PDZ, SH3, SH2, WW, etc.) can canonically recognize a conservative short peptide sequence through one or more binding "pocket". However, there are probably more ways of protein interaction than we currently realize, some non-canonical protein interactions were still needed to be investigated. Like PDZ domains, they are important protein interaction modules that are considered mainly recognize C-terminal4-5amino acids, they can also non-canonically bind internal sequences, polymerize with themselves or other PDZ domains, or can bind to some lipids. Protein interactions become much more diverse and complicate by discovering those non-canonical interaction modes which expand the research field and provide more powerful evidence.
     First, to systematically and high-throughput study the binding characteristics of PDZ domains to internal sequences, a nearly random octapeptide library with no stop codon designed in the insert was constructed in the yeast two-hybrid vector. To ensure the PDZ domains really interact with internal sequences, all the C-termini of sequences of the whole library were the same. Then, a total of twenty-four PDZ domains were used as baits to screen the library, including some reported internal sequence-binding PDZ domains, some constructed PDZ domain clones of our lab and some PDZ domains which can bind with membrane lipids. Among the twenty-four PDZ domains, fourteen were found to bind internal sequences, including six that were not previously reported to bind internal sequences. PDZ domains showed strong amino acids preferences; only the consensuse of ZO1-PDZ1was similar to its C-terminal ligands, but the other consensuses were more diverse than those of common C-terminal ligands. In addition, HtrA2-PDZ with no strong consensus recognized extended hydrophobic peptides. The results suggested that more PDZ domains can bind internal sequences. Moreover, using the binding properties of internal sequences can help to find the potential binding site of reported interactions and to search the database to find potential natural binding partners.
     ●In Part Ⅱ, we presented the molecular characteristics of Schistosoma japonicum PDZ domain-containing protein, SjGIPC3and investigated the ligand binding properties of its PDZ domain.
     Schistosomiasis remains a serious global health problem, which afflicts more than230million people in77countries. The long-term mass treatments with the only available drug, praziquantel, have caused the concern of the drug resistance. PDZ domain containing proteins are the potential target for next-generation of drug development. In this second part, we presented the molecular characteristics of the Schistosoma japonicum PDZ domain-containing protein, SjGIPC3, and explored its ligand binding specificity by yeast two-hybrid (Y2H) using random peptide libraries.
     SjGIPC3is a single PDZ domain-containing protein. Multiple sequences alignment revealed that GH1and PDZ domain of SjGIPC3was relatively conserved with its orthologs, however, the carboxylate-binding loop within the PDZ domain was not, and the classic GLGF motif is substituted by SFGL. The phylogenetic analysis revealed that SjGIPC3and other trematode orthologs clustered into a well-defined cluster but was distinguishable from those of other phyla. Transcriptional analysis by qRT-PCR showed that SjGIPC3gene was particularly expressed in the stage within the host, especially in male adult worms.
     In the system of Y2H, we investigated the C-termini binding properties of SjGIPC3-PDZ. We used SjGIPC3full-length protein or only its PDZ domain as bait, to screen an arbitrary peptide library. We found that the SjGIPC3PDZ domain can both bind class Ⅰ and Ⅱ ligands, but more preferred to bind class I ligand. The binding sequences of SjGIPC3full-length protein have more proterties than those of SjGIPC3-PDZ, indicating that the N-terminal and C-terminal regions flanking the PDZ domain may affect the binding proterties of the PDZ domain. Further, native ligands were predicted based on the C-termini binding properties with Tailfit software, four potential ligands were confirmed by Y2H system, one of them was NMDA receptor.
引文
1. Droit A, Poirier GG, Hunter JM. Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function. J Mol Endocrinol 2005,34:263-280.
    2. Blazer LL, Neubig RR. Small molecule protein-protein interaction inhibitors as CNS therapeutic agents:current progress and future hurdles. Neuropsychopharmacology 2009,34:126-141.
    3. Mendez-Rios J, Uetz P. Global approaches to study protein-protein interactions among viruses and hosts. Future Microbiol 2010,5:289-301.
    4. Tao F, Su Q, Johns RA. Cell-permeable peptide Tat-PSD-95 PDZ2 inhibits chronic inflammatory pain behaviors in mice. Mol Ther 2008,16:1776-1782.
