用户名: 密码: 验证码:
下地幔条件下Si和Mg在MgsiO_3钙钛矿单晶中扩散的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MgSiO_3钙钛矿是地球内部下地幔中最丰富,最重要的矿物。它的蠕变决定着下地幔的流变性质。实验测量元素在MgSiO_3钙钛矿中的扩散系数是理解这些性质最直观最可靠的物理量。由于下地幔的高温高压条件,所以到目前为止MgSiO_3钙钛矿中元素扩散系数研究还很少,尤其是对Si和Mg的扩散研究还存有很大争议。本文利用安装在日本冈山大学地球物质科学研究所的川井型(Kawai-type)多砧高压实验装置,在25GPa和1400-1800oC的条件下,首次同时测得了Si和Mg在MgSiO_3钙钛矿单晶中的晶格扩散系数(体积扩散系数)。结果显示Si和Mg在MgSiO_3钙钛矿中具有相似的扩散系数并且是各向同性的,从而证实了Mg也是MgSiO_3钙钛矿中扩散速率最慢的元素。与大多数其他硅酸盐矿物中Si是扩散速率最慢的元素的情况不同,这一结果表明下地幔的流变性质不仅仅由Si扩散速率控制,而很可能是由Si和Mg的扩散速率共同控制。并结合前人在其他钙钛矿类材料中的扩散研究,给出了Si和Mg在MgSiO_3钙钛矿中的扩散模型。另外,我们在下地幔条件下首次合成了一种烧绿石结构新相MgZrSi_2O_7 ,烧绿石型结构的矿物有很多重要的应用,在材料领域有很广泛的研究,该相可能在极端条件下具有稳定性而在材料领域有潜在应用。本文的主要工作有:
     1.MgSiO_3钙钛矿单晶的合成:由于高温高压的条件,合成大颗粒钙钛矿单晶是非常困难,实验失败率非常高。但是高质量单晶是研究单晶中扩散系数的基础。我们利用川井型多砧高压装置和本实验室Shatskiy等人的技术经过多次实验在25 GPa和1500 oC条件下合成一批MgSiO_3钙钛矿单晶,并经过了微区X射线衍射分析的确认。
     2. Si和Mg在MgSiO_3钙钛矿单晶定向和扩散实验利用旋进式X射线照相机选取高质量的MgSiO_3钙钛矿单晶并沿着a,c轴定向,接着经过切割、剖光得到光滑的、与a, c轴垂直的面,利用激光沉淀仪器在晶面进行富含29Si和25Mg同位素镀层。然后利用川井型多砧高压装置在25GPa和1400-1800oC的温度下进行Si和Mg的扩散实验,利用次级离子质谱仪(SIMS)测量扩散数据,并通过拟合扩散数据得到Mg和Si的扩散系数。结果显示Mg和Si在MgSiO_3钙钛矿中具有相同的扩散系数。这是首次在实验中得到该结果。对进一步认识下地幔蠕变机制和理论模拟研究下地幔流变性质打下了很好的实验基础。
     3.下地幔条件下MgZrSi_2O_7烧绿石新相的合成和标定在25 GPa和15000C的下地幔条件下合成了一个烧绿石新相MgZrSi_2O_7 ,并对该相进行了参数标定。粉晶X射线衍射仪和Rietveld方法的精修的结果显示合成的新相为烧绿石结构(空间群Fd-3m,立方晶系), a轴长为a = 9.2883(1) A,结构参数x = 0.4295(4)。EPMA分析的结果确认了新相的组成为MgZrSi_2O_7。与其他A3+2 B3+2O7型烧绿石材料不同的是A~3+位置上的阳离子被不同的离子(Mg~2+和Zr~4+)离子以1:1的比例占据。A、B半径比值高达2.22,说明新烧绿石相可能在极端条件下保持结构稳定性,在材料中有潜在的应用。4.Si和Mg在MgSiO_3钙钛矿单晶中的扩散模型
     由于Mg在MgSiO_3钙钛矿中扩散情况与其他矿物不同,并不是比Si快几个量级,而是扩散速率与Si相似。我们从钙钛矿的结构特点出发,首次给出了下地幔条件下Si和Mg在MgSiO_3钙钛矿中的扩散模型。在这个扩散模型中,不同原子在钙钛矿中的扩散是相互联系的,Mg的扩散需要Si和O相连的空位形成的低阻碍。由于要保持系统电荷平衡和缺陷结构的重复,在每个循环中Si和Mg都跃迁了一次,可以解释Si和Mg具有相似扩散系数的结果。而O至少需要跃迁两次,由于O空位是大量存在的,O还可能有其他的跃迁,因此O在钙钛矿中的扩散系数远远高于Si和Mg。该模型解释了下地幔条件下Si和Mg在MgSiO_3钙钛矿扩散相似的实验结果,说明这一模型在高温高压条件钙钛矿结构中同样适用。
MgSiO_3 perovskite is the most abundant and important minerals in the Earth’s lower mantle. Its creep determines the rheological properties of lower mantle. The experimental diffusion coefficients of elements in MgSiO_3 perovskite are the most directviewing and reliable parameters for understanding the rheological properties. However, because of the conditions of high pressure and high temperature in the lower mantle, until now there are few experimental studies of diffusion coefficients in MgSiO_3 perovskite. Especially, there is still in controversial of Si and Mg diffusion results. In our study, Si and Mg self-diffusion coefficients were measured simultaneously in the single crystals of MgSiO_3 perovskite under lower mantle conditions using a Kawai-type multi-anvil apparatus at the Institute for Study of the Earth’s Interior, Okayama University. The results showed that Mg has almost identical diffusivity of Si in perovskite. Mg together with Si is the slowest diffusing species in MgSiO_3 perovskite. It is different from the case in most silicates, which is