用户名: 密码: 验证码:
Mg-Gd-Nd-Zr系高强耐热镁合金组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁-稀土合金是一类新型的高强耐热镁合金,在航空、航天、国防和汽车工业中具有重要应用前景。本文通过向镁中添加轻、重两种稀土元素,设计了名义成分为Mg–xGd- 2Nd-Zr(x=6,8,11wt.%)的三种镁-稀土合金(以下分别简称GN62K、GN82K、GN112K)。以此为研究对象考察了合金在经历热处理和形变热处理后组织和力学性能,重点探讨了合金组织与力学性能的关系。文中综合运用了各种材料研究方法,包括光学金相分析、扫描和透射电子显微分析、X射线衍射分析、热分析和硬度、拉伸、蠕变力学试验,系统地开展了包括合金中第二相表征、组织演变规律、合金高强度的来源、提高强度和耐热性能的工艺方法、影响力学行为(屈服、变形、断裂、高温蠕变)的组织因素等方面的研究工作,旨在为新型高强耐热镁-稀土合金的开发设计提供必要的实验依据。
     合金的组织分析主要针对铸造态组织、固溶态组织和时效析出组织。铸造合金中的组织由初生α-Mg固溶体、骨胳状共晶相、小方块相、Zr团簇和晶界棒状相组成,其中共晶相可视为α-Mg+β-Mg5(Gd,Nd),共晶β相被鉴定为Mg5Gd型FCC结构,晶格常数a~2.22nm。固溶处理时,铸造组织的演变包括三个过程:共晶相溶解、方块相生长和晶粒粗化,其中,方块相具有FCC结构,晶格参数a~0.55nm,是GdH2型化合物。经适当的固溶处理,合金组织中几乎无共晶相残留同时保持合金均匀细晶结构。合金时效析出组织的分析以GN112K合金为例,时效析出过程中过饱和固溶体分解过程分为四个阶段:α-Mg过饱和固溶体→β″(D0_(19),a~0.64nm,c~0.52nm, {2110}α惯习面薄板)→β′(CBCO,a~0.64nm,b~2.2nm,c~0.52nm,C轴长椭球)→β1(FCC,a~0.74nm,{ 0110}α惯习面板条,与Mg_3Nd同构)→β(FCC,a~2.22nm, {0110}α惯习面板条,与Mg5Gd同构),四种析出相中,β′相是主要的强化相,对合金强度贡献最为关键。时效析出过程中还伴随晶界结构的演变:β平衡相在晶界的析出和晶界两侧无析出带的形成,这对材料的力学性能十分不利。
     铸造合金的主要强化组织为共格析出相,通过一系列的试验确定,铸造合金的最佳热处理(固溶+时效)条件分别为: GN62K—500℃/6h+200℃/24h、GN82K—515℃/4h+225℃/12h、GN112K—525℃/4h+250℃/2h。对应的室温拉伸性能分别为:GN62K—TYS~182MPa,UTS~342MPa,E~7.9%;GN82K—TYS~200MPa,UTS~342MPa,E~5.0%;GN112K—TYS~224MPa,UTS~353MPa,E~3.7%。合金在上述热处理状态下还具有优越的高温力学性能,但在温度高于200℃时强度开始大幅下降,高于250℃下降速度进一步加剧。
     形变热处理可使合金获得多样的强化组织,适当的处理工艺还将进一步提高合金的力学性能。固溶态合金在时效前作室温预变形将在合金中产生大量的位错和孪晶,促进β1析出相形核,因而加速合金时效析出动力学。得益于位错亚结构和孪晶强化,预应变时效态合金的屈服强度远高于未变形时效态合金(增强超过50MPa),并且少量的预变形不会引起延伸率的明显损伤。合金经热挤压发生再结晶,晶粒细化到10μm或以下。典型热挤压时效态合金的室温拉伸力学性能为:GN62K(350℃挤压+200℃/24h时效)—TYS~273MPa,UTS~381MPa,E~17.6%;GN82K(350℃挤压+200℃/24h时效)—TYS~304MPa,UTS~397MPa,E~10.6%;GN112K(350℃挤压+200℃/24h时效)—TYS~328MPa,UTS~422MPa,E~4.3%。退火态GN62K板材,在450℃轧制可细化组织,加工强化合金,由于轧制后合金中形成基面板织构,轧板力学性能呈现各向异性。终轧GN62K板材时效态(70%压下量+225℃/2h时效)力学性能达到:TYS=330~356MPa,UTS=385~394MPa,E=5~10%。
     高温蠕变行为是合金的耐热性能的重要标志,本文主要观测了合金在250~300℃温度区间和50~100MPa应力区间的蠕变行为,探讨了合金蠕变机制、动态析出、强化相和蠕变断裂问题。稳态蠕变速率的温度和应力相关性研究表明,合金蠕变表观激活能为110~280kJ/mol,合金蠕变应力指数为~4。合金的蠕变机制是位错攀移+滑移机制。高温蠕变过程中的动态析出造成包括淬火态、欠时效态、峰值时效态和部分过时效态合金蠕变曲线中出现介于初始和稳态蠕变阶段的S形蠕变阶段。稳态蠕变阶段合金中的主要强化相是β平衡相,过时效态合金得益于初始组织中均匀分布的β相板条的强化其蠕变抗力较佳。三叉晶界处楔形微裂纹的形核和长大、三叉晶界和晶界面微孔的形核和长大、晶内微裂纹的形核和长大是合金常见的蠕变断裂机制,其中晶界断裂是最主要的断裂形式。垂直外应力方向的晶界上出现的无析出带的形成促进了合金蠕变时的晶间断裂。
Magnesium-rare earth alloys are considered to be a kind of novel high strength and heat resistant magnesium alloys with promising applications in industry. In this paper, Magnesium alloys added with a mixture of heavy and light rare earth elements were designed with nominal composition of Mg-xGd-2Nd-Zr(x=6, 8, 11, wt.%). The alloys were subjected to heat and thermo-mechanical treatment in order to strengthen them by various structures. The microstructures and their evolution, strengthening mechanism, processing for the performance improvement, microstructure dependence of performance were studied by using optical microscopy, scanning and transmission electron microscopy, X-ray diffraction, thermal analysis and mechanical test of hardness, tension and creep. The primary attempt was to gain knowledge on the relationship between structure and performance of the alloys and provide instructive information for the development of new high performance magnesium-rare earth alloys.