    5. Fry DC, Vassilev LT. Targeting protein-protein interactions for cancer therapy. J Mol Med (Berl) 2005,83:955-963.
    6. Drewes G, Bouwmeester T. Global approaches to protein-protein interactions. Curr Opin Cell Biol 2003,15:199-205.
    7. Bauer A, Kuster B. Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur J Biochem 2003,270:570-578.
    8. 吴志豪,王建,贺福初.大规模酵母双杂交技术研究蛋白质相互作用的应用.遗传2006,28:1627-1632.
    9. Pawson T, Nash P. Assembly of cell regulatory systems through protein interaction domains. Science 2003,300:445-452.
    10. Pawson T, Raina M, Nash P. Interaction domains:from simple binding events to complex cellular behavior. FEBS Lett 2002,513:2-10.
    11. Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science 1997,278:2075-2080.
    12. Dev KK. Making protein interactions druggable:targeting PDZ domains. Nat Rev Drug Discov 2004,3:1047-1056.
    13. Finishing the euchromatic sequence of the human genome. Nature 2004,431:931-945.
    14. Clamp M, Fry B, Kamal M, Xie X, Cuff J, Lin MF, et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc Natl Acad Sci U S A 2007,104:19428-19433.
    15. Wang J, Huo K, Ma L, Tang L, Li D, Huang X, et al. Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol 2011,7:536.
    16. Kami K, Takeya R, Sumimoto H, Kohda D. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pexl3p. EMBO J2002,21:4268-4276.
    17. Zhang D, Shao C, Hu S, Ma S, Gao Y. Novel nonphosphorylated peptides with conserved sequences selectively bind to Grb7 SH2 domain with affinity comparable to its phosphorylated ligand. PLoS One 2012,7:e29902.
    18. Chen Y, Sheng R, Kallberg M, Silkov A, Tun MP, Bhardwaj N, et al. Genome-wide Functional Annotation of Dual-Specificity Protein-and Lipid-Binding Modules that Regulate Protein Interactions. Mol Cell 2012,46:226-237.
    19. Wu H, Feng W, Chen J, Chan LN, Huang S, Zhang M. PDZ domains of Par-3 as potential phosphoinositide signaling integrators. Mol Cell 2007,28:886-898.
    20. Lee HJ, Zheng JJ. PDZ domains and their binding partners:structure, specificity, and modification. Cell Commun Signal 2010,8:8.
    21. Craven SE, Bredt DS. PDZ proteins organize synaptic signaling pathways. Cell 1998,93:495-498.
    22. Hung AY, Sheng M. PDZ domains:structural modules for protein complex assembly. J Biol Chem 2002,277:5699-5702.
    23. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997,275:73-77.
    24. Ponting CP. Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci 1997,6:464-468.
    25. Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh JH, Reva B, et al. A specificity map for the PDZ domain family. PLoS Biol 2008,6:e239.
    26. Nourry C, Grant SG, Borg JP. PDZ domain proteins:plug and play! Sci STKE 2003,2003:RE7.
    27. Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA. Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 1999,284:812-815.
    28. Wu J, Yang Y, Zhang J, Ji P, Du W, Jiang P, et al. Domain-swapped dimerization of the second PDZ domain of ZO2 may provide a structural basis for the polymerization of claudins. J Biol Chem 2007,282:35988-35999.
    29. Zimmermann P, Meerschaert K, Reekmans G, Leenaerts I, Small JV, Vandekerckhove J, et al. P1P(2)-PDZ domain binding controls the association of syntenin with the plasma membrane. Mol Cell 2002,9:1215-1225.
    30. Eldstrom J, Doerksen KW, Steele DF, Fedida D. N-terminal PDZ-binding domain in Kvl potassium channels. FEBS Lett 2002,531:529-537.
    31. Penkert RR, DiVittorio HM, Prehoda KE. Internal recognition through PDZ domain plasticity in the Par-6-Pals1 complex. Nat Struct Mol Biol 2004,11:1122-1127.
    32. Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 2003,12:1251-1260.
    33. van Huizen R, Miller K, Chen DM, Li Y, Lai ZC, Raab RW, et al. Two distantly positioned PDZ domains mediate multivalent INAD-phospholipase C interactions essential for G protein-coupled signaling. EMBO J 1998,17:2285-2297.
    34. Cuppen E, Gerrits H, Pepers B, Wieringa B, Hendriks W. PDZ motifs in PTP-BL and RIL bind to internal protein segments in the LIM domain protein RIL. Mol Biol Cell 1998,9:671-683.
    35. Lemaire JF, McPherson PS. Binding of Vac14 to neuronal nitric oxide synthase:Characterisation of a new internal PDZ-recognition motif. FEBS Lett 2006,580:6948-6954.