Si. Mg and Si may together control the rheological properties in the lower mantle. Diffusion coefficients obtained in this study for both Si and Mg seemed to be isotropic. Furthermore, based on previous studies of perovskite type materials, we obtained the diffusion model of Si and Mg in MgSiO_3 perovskite. In addition, we synthesized a new pyrochlore type material MgZrSi_2O_7 under lower mantle conditions. The pyrochlore type materials have many important applications and are widely studied in materials science. The new pyrochlore MgZrSi_2O_7 can stabilize in very high pressure and temperature conditions and may have special applications in material science. The mainly contents of my docotoral work are listed as following:
     1. Synthesis experiments of MgSiO_3 perovskite single crystal: The single crystals of MgSiO_3 perovskite were synthesized at the conditions of 25GPa and 1500oC. It is very difficult to synthesis large grainsize crystals at high pressure and high temperature. However, in order to obtain high quality diffusion coefficients, single crystal were need. We synthesized some high quality single crystals following Shatskiy et al. (2007) and crystals were examined by Microfocused X-ray diffractometer.
     2. Diffusion experiments of Si and Mg in MgSiO_3 perovskite. Crystals were orientated by procession X-ray camera along a- and c- axes and polished using diamond paste and collidoal silica. The polished surfaces were coated with the 29Si- and 25Mg-enriched MgSiO_3 thin film using the pulsed laser deposition technique (PLD) at Ruhr University of Bochum, Germany. Si and Mg diffusion experiments were conducted at the conditions of 25 GPa and 1400-1800oC. Diffusion profiles were measured by SIMS in Hokkaido University. The results showed that Mg and Si almost have the same diffusivity in perovskite. This is the first time of observation in perovskite simultaneously. This is very important to understand the reological properties of lower mantle. It is helpful to understand perovskite structure properties and diffusion mechanism.
     3. Synthesis and crystal chemical characterization of pyrochlore type MgZrSi_2O_7 The pyrochlore type of MgZrSi_2O_7 was synthesized at 25 GPa and 1500 oC using a Kawai-type, multi-anvil apparatus. Powder X-ray diffraction and Rietveld analysis revealed that the phase assumed the pyrochlore structure (space group Fd-3m, cubic) with the lattice parameter a= 9.2883(1)? and the structural parameter x = 0.4295(4). Chemical analysis by the electron probe microanalysis (EPMA) confirmed the stoichiometry of MgZrSi_2O_7 . It was demonstrated that the eight-fold coordinated 16c site is randomly occupied by both Mg2+ and Zr4+ ions in a 1:1 ratio. The high ionic radius ratio RA/RB (where A and B denote Mg+Zr and Si, respectively) of 2.22 necessitates a relatively high pressure to stabilize the pyrochlore structure.