     The as-cast microstructure of the Mg-Gd-Nd-Zr alloys consists of primaryα-Mg solid solution, skeleton-like eutectic structures, small cuboid-shaped phases and Zr-rich clusters. Eutectic structures can be identified asα-Mg+β-Mg_5RE, and the eutectic phase was characterised to have Mg5Gd-type FCC crystal structure with a~2.22nm. Microstructural evolution of the alloys during homogenisation involves three coinstantaneous processes: dissolving of eutectic phases, growth of cuboid-shaped phases and coarsening ofα-Mg grains. Cuboid-shaped phase in the alloys has a FCC crystal structure with a~0.55nm and is a GdH2-type compound with partial replacement of Gd atoms by Nd and Mg atoms. The alloys could be substantially homogenised by the optimised homogenisation treatment leaving little eutectic phases and relatively fine grains.
     The decomposition of supersaturated solid solution of GN112K alloy during isothermal aging at 250℃consists of four stages of precipitation transformation as follows: supersaturatedα-Mg solid solution→β″(D0_(19), a~0.64nm, c~0.52nm, {2110}αplate)→β′(CBCO, a~0.64nm, b~2.2nm, c~0.52nm, ellipsoidal)→β1(FCC, a~0.74nm, {0110}αplate, isomorphous with Mg_3Nd)→β(FCC, a~2.22nm, {0110}αplate, isomorphous with Mg_5Gd)。The evolution of grain boundary structure during precipitation aging is characterized by the formation of GBPs and PFZs, and they grow with prolonged aging time. Among the four types of precipitate phases, theβ′phase acts as the key contributor to the high strength of the GN112K alloy. The existence of GBPs and PFZs deteriorates the mechanical properties and promotes the occurrence of intergranular fracture of the alloy.
     The cast alloys were primarily strengthened by the precipitates in the microstructure. The optimum heat treatment condition for the cast alloys are as follows: GN62K—500℃/6h + 200℃/24h, GN82K—515℃/4h + 225℃/12h, GN112K—525℃/4h + 250℃/2h, corresponding to tensile properties as follows: GN62K—TYS~182MPa, UTS~342MPa, E~7.9%; GN82K—TYS~200MPa, UTS~342MPa, E~5.0%; GN112K—TYS~224MPa, UTS~353MPa, E~3.7%. The strength lowers quickly as temperature goes above 200℃, which gets more drastic above 250℃, whilst the elongation goes up.
     Thermo-mechanical treatment was used to produce a variety of microstructures in the alloys, and proper treatment can further improve the mechanical properties. Cold stretching deformation between solution treatment and aging at 200℃creates high density of dislocations and twins. Pre-deformation accelerates the overaging process of the alloy due to heterogeneous precipitation ofβ1 phase at dislocations. The improvement of strength with pre-deformation is attributed to the increased dislocation density, the presence of twins and the heterogeneous precipitation ofβ1 phase in the pre-deformed specimens. Small pre-deformation can improve the yield strength of the alloys with slight damage of the ductility. The grains can be refined to below 10μm by hot extrusion. The typical tensile properties of hot extruded and aged alloys are as follows: GN62K(350℃extrusion+200℃/24h aging)—TYS~273MPa, UTS~381MPa, E~17.6%; GN82K(350℃extrusion +200℃/24h aging)—TYS~304MPa, UTS~397MPa, E~10.6%; GN112K(350℃extrusion +200℃/24h aging)—TYS~328MPa, UTS~422MPa, E~4.3%. Hot rolling can be used to refine the grains of homogenized GN62K plate and strengthening the alloy by work hardening at the same time. The hot rolled plates show isotropic tensile properties. The tensile properties of the rolled plate are as follows: TYS=330~356MPa, UTS=385~394MPa, E=5~10%.
     The creep behavior of the Mg-Gd-Nd-Zr alloys was studied in a temperature range of 250~300℃and a stress range of 50~100MPa. The activation energies for creep of the alloy were found to be 110~280KJ/mol at temperature range of 250~300℃. The stress exponents for creep were measured to be~4, indicating a dislocation creep mechanism. A sigmoidal creep stage appears between primary and steady-state creep stage in the creep curves for specimens in unaged, underaged, peak aged and slightly overaged conditions. On contrary, there is no evidence of such a creep stage for overaged specimens. The sigmoidal creep stage is induced by the dynamic precipitation during creep. The thermally stable equilibriumβ-phase is regarded as the primary contributor to the creep resistance of the alloy. The substantially overaged alloys show better creep resistance. Creep failure of the alloy is mainly initiated by means of the nucleation and growth of triple point wedge cracking. Cavity nucleation and growth at triple point and cracking along grain boundary facets are also the fracture mechanism. Precipitate free zones at the grain boundaries perpendicular to the applied stress can facilitate the intergranular fracture of the specimens during creep.
引文
[1]陈振华,镁合金,化学工业出版社,北京,2004
    [2] S. Schumann, H. Friedrich, Current and future use of magnesium in the automobile industry, Materials