    36. London TB, Lee HJ, Shao Y, Zheng J. Interaction between the internal motif KTⅩⅩⅪ of Idax and mDvl PDZ domain. Biochem Biophys Res Commun 2004,322:326-332.
    37. Ellencrona K, Syed A, Johansson M. Flavivirus NS5 associates with host-cell proteins zonula occludens-1 (ZO-1) and regulating synaptic membrane exocytosis-2 (RIMS2) via an internal PDZ binding mechanism. Biol Chem 2009,390:319-323.
    38. Werme K, Wigerius M, Johansson M. Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling. Cell Microbiol 2008,10:696-712.
    39. Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Muller U. The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci U S A 2002,99:14946-14951.
    40. Slattery C, Jenkin KA, Lee A, Simcocks AC, McAinch AJ, Poronnik P, et al. Na+-H+exchanger regulatory factor 1 (NHERF1) PDZ scaffold binds an internal binding site in the scavenger receptor megalin. Cell Physiol Biochem 2011,27:171-178.
    41. Thevenet L, Albrecht KH, Malki S, Berta P, Boizet-Bonhoure B, Poulat F. NHERF2/SIP-1 interacts with mouse SRY via a different mechanism than human SRY. J Biol Chem 2005,280:38625-38630.
    42. Truschel ST, Sengupta D, Foote A, Heroux A, Macbeth MR, Linstedt AD. Structure of the membrane-tethering GRASP domain reveals a unique PDZ ligand interaction that mediates Golgi biogenesis. J Biol Chem 2011,286:20125-20129.
    43. Zhang Y, Appleton BA, Wiesmann C, Lau T, Costa M, Hannoush RN, et al. Inhibition of Wnt signaling by Dishevelled PDZ peptides. Nat Chem Biol 2009,5:217-219.
    44. Runyon ST, Zhang Y, Appleton BA, Sazinsky SL, Wu P, Pan B, et al. Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3. Protein Sci 2007,16:2454-2471.
    45. Zhang Y, Appleton BA, Wu P, Wiesmann C, Sidhu SS. Structural and functional analysis of the ligand specificity of the HtrA2/Omi PDZ domain. Protein Sci 2007,16:1738-1750.
    46. Scheuermann J, Dumelin CE, Melkko S, Neri D. DNA-encoded chemical libraries. J Biotechnol 2006,126:568-581.
    47. Eichler J, Houghten RA. Generation and utilization of synthetic combinatorial libraries. Mol Med Today 1995,1:174-180.
    48. Yang M, Wu Z, Fields S. Protein-peptide interactions analyzed with the yeast two-hybrid system. Nucleic Acids Res 1995,23:1152-1156.
    49. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, et al. A human protein-protein interaction network:a resource for annotating the proteome. Cell 2005,122:957-968.
    50. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005,437:1173-1178.
    51. Song E, Gao S, Tian R, Ma S, Huang H, Guo J, et al. A high efficiency strategy for binding property characterization of peptide-binding domains. Mol Cell Proteomics 2006,5:1368-1381.
    52. Estojak J, Brent R, Golemis EA. Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 1995,15:5820-5829.
    53. Guarente L. Strategies for the identification of interacting proteins. Proc Natl Acad Sci U S A 1993,90:1639-1641.
    54. Vaccaro P, Brannetti B, Montecchi-Palazzi L, Philipp S, Helmer Citterich M, Cesareni G, et al. Distinct binding specificity of the multiple PDZ domains of INADL, a human protein with homology to IN AD from Drosophila melanogaster. J Biol Chem 2001,276:42122-42130.
    55. Zhu L, Hannon GJ. Yeast Hybrid Technologies; 2000.
    56. 李秋霞,罗茂林,李茹柳,陈蔚文.紧密连接蛋白ZO-1研究概述.广州中医药大学学报2007,24:523-525.
    57. Chen VC, Li X, Perreault H, Nagy JI. Interaction of zonula occludens-1 (ZO-1) with alpha-actinin-4:application of functional proteomics for identification of PDZ domain-associated proteins. J Proteome Res 2006,5:2123-2134.
    58. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999,147:1351-1363.
    59. Appleton BA, Zhang Y, Wu P, Yin JP, Hunziker W, Skelton NJ, et al. Comparative structural analysis of the Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into determinants of PDZ domain specificity. J Biol Chem 2006,281:22312-22320.
    60. Sun L, Bittner MA, Holz RW. Rim, a component of the presynaptic active zone and modulator of exocytosis, binds 14-3-3 through its N terminus. J Biol Chem 2003,278:38301-38309.