     4. The model of Si and Mg diffusion in MgSiO_3 perovskite. The situation of Mg diffusion in MgSiO_3 perovskite is different from other minerals (e.g olivine, wadsleyie and ringwoodite), in which Mg diffusion is several orders of magnitude faster than that of Si. Mg diffusion in perovskite has almost the same diffusivity as that of Si. We explained this result based on the comprehensive of the perovsktie structure. It is the first time of a new model to be used to explain the coupled motion of Si and Mg in perovskite, which is basically derived from the other perovskite-type oxides. In this model, the different atoms are related with each other and Mg diffusion through an unhindered path due to the presence of a Si and an O vacancy. The associated motion would account for similarity of diffusivity of Si and Mg, and the much faster diffusion rate of oxygen in perovskite. It is the first time to apply this model in perovskite structure under lower mantle conditions.
引文
Ammann, M. W., Brodholt, J. P. and Dobson, D. P. (2009), DFT study of migration enthalpies in MgSiO3 perovskite, Physics and Chemistry of Minerals, 36, 151-158.
    Ammann, M. W., Brodholt, J. P., Wookey, J., Dobson, D. P. (2010), First-principles constraints on diffusion in lower-mantle minerals and a weak D’’layer, Nature, 465, 462-465.
    Baur, W. H., Khan, A. A. (1971), Rutile-type compounds. VI. SiO2, GeO2 and a comparison with other rutile-type structures, Acta Crystallographica, B27, 2133-2139.
    Béjina, F., Jaoul, O. (1996), Silicon self-diffusion in quartz and diopside measured by nuclear micro-analysis methods, Physics of the Earth and Planetary Interior, 97, 145-162.
    Béjina, F., Jaoul, O. (1997), Silicon diffusion in silicate minerals, Earth and Planetary Science Letters, 153, 229-238.
    Béjina, F., Jaoul, O., Liebermann, R. C. (2003), Diffusion in minerals at high pressure: a review, Physics of the Earth and Planetary Interiors, 139, 3-20.
    Belonoshko, A. B. (1994), Molecular dynamics of MgSiO3 perovskite at high pressures: equation of state, structure, and melting transition, Geochimica et Cosmochimica Acta, 58, 4039-4047.
    Bertran-Alvarez, Y., Jaoul, O., Liebermann, R.C. (1992), Fe–Mg interdiffusion in single crystal olivine at very high pressure and controlled oxygen fugacity: technological advances and initial data at 7 GPa. Phys. Earth Planet. Inter. 70, 102–118.
    Bolfan-Casanova, N., Keppler, H., Rubie, D. C. (2000), Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle, Earth and Planetary Science Letters, 182, 209-221.
    Buening, D.K., Buseck, P.R. (1973), Fe–Mg lattice diffusion in olivine. J. Geophys. Res. 78 (29), 6852–6862.
    Chakraborty, S., Farver, J. R., Yund, R. A., Rubie, D. C. (1994), Mg Tracer Diffusion in Synthetic Forsterite and San Carlos Olivine as a function of P, T and fO2, Physics and Chemistry of Minerals, 21, 489-500.
    Chakraborty, S., R. Knoche, H. Schulze, D.C. Rubie, D. Dobson, N.L. Ross, R. J. Angel (1999), Enhancement of Cation Diffusion Rates Across the 410-Kilometer Discontinuity in Earth's Mantle, Science, 283, 362-365.
    Chartier, A., Catillon, G., Crocombette, J. P. (2009), Key role of the cation interstitial structure in the radiation resistance of pyrochlores, Physical Review letters, 102, 155503.
    Chiang, Y-. M., Birnie, D. P., Kingery, W. D. (1997), Physical Ceramics: Principles for Ceramic Science and Engineering, John wiley & Sons, Inc., New York.
    Coble, R. L. (1963), A model for boundary-diffusion controlled creep in polycrystalline materials, Journal of Applied physics, 34, 1679-1682.
    Costa, F., Chakraborty, S. (2008), The effect of water on Si and O diffusion rates in olivine and implications for transport properties and processes in the upper mantle, Physics of the Earth and Planetary Interiors, 166,11-29.
    Crank, J. (1975), The Mathematics of Diffusion, 2nd, Oxford University Press.
    De Souza, R.A. and Martin, M. (2004), Secondary ion mass spectrometry: A powerful tool for diffusion studies in solids, Archives of Metallurgy and Materials, 49, 431- 446.
    Dobson, D.P., Dohmen, R., Wiedenbeck, M. (2008), Self-diffusion of oxygen and silicon in MgSiO3 perovskite, Earth and Planetary Science Letters, 270, 125–129.