    61. Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, et al. Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A 2002,99:11211-11216.
    62. Yao R, Maeda T, Takada S, Noda T. Identification of a PDZ domain containing Golgi protein, GOPC, as an interaction partner of frizzled. Biochem Biophys Res Commnn 2001,286:771-778.
    63. Li X, Zhang J, Cao Z, Wu J, Shi Y. Solution structure of GOPC PDZ domain and its interaction with the C-terminal motif of neuroligin. Protein Sci 2006,15:2149-2158.
    64. Hicks SW, Machamer CE. Isoform-specific interaction of golgin-160 with the Golgi-associated protein PIST. J Biol Chem 2005,280:28944-28951.
    65. Neudauer CL, Joberty G, Macara IG. PIST:a novel PDZ/coiled-coil domain binding partner for the rho-family GTPase TC10. Biochem Biophys Res Commun 2001,280:541-547.
    66. Ito H, Iwamoto I, Morishita R, Nozawa Y, Asano T, Nagata K. Identification of a PDZ protein, PIST, as a binding partner for Rho effector Rhotekin:biochemical and cell-biological characterization of Rhotekin-PIST interaction. Biochem J 2006,397:389-398.
    67. Xu Z, Oshima K, Heller S. PIST regulates the intracellular trafficking and plasma membrane expression of Cadherin 23. BMC Cell Biol 2010,11:80.
    68. Itoh K, Lisovsky M, Hikasa H, Sokol SY. Reorganization of actin cytoskeleton by FRIED, a Frizzled-8 associated protein tyrosine phosphatase. Dev Dyn 2005,234:90-101.
    69. Polakis P. The many ways of Wnt in cancer. Curr Opin Genet Dev 2007,17:45-51.
    70. Rothbacher U, Laurent MN, Deardorff MA, Klein PS, Cho KW, Fraser SE. Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis.EMBO J 2000,19:1010-1022.
    71. Weitzel HE, Illies MR, Byrum CA, Xu R, Wikramanayake AH, Ettensohn CA. Differential stability of beta-catenin along the animal-vegetal axis of the sea urchin embryo mediated by dishevelled. Development 2004,131:2947-2956.
    72. Li L, Yuan H, Xie W, Mao J, Caruso AM, McMahon A, et al. Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J Biol Chem 1999,274:129-134.
    73. Katoh M. Identification and characterization of human DAPPER1 and DAPPER2 genes in silico. Int J Oncol 2003,22:907-913.
    74. Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, et al. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat Struct Biol 2000,7:1178-1184.
    75. Dho SE, Jacob S, Wolting CD, French MB, Rohrschneider LR, McGlade CJ. The mammalian numb phosphotyrosine-binding domain. Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX. J Biol Chem 1998,273:9179-9187.
    76. Rice DS, Northcutt GM, Kurschner C. The Lnx family proteins function as molecular scaffolds for Numb family proteins. Mol Cell Neurosci 2001,18:525-540.
    77. Faccio L, Fusco C, Chen A, Martinotti S, Bonventre JV, Zervos AS. Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia. J Biol Chem 2000,275:2581-2588.
    78. Li W, Srinivasula SM, Chai J, Li P, Wu JW, Zhang Z, et al. Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol 2002,9:436-441.
    79. Kang BS, Cooper DR, Jelen F, Devedjiev Y, Derewenda U, Dauter Z, et al. PDZ tandem of human syntenin:crystal structure and functional properties. Structure 2003,11:459-468.
    80. Lin JJ, Jiang H, Fisher PB. Melanoma differentiation associated gene-9, mda-9, is a human gamma interferon responsive gene. Gene 1998,207:105-110.
    81. Grootjans JJ, Zimmermann P, Reekmans G, Smets A, Degeest G, Durr J, et al. Syntenin, a PDZ protein that binds syndecan cytoplasmic domains. Proc Natl Acad Sci U S A 1997,94:13683-13688.
    82. Beekman JM, Coffer PJ. The ins and outs of syntenin, a multifunctional intracellular adaptor protein. J Cell Sci 2008,121:1349-1355.
    83. Zimmermann P, Tomatis D, Rosas M, Grootjans J, Leenaerts I, Degeest G, et al. Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol Biol Cell 2001,12:339-350.
    84. Grembecka J, Cierpicki T, Devedjiev Y, Derewenda U, Kang BS, Bushweller JH, et al. The binding of the PDZ tandem of syntenin to target proteins. Biochemistry 2006,45:3674-3683.