    Dohmen, R., Becker, H.-W. and Chakraborty, S. (2007), Fe-Mg diffusion in olivine I: experimental determination between 970 and 1470 K as a function of compostion, crystal orientation and oxygen fugacity, Physics and Chemistry of Minerals, 34, 389-407.
    Dohmen, R., Becker, H.-W., MeissNER, E., ETZEL, T. and Chakraborty, S. (2002a), Production of silicate thin films using pulsed laser deposition (PLD) and applications to studies in mineral kinetics, European Journal of Mineralogy, 14, 1155-1168.
    Dohmen R., Chakraborty, S. and Becker, H-W. (2002b), Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle, Geophysical Research Letters, 29,2030,doi:10.1029.
    Douy, A. (2002), Aqueous syntheses of Forsterite (Mg2Si2O4) and Enstatite (MgSiO3), Journal of Sol-Gel Science and Technology, 24, 221-228.
    Dziewonski, A. M., Anderson, D. L. (1981), Preliminary reference Earth model, Physics of the Earth and Planetary Interiors, 25, 297-356.
    Eberman, K. W., Wuensch, B. J., Jorgensen, J. D. (2002), Order-disorder transformations induced by composition and temperature change in (SczYb1-z)2Ti2O7 pyrochlores prospective fuel cell materials, Solid State Ionics, 148, 521-526.
    Ewing, R. C., Weber, W. J., Lian, J. (2004), Nuclear waste disposal-pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and“minor”actinides, Journal of Applied Physics, 2004, 95, 5949.
    Farber, D. L., Williams, Q., Ryerson, F. J. (2000), Divalent cation diffusion in Mg2SiO4 spinel (ringwoodite),βphase (wadsleyite), and olivine: Implications for the electrical conducitivity of the mantle, Journal of Geophysical Research, 105, 513-529.
    Ganguly, J., Bhattacharya, B., Chakraborty, S. (1988), Convolution effect in the determination of compostional profiles and diffusion coefficients by microprobe step scans, AmericanMineralogist, 73, 901-909.
    Ganguly, J. (2002), Diffusion kinetics in minerals principles and applications to tectono-metamorphic processed, EMU Notes in Mineralogy, Vol. 4, Chapter 10, 271-309.
    G?mann, K., Borchardta, G., Gunholdb, A., Maus-Friedrichsb, W., Baumannc, H. (2004), Ti diffusion in La-doped SrTiO3 single crystals, Physical Chemistry Chemical Physics, 6, 3639-3644.
    G?mann, K., Borchardta, G., Schulz, M., G?mann, A., Maus-Friedrichs, W., Lesage, B., Ka?tasov, O., Hoffmann-Eifert, S., Schneller, T. (2005), Sr diffusion in undoped and La-doped SrTiO3 single crystals under oxidizing conditions, Physical Chemistry Chemical Physics, 7, 2053-2060.
    Hemmati, M., Chizmeshya, A. (1995), Wolf, G. H., Poole, P. H., Shao, J., Angell, C. A.., Crystalline-amorphous transition in silicate perovskites, Physical Review B-Condensed Matter, Third Series, 51,14641-14848.
    Herring, C. (1950), Diffusional viscosity of a polycrystalline solid, Journal of Applied Physics, 21, 437-445.
    Herring, C. (1951), Surface tension as a motivation for sintering, In the physics of powder metallurgy, W. E. Kingston Ed. McGraw-Hill, New York.
    Hofmeister, A.M., Cynn, H., Burnley, P.C. and Meade, C. (1999), Vibrational spectra of dense, hydrous magnesium silicates at high pressure: Importance of the hydrogen bond angle. American Mineralogist, 84, 454–464.
    Holzapfel, C., D. C. Rubie, D. C., Frost D. J., Langenhorst, F. (2005), Fe-Mg Interdiffusion in (Mg, Fe)SiO3 Perovskite and Lower Mantle Reequilibration, Sciecne, 309,1707-1710.
    Holzapfel, C., Rubie, D. C., Mackwell, S., Frost, D. J. (2003), Effect of pressure on Fe-Mg interdiffusion in (FexMg1-x)O ferropericlase, Physics of Earth and Planetary Interiors, 139, 21-34.