    85. Meerschaert K, Bruyneel E, De Wever O, Vanloo B, Boucherie C, Bracke M, et al. The tandem PDZ domains of syntenin promote cell invasion. Exp Cell Res 2007,313:1790-1804.
    86. Geijsen N, Uings IJ, Pals C, Armstrong J, McKinnon M, Raaijmakers JA, et al. Cytokine-specific transcriptional regulation through an IL-5Ralpha interacting protein. Science 2001,293:1136-1138.
    87. Cierpicki T, Bushweller JH, Derewenda ZS. Probing the supramodular architecture of a multidomain protein:the structure of syntenin in solution. Structure 2005,13:319-327.
    88. El-Amraoui A, Petit C. Usher I syndrome:unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells. J Cell Sci 2005,118:4593-4603.
    89. Reiners J, Nagel-Wolfrum K, Jurgens K, Marker T, Wolfrum U. Molecular basis of human Usher syndrome:deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 2006,83:97-119.
    90. Pan L, Yan J, Wu L, Zhang M. Assembling stable hair cell tip link complex via multidentate interactions between harmonin and cadherin 23. Proc Natl Acad Sci U S A 2009,106:5575-5580.
    91. Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T. A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Racl and aPKC signalling and cell polarity. Nat Cell Biol 2000,2:540-547.
    92. Gao L, Macara IG. Isoforms of the polarity protein par6 have distinct functions. J Biol Chem 2004,279:41557-41562.
    93. Mburu P, Mustapha M, Varela A, Weil D, El-Amraoui A, Holme RH, et al. Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 2003,34:421-428.
    94. Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM, et al. Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 2005,7:148-156.
    95. Gosens I, van Wijk E, Kersten FF, Krieger E, van der Zwaag B, Marker T, et al. MPP1 links the Usher protein network and the Crumbs protein complex in the retina. Hum Mol Genet 2007,16:1993-2003.
    96. Lazar CS, Cresson CM, Lauffenburger DA, Gill GN. The Na+/H+exchanger regulatory factor stabilizes epidermal growth factor receptors at the cell surface. Mol Biol Cell 2004,15:5470-5480.
    97. Hryciw DH, Ekberg J, Ferguson C, Lee A, Wang D, Parton RG, et al. Regulation of albumin endocytosis by PSD95/Dlg/ZO-l (PDZ) scaffolds. Interaction of Na+-H+ exchange regulatory factor-2 with C1C-5. J Biol Chem 2006,281:16068-16077.
    98. Ma S, Song E, Gao S, Tian R, Gao Y. Rapid characterization of the binding property of HtrA2/Omi PDZ domain by validation screening of PDZ ligand library. Sci China C Life Sci 2007,50:412-422.
    99. Cheng H, Li J, Fazlieva R, Dai Z, Bu Z, Roder H. Autoinhibitory interactions between the PDZ2 and C-terminal domains in the scaffolding protein NHERF1. Structure 2009,17:660-669.
    100. 郭佳岩,宋婀莉,黄海明,马素参,高友鹤.利用随机多肽文库研究ZO-1中PDZ3结构域的配体结合特点.中国生物化学与分子生物学报2004,20:341-346.
    101. 田瑞,李英娜,宋婀莉,高诗娟,黄海明,张玲,et al.通过筛选随机多肽文库研究ZO-1中PDZ1结构域的配体结合特点.中国生物化学与分子生物学报2006,22:484-490.
    102. Harris BZ, Hillier BJ, Lim WA. Energetic determinants of internal motif recognition by PDZ domains. Biochemistry 2001,40:5921-5930.
    103. Charest A, Lane K, McMahon K, Housman DE. Association of a novel PDZ domain-containing peripheral Golgi protein with the Q-SNARE (Q-soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor) protein syntaxin 6. J Biol Chem 2001,276:29456-29465.
    104. Zhang L, Gao X, Wen J, Ning Y, Chen YG. Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 2006,281:8607-8612.
    105. Pan W, Choi SC, Wang H, Qin Y, Volpicelli-Daley L, Swan L, et al. Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 2008,321:1350-1353.
    106. Qin Y, Li L, Pan W, Wu D. Regulation of phosphatidylinositol kinases and metabolism by Wnt3a and Dvl. J Biol Chem 2009,284:22544-22548.
    107. Hryciw DH, Jenkin KA, Simcocks AC, Grinfeld E, McAinch AJ, Poronnik P. The interaction between megalin and C1C-5 is scaffolded by the Na(+)-H(+) exchanger regulatory factor 2 (NHERF2) in proximal tubule cells. Int J Biochem Cell Biol 2012,44:815-823.