    Holzapfel, C., Chakraborty, S., Rubie, D. C., Frost, D. J. (2009), Fe-Mg interdiffusion in wadsleyite: The role of pressure, temperature and composition and the magnitude of jump in diffusion rates at the 410 km discontinuity, Physics of the Earth and Planetary Interiors, 172, 28-33.
    Houlier, B., Cheraghmakani, M., Jaoul, O. (1990), Silicon diffusion in San Carlos olivine, Physics of the Earth and Planetary Interiors, 62, 329–340.
    Houlier, B., Jaoul, O., Abel, F., Liebermann, R. C. (1988), Oxygen and silicon diffusion in natural olivine at T=1300 oC, Phys. Earth Planet. Interior, 50, 240-250.
    Ito, E., Kastura, T. (1989), A temperature profile of the mantle transition zone, GeophysicalResearch Letters, 16, 425-428.
    Ito, E., Matsui, Y. (1978), Synthesis and crystal-chemical characterization of MgSiO3 perovskite, Earth and Planetary Science Letters, 38, 443-450.
    Ito, E., Weidner, D. J. (1986), Crystal growth of MgSiO3 perovskite, Geophysical Research Letters, 13, 464-466.
    Ito, E., Yamazaki, D., Yoshino, T., Fukui, H., Zhai, S., Shatskiy, A., Katsura, T., Tange, Y., Funakoshi, K. (2010), Pressure generation and investigation of the post-perovskite transformation in MgGeO3 by squeezing the Kawai-cell equipped with sintered diamond anvils, 293, 84-89.
    Jaoul, O., Bertran-Alvarez, Y., Liebermann, R. C., Price, G. D. (1995), Fe-Mg interdiffusion in olivine up to 9 GPa at T=600-900oC; experimental data and comparion with defect calculations, Physics of the Earth and Planetary Interiors, 89, 199-218.
    Jaoul, O., Poumellec, M., Froidevaux, C., Havette, A. (1981), Silicon diffusion in forsterite: a new constraint for understanding mantle deformation. In: F. D. Stacey and M. S. Paterson (Editors), Anelasticity in the Earth, Am. Geophys. Union, Geodyn. Ser., 4, 95-100.
    Jaoul, O., Raterron, P. (1994), High-temperature deformation of diopside crystal. 3. Influences of pO2 and SiO2 precipitation, J. Geophys. Res. B 99 (5), 9423-9439
    Jaoul, O., Béjina, F.,élie, F., Abel, F. (1995), Silicon self-diffusion in quartz, Phys. Rev. Lett. 74 (11), 2038–2041.
    Jeanloz, R., and Morris, S. (1986), Temperature distribution in the crust and mantle, Annual review of the earth and planetary sciences, 14, 377-415.
    Karato, S. (1998), Some remarks on the origin of seismic anisotropy in the D’’layer, Earth Planets Spaces, 50, 1019-1028.
    Karato, S. (2010), Rheology of the Earth’s mantle: A historical review, Gondwana Research, 18, 17-45.
    Karato, S., Li, P. (1992), Diffusion Creep in Perovskite: Implications for the Rheology of the Lower Mantle, Science, 255, 1238-1240.
    Karki, B. B., Stixrude, L., Clark, S. J., Warren, M. C., Ackland, G. J., Crain, J. (1997), Elastic properties of orthorhombic MgSiO3 perovskite at lower mantle pressures, American Mineralogist, 82, 635-638.
    Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., Ito, E. (2010), Adiabatic temperature profile in the mantle, Phys. Earth Planet. Inter., 183, 212-218.
    Kawai, N. (1966), A static high pressure apparatus with tapered multi-piston formed a sphere I. Proc. Jpn. Acad. 42, 385-388.
    Kawai, N., Endo, S. (1970), The generation of ultrahigh hydrostatic pressure by a split sphere apparatus, Rev. Sci. Instrum., 4, 425-428.
    Kawai, N., Togaya, M., Onodera, A. (1973), A new device for high pressure vessels, Proc. Jpn. Acad. 49, 623-626.
    Knop, O., Brisse, F., Castelliz L. (1965), Sutarno, Determination of the crystal structure of erbium titanate Er2Ti2O7, by X-ray and neutron diffraction, Canadian Journal of Chemistry, 43, 2812.
    Kossel, W. (1927), Nachrichten der Gesellschaft der Wissenschaften G?ttingen, Mathematisch-Physikalische Klasse, Band 135.