    108. Chen Y, Sheng R, Kallberg M, Silkov A, Tun MP, Bhardwaj N, et al. Genome-wide Functional Annotation of Dual-Specificity Protein-and Lipid-Binding Modules that Regulate Protein Interactions. Mol Cell 2012.
    109. Vaynberg J, Qin J. Weak protein-protein interactions as probed by NMR spectroscopy. Trends Biotechnol 2006,24:22-27.
    110. Phizicky EM, Fields S. Protein-protein interactions:methods for detection and analysis. Microbiol Rev 1995,59:94-123.
    111. WHO. TDR Strategic Direction for Research:Schistosomiasis. Ed., World Health Organization, Geneve.2002.
    112. Hao Y, Zheng H, Zhu R, Guo JG, Wang LY, Chen C, et al. [Schistosomasis situation in the People's Republic Of China in 2009]. Chin J Schisto Control 2010,22:521-527.
    113. Gonnert R, Andrews P. Praziquantel, a new board-spectrum antischistosomal agent. Z Parasitenkd 1977,52:129-150.
    114. Stelma FF, Talla I, Sow S, Kongs A, Niang M, Polman K, et al. Efficacy and side effects of praziquantel in an epidemic focus of Schistosoma mansoni. Am J Trop Med Hyg 1995,53:167-170.
    115. Ismail M, Botros S, Metwally A, William S, Farghally A, Tao LF, et al. Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. Am J Trop Med Hyg 1999,60:932-935.
    116. Hu W, Yan Q, Shen DK, Liu F, Zhu ZD, Song HD, et al. Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 2003,35:139-147.
    117. Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. The genome of the blood fluke Schistosoma mansoni. Nature 2009,460:352-358.
    118. Zhou Y, Zheng HJ, Chen YY, Zhang L, Wang K, Gou J, et al. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 2009,460:345-351.
    119. Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, et al. Whole-genome sequence of Schistosoma haematobium. Nat Genet 2012.
    120. Thorsen TS, Madsen KL, Rebola N, Rathje M, Anggono V, Bach A, et al. Identification of a small-molecule inhibitor of the PICK1 PDZ domain that inhibits hippocampal LTP and LTD. Proc Nat lAcad Sci USA 2010,107:413-418.
    121. Gimferrer I, Ibanez A, Farnos M, Sarrias MR, Fenutria R, Rosello S, et al. The lymphocyte receptor CD6 interacts with syntenin-1, a scaffolding protein containing PDZ domains. J Immunol 2005,175:1406-1414.
    122. Tochio H, Mok YK, Zhang Q, Kan HM, Bredt DS, Zhang M. Formation of nNOS/PSD-95 PDZ dimer requires a preformed beta-finger structure from the nNOS PDZ domain. J Mol Biol 2000,303:359-370.
    123. Zhou L, Li F, Xu HB, Luo CX, Wu HY, Zhu MM, et al. Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nat Med 2010,16:1439-1443.
    124. Salama O, Herrmann S, Tziknovsky A, Piura B, Meirovich M, Trakht I, et al. Chemiluminescent optical fiber immunosensor for detection of autoantibodies to ovarian and breast cancer-associated antigens. Biosens Bioelectron 2007,22:1508-1516.
    125. De Vries L, Lou X, Zhao G, Zheng B, Farquhar MG. GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP. Proc Natl Acad Sci U S A 1998,95:12340-12345.
    126. Tani TT, Mercurio AM. PDZ interaction sites in integrin alpha subunits. T14853, TIP/GIPC binds to a type I recognition sequence in alpha 6A/alpha 5 and a novel sequence in alpha 6B. J Biol Chem 2001,276:36535-36542.
    127. Awan A, Lucic MR, Shaw DM, Sheppard F, Westwater C, Lyons SA, et al.5T4 interacts with TIP-2/GIPC, a PDZ protein, with implications for metastasis. Biochem Biophys Res Commun 2002,290:1030-1036.
    128. Rousset R, Fabre S, Desbois C, Bantignies F, Jalinot P. The C-terminus of the HTLV-1 Tax oncoprotein mediates interaction with the PDZ domain of cellular proteins. Oncogene 1998,16:643-654.
    129. Bunn RC, Jensen MA, Reed BC. Protein interactions with the glucose transporter binding protein GLUT1CBP that provide a link between GLUT1 and the cytoskeleton. Mol Biol Cell 1999,10:819-832.
    130. Wang LH, Kalb RG, Strittmatter SM. A PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF. J Biol Chem 1999,274:14137-14146.
    131. Lee JD, Hempel N, Lee NY, Blobe GC. The type Ⅲ TGF-beta receptor suppresses breast cancer progression through GIPC-mediated inhibition of TGF-beta signaling. Carcinogenesis 2010,31:175-183.
    132. Blobe GC, Liu X, Fang SJ, How T, Lodish HF. A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC. J Biol Chem 2001,276:39608-39617.
    133. Lou X, Yano H, Lee F, Chao MV, Farquhar MG. GIPC and GAIP form a complex with TrkA:a putative link between G protein and receptor tyrosine kinase pathways. Mol Biol Cell 2001,12:615-627.
    134. Kato H, Ohno K, Hashimoto K, Sato K. Synectin in the nervous system:expression pattern and potential as a binding partner of neurotrophin receptors. FEBS Lett 2004,572:123-128.
    135. Liu TF, Kandala G, Setaluri V. PDZ domain protein GIPC interacts with the cytoplasmic tail of melanosomal membrane protein gp75 (tyrosinase-related protein-1). J Biol Chem 2001,276:35768-35777.
    136. Ligensa T, Krauss S, Demuth D, Schumacher R, Camonis J, Jaques G, et al. A PDZ domain protein interacts with the C-terminal tail of the insulin-like growth factor-1 receptor but not with the insulin receptor. J Biol Chem 2001,276:33419-33427.
    137. Paek AR, You HJ. GAIP-interacting protein, C-terminus is involved in the induction of zinc-finger protein 143 in response to insulin-like growth factor-1 in colon cancer cells. Mol Cells 2011,32:415-419.
    138. Wu J, O'Donnell M, Gitler AD, Klein PS. Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development. Development 2006,133:3651-3660.
    139. Booth RA, Cummings C, Tiberi M, Liu XJ. GIPC participates in G protein signaling downstream of insulin-like growth factor 1 receptor. J Biol Chem 2002,277:6719-6725.
    140. Tan C, Deardorff MA, Saint-Jeannet JP, Yang J, Arzoumanian A, Klein PS. Kermit, a frizzled interacting protein, regulates frizzled 3 signaling in neural crest development. Development 2001,128:3665-3674.
    141. Jeanneteau F, Diaz J, Sokoloff P, Griffon N. Interactions of GIPC with dopamine D2, D3 but not D4 receptors define a novel mode of regulation of G protein-coupled receptors. Mol Biol Cell 2004,15:696-705.
    142. Jeanneteau F, Guillin O, Diaz J, Griffon N, Sokoloff P. GIPC recruits GAIP (RGS19) to attenuate dopamine D2 receptor signaling. Mol Biol Cell 2004,15:4926-4937.
    143. Hirakawa T, Galet C, Kishi M, Ascoli M. GIPC binds to the human lutropin receptor (hLHR) through an unusual PDZ domain binding motif, and it regulates the sorting of the internalized human choriogonadotropin and the density of cell surface hLHR. J Biol Chem 2003,278:49348-49357.
    144. Hu LA, Chen W, Martin NP, Whalen EJ, Premont RT, Lefkowitz RJ. GIPC interacts with the betal-adrenergic receptor and regulates betal-adrenergic receptor-mediated ERK activation. J Biol Chem 2003,278:26295-26301.
    145. Gao Y, Li M, Chen W, Simons M. Synectin, syndecan-4 cytoplasmic domain binding PDZ protein, inhibits cell migration. J Cell Physiol 2000,184:373-379.
    146. Tkachenko E, Rhodes JM, Simons M. Syndecans:new kids on the signaling block. Circ Res 2005,96:488-500.
    147. Favre-Bonvin A, Reynaud C, Kretz-Remy C, Jalinot P. Human papillomavirus type 18 E6 protein binds the cellular PDZ protein TIP-2/GIPC, which is involved in transforming growth factor beta signaling and triggers its degradation by the proteasome. J Virol 2005,79:4229-4237.
    148. Cai H, Reed RR. Cloning and characterization of neuropilin-1-interacting protein:a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. J Nenrosci 1999,19:6519-6527.
    149. Wang L, Dutta SK, Kojima T, Xu X, Khosravi-Far R, Ekker SC, el al. Neuropilin-1 modulates p53/caspases axis to promote endothelial cell survival. PLoS One 2007,2:e1161.