    Kramer, S. A., Tuller, H. L. (1995), A novel titanate-based oxygen ion conductor: Gd2Ti2O7, Solid State Ionics, 82, 15-23.
    Kubo, A., Akaogi, M. (2000), Post-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite, Phys. Earth. Planet. Interiors, 121, 85-102.
    Kubo, T., Shimojuku, A., Ohtani, E. (2004), Mg-Fe interdiffusion rates in wadsleyite and the diffusivity jump at the 410-km discontinuity, Physics and Chemistry of Minerals, 31, 456-464.
    Lang, M., Zhang, F., Zhang, J., Wang, J. (2010), Review of A2B2O7 pyrochlore response to irradiation and pressure, Nuclear Instruments and Methods in Physics Research B, 268, 2951-2959.
    Li, P., Karato, S., Wang, Z. (1996), High-temperature creep in fine-grained polycrystalline CaTiO3, an analogue material of (Mg,Fe)SiO3 perovskite, Physics of Earth and Planetary Interior, 95, 19-36.
    Lian, J., Helean, K. B., Kennedy, B., J., Wang, L. M., Navrotsky, A., and Ewing, R. C. (2006), Effect of Structure and Thermodynamics Stability on the Response of Lanthanide Stannate Pyrochlores to Ion Beam Irradiation, The Journal of Physical Chemistry B, 110(5), 2343-2350.
    Li, P., Karato, S., Wang, Z. (1996), High-temperature creep in fine-grained polycrystalline CaTiO3, an analogue material of (Mg,Fe)SiO3 perovskite, Physics of the Earth and Planetary Interiors, 95, 19-36.
    Lian,J., Wang, L., Chen, J., Sun, K., Ewing, R. C., Matt Framer, J., Boatner, L. A. (2003), The order-disorder transition in iron-irradiated pyrochlore, Acta Materialia, 51, 1493.
    Litasov, K., Ohtani, E., Langenhorst, F., Yurimoto, H., Kubo,T., Kondo, T. (2003), Water solubility in Mg-perovskites and water storage capacity in the lower mantle, Earth and Planetary Science Letters, 211, 189-203.
    Liu, L-.G. (1975), Post-oxide phase of forsterite and enstatite, Geophysical Research Letters, 2, 417-419.
    Mandal, B. P., Deshpande, S. K., Tyagi, A. K. (2008), Ionic conductivity enhancement in Gd2Zr2O7 pyrochlore by Nd doping, Journal of meterials research, 23, 4, 911-916.
    Markov, I. V., Crystal growth for beginners: Fundamentals of nucleation, crystal growth and epitaxy, 2nd Edition, World Scientific, Singapore, 2004.
    Martin, M. (2007), Oxygen and cation diffusion processes in oxygen ion conductors, Diffusion Fundamentals, 6, 1-16.
    McCammon, C. (1997), Perovskite as a possible sink for ferric iron in the lower mantle, nature, 397, 694-696.
    Miyoshi, S., Martin, M. (2009), B-Site cation diffusivity of Mn and Cr in perovskite-type LaMnO3 with cation-deficit stoichiometry, Physical Chemistry Chemical Physics, 11, 3063-3070.
    Michel, D., Perez y Jorba, M., Collongues, R. (1974), Etude de la transformation ordre-desordre de la structure fluorite a la structure pyrochlore pour des phase (1-x)ZrO2--- x Ln2O3, Materials Research Bulletin, 9(11), 1457-1468.
    Minervini, L., R. W. Grimes, R. W. (2000), Disorder in Pyrochlore Oxides, Journal of the American Ceramic Society, 83(8), 1873-78.
    Misener, D.J. (1974), Cationic diffusion in olivine to 1400 ?C and 35 kbar. In: Hofmann, A.W., Giletti, B.J., Yoder Jr., H.S., Yund, R.A. (Eds.), Geochemical Transport and Kinetics. Carnegie Institution of Washington, pp. 117–129.
    Moon, P. K., Tuller, H.L., Solid State Ionics, in: G. Nazri, R.A. Huggins, D.F. Shrivel (Eds.), MRS 135 Materials Research Society, Pittsburgh (1989a) 149
    Morioka, M. (1981), Cation diffusion in olivine-II, Ni-Mg, Mn-Mg, Mg and Ca, Geochim. Cosmoschim. Acta, 45, 1573-1580.
    Nabarro, F. R. N. (1948), Deformation of crystals by the motion of single ions, Report of a Conference on Strength of Solids (Bristol), The Physical Soc., 75-90.