    150. Lee NY, Ray B, How T, Blobe GC. Endoglin promotes transforming growth factor beta-mediated Smad 1/5/8 signaling and inhibits endothelial cell migration through its association with GIPC. J Biol Chem 2008,283:32527-32533.
    151. Naccache SN, Hasson T, Horowitz A. Binding of internalized receptors to the PDZ domain of GIPC/synectin recruits myosin VI to endocytic vesicles. Proc Nail Acad Sci U S A 2006,103:12735-12740.
    152. Yano H, Ninan I, Zhang H, Milner TA, Arancio O, Chao MV. BDNF-mediated neurotransmission relies upon a myosin VI motor complex. Nat Neurosci 2006,9:1009-1018.
    153. Djiane A, Mlodzik M. The Drosophila GIPC homologue can modulate myosin based processes and planar cell polarity but is not essential for development. PLoS One 2010,5:e11228.
    154. Aschenbrenner L, Lee T, Hasson T. Myo6 facilitates the translocation of endocytic vesicles from cell peripheries. Mol Biol Cell 2003,14:2728-2743.
    155. Hasson T. Myosin VI:two distinct roles in endocytosis. J Cell Sci 2003,116:3453-3461.
    156. Dance AL, Miller M, Seragaki S, Aryal P, White B, Aschenbrenner L, el al. Regulation of myosin-VI targeting to endocytic compartments. Traffic 2004,5:798-813.
    157. Yi Z, Petralia RS, Fu Z, Swanwick CC, Wang YX, Prybylowski K, et al. The role of the PDZ protein GIPC in regulating NMDA receptor trafficking. J Neurosci 2007,27:11663-11675.
    158. Kedlaya R, Kandala G, Liu TF, Maddodi N, Devi S, Setaluri V. Interactions between GIPC-APPL and GIPC-TRP1 regulate melanosomal protein trafficking and melanogenesis in human melanocytes. Arch Biochem Biophys 2011,508:227-233.
    159. Varsano T, Dong MQ, Niesman I, Gacula H, Lou X, Ma T, et al. GIPC is recruited by APPL to peripheral TrkA endosomes and regulates TrkA trafficking and signaling. Mol Cell Biol 2006,26:8942-8952.
    160. Bohlson SS, Zhang M, Ortiz CE, Tenner AJ. CD93 interacts with the PDZ domain-containing adaptor protein GIPC:implications in the modulation of phagocytosis. J Leukoc Biol 2005,77:80-89.
    161. Charizopoulou N, Lelli A, Schraders M, Ray K, Hildebrand MS, Ramesh A, et al. Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human. Nat Commun 2011,2:201.
    162. Ma SC, Huang HM, Gao YH. [Utilizing tabacco genomic DNA to construct nearly random peptide libraries]. Sheng Wu Gong Cheng Xue Bao 2005,21:332-335.
    163. Huang H, Gao Y. A method for generation of arbitrary peptide libraries using genomic DNA. Mol Biotechnol 2005,30:135-142.
    164. Huang HM, Zhang L, Cui QH, Jiang TZ, Ma SC, Gao YH. Finding potential ligands for PDZ domains by tailfit, a JAVA program. Chin Med Sci J 2004,19:97-104.
    165. Katoh M. GIPC gene family (Review). IntJMol Med 2002,9:585-589.
    166. Xu B, Wratten N, Charych El, Buyske S, Firestein BL, Brzustowicz LM. Increased expression in dorsolateral prefrontal cortex of CAPON in schizophrenia and bipolar disorder. PLoS Med 2005,2:e263.
    167. Piao X, Cai P, Liu S, Hou N, Hao L, Yang F, et al. Global expression analysis revealed novel gender-specific gene expression features in the blood fluke parasite Schistosoma japonicum. PLoS One 2011,6:e18267.
    168. Jackson D, Hossain MJ, Hickman D, Perez DR, Lamb RA. A new influenza virus virulence determinant:the NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA 2008,105:4381-4386.
    169. Gallardo R, Ivarsson Y, Schymkowitz J, Rousseau F, Zimmermann P. Structural diversity of PDZ-lipid interactions. Chembiochem 2010,11:456-467.
    170. Lenfant N, Polanowska J, Bamps S, Omi S, Borg JP, Reboul J. A genome-wide study of PDZ-domain interactions in C. elegans reveals a high frequency of non-canonical binding. BMC Genomics 2010,11:671.
    171. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, et al. Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alphal-syntrophin mediated by PDZ domains. Cell 1996,84:757-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700