    Nabarro, F. R. N. (1967), Steady state diffusional creep, Philos, Mag., 16, 231-237. Nakamura, A., Schmalzried, H. (1984), On the Fe2+-Mg2+ interdiffusion in olivine (II), Phys. Chem., 88, 140-145.
    Navrotsky, A. (1998), Energetics and crystal chemical systematic among ilmenite, lithium niobate, and perovskite structures, Chem. Mater., 10, 2787-2793.
    Paterson, M. S. (1982), The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials, Bull. Mineral. 105, 20-29.
    Poirier, J. P. (1985), Creep of crystals: High-temperature deformation processes in metals, ceramics and minerals, Cambridge University Press, New York.
    Presnall, D. C. (1995), Phase diagrams of Earth-forming minerals, Mineral Physics and Crystallography: A Handbook of Physical Constants, AGU Reference Shelf 2, 248-268.
    Ranalli, G. and Fischer, B. (1984), Diffsion creep, dislocation creep, and mantle rheology, Physics of the Earth and Planetary Interior, 34,77-84.
    Reid, A. F., Li, C., Ringwood, A. E. (1977), High-Pressure Silicate Pyrochlores, Sc2Si2O7 and In2Si2O7, Journal of Solid State Chemistry, 20, 219-226.
    Ringwood, A. E. (1975), Composition and petrology of the Earth’s mantle, McGraw-Hill, New York.
    Rodriguez-Carvajal, J. (1993), Recent advance in magnetic-structure determination by neutron powder diffraction, Physica B, 192, 55.
    Ross, N. L., Hazen, R. M. (1989), Single crystal X-ray diffraction Study of MgSiO3 perovskite from 77 to 400 K, Phys Chem Minerals, 16, 415-420.
    Schelling, P. K. (2010), Thermal conductivity of A-site doped pyrochlore oxides studied by molecular-dynamics simulation, Computational Materials Science, 48, 336-342.
    Shieh, S. R., Duffy, T. S., Liu, Z, Ohtani, E. (2009), High-pressure infrared spectroscopy of the dense hydrous magnesium silicates phase D and phase E, Physics of the Earth and Planetary Interiors, 175, 106-114
    Schmalzried, H. (1981), Solid State Reactions. Monographs in Modern Chemistry, No. 12, Verlag Chemie, Weinheim.
    Schubert, G., Turcotte, D. L., Olson, P. (2001), Mantle convection in the Earth and Planets, Cambrige University Press, New York.
    Shannon, R. D. (1976), Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallographica, A32, 751-767.
    Shannon, R. D., Sleight, A. W. (1968), Synthesis of New High-Pressure Pyrochlore Phases, Inorganic Chemistry, 7, 1649.
    Shatskiy, A., Yamazaki, D., Borzdov, Y. M., Matsuzaki, T., Litasov, K. D., Cooray, T., Ferot, A., Ito, E., Katsura, T. (2010), Stishovite single-crystal growth and application to silicon self-diffusion measurements, American Mineralogist, 95, 135-143.
    Shatskiy, A., Fukui, H., Matsuzaki, T., Shinoda, K., Yoneda, A., Yamazaki, D., Ito, E., Katsura, T. (2007), Growth of large (1mm) MgSiO3 perovskite single crystals: A thermal gradient method at ultrahigh pressure, American Mineralogist, 92, 1733-1749.
    Shimakawa, Y., Kubo, Y., Manako, T. (1996), Giant magetoresistance in Ti2Mn2O7 with thepyrochlore structure, Nature, 379, 53.
    Shimojuku, A., Kubo, T., Ohtani, E., Nakamura, T., Okazaki, R. (2009), Si and O diffusion in (Mg,Fe)2SiO4 wadsleyite and ringwoodeite and its implications for the rheology of the mantle transition zone, Earth and Planetary Science Letters, 284, 103-112.
    Spears, M. A., Kramer, S., Tuller, H. L., Moon, P.K. (1991), Ionic and Mixed Conducting Ceramics, in: T. A. Ramanarayanan, H. L. Tuller (Eds), 91(12) Electrochem. Soc., Pennington NJ, 32.
    Stranski, I. N. (1927), Ann. Univ. Sofia, 24, 297.
    Stranski, I. N. (1928), Z. Phys. Chem., 36, 259.
    Stixrude, L., Hemly, R.J., Fei, Y., Mao, H.K. (1992), Thermoelasticity of silicate perovskite and magnesiowustite and stratification of the earth’s mantle. Science, 257, 1099–1101.
    Subramanian, M. A., Aravamudan, G., Subba Rao, G. V. (1983), Oxide pyrochlores- a review, Progress In Solid State Chemistry, 15(2), 55-143.
    Van Dink, M. P., De Vries, J. J., Burggraaf, A. J. (1983), Oxygen Ion and Mixed Conductivity in Compounds with the Fluorite and Pyrochlore Structure, Solid State Ionics, 10, 913-920.
    Van Orman, J. A. (2004), On the viscosity and creep mechanism of Earth’s inner core, Geophysical Research Letters, 31, L20606.
    Van Orman, J. A., Fei, Y., Hauri, E. H., Wang, J. (2003), Diffusion in MgO at high pressures: constraints on deformation mechanisms and chemical transport at the core-mantle boundary, Geophysical Research Letters, 30, 1056.
    Wang, S. X., Begg, B. D., Wang, L. M., Ewing, R. C. (1999), Radiation stability of gadolinium zirconate: A waste form for plutonium disposition, Journal of Materials Research, 14(12), 4470-4473.
    Wentzcovitch, R. M., Karki, B. B., Karato, S., Da Silva, C. R. S. (1998), High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications, Earth and Planetary Science Letters, 164, 371-378.
    Wilde, P. J., Catlow, C. R. A. (1998), Defects and diffusion in pyrochlore structured oxides, Solid State Ionics, 112, 173-183.
    Wright, K., Price., G. D. (1993), Computer simulation of defects and diffusion in perovskites, Journal of Geophysical Research, 98, 22245-22253.
    Wuensch,B. J.,Eberman, K.W. (2000),Order-disorder phenomena in A2B2O7 pyrochlore oxides, JOM Journal of the Minerals, Metals and Materials Society, 52, 19.
    Xiao, H. Y., Zhang, F. X., Gao, F., Lang, M., Ewing, R. C., Weber, W. J. (2010), Zirconate pyrochlores under high pressure, Physical Chemistry Chemical Physics, DOI: 10.1039.
    Yagi, T. (2001), KAWAI-type apparatus, Rev. High Pressure Sci. Tech., 11,171, in Japanese.
    Yamazaki, D., Irifune, T. (2003), Fe-Mg interdiffusion in magnesiowustite up to 35 GPa, Earth and Planetary Science Letters, 216, 301-311.
    Yamazaki, D., Kato, T., Ohtani, E., Toriumi, M. (1996), Grain growth rates of MgSiO3 perovskite and periclase under lower mantle conditions, Science, 274, 2052-2054.
    Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E., Toriumi, M. (2000), Silicon self-diffusion in MgSiO3 perovskite at 25 GPa, Physics of Earth and Planetary Interior, 119, 299–309.
    Yamashita, S. (1999), Experimental study of the effect of temperature on water solubility in natural rhyolite melt to 100 MPa, Journal of petrology, 40, 1497-1507.
    Yoo, H. I., Lee, C.-E., De Souza, R., Martin, M. (2008), Equal mobility of constitutent cations in BaTiO3, Applied Physics Letters, 92, 252103.
    Zhang, F. X., Lang, M., Liu, Z., Ewing, R. C. (2010), Pressure-induced disordering and anomalous lattice expansion in La2Zr2O7 pyrochlore, Physical Review Letters, 105, 015503.
    Zhao, Y., Anderson, D. L. (1994), Mineral physics constraints on the chemical composition of the Earth’s lower mantle, Physics of the Earth and Planetary Interior, 85, 273-292.
    白武明,谢鸿森,侯渭,2005.地球的层圈结构、力学性质和地幔矿物物理的高压相变,物理,34(2),115-122。
    陈颙,黄庭芳,刘恩儒,2009.岩石物理学,合肥:中国科学技术大学出版社。
    傅容珊,冷伟,常筱华,2005.地幔对流与深部物质运移研究的新进展,地球物理学进展,20(1),170-179。
    谢鸿森,1997.地球深度物质科学导论[M]:第1版,北京:科学出版社。
    闵乃本,1982.晶体生长的物理基础,上海:上海科学技术出版社。
    臧绍先,1989.俯冲带的穿透与地幔对流,地球物理学进展,4(1), 1-7。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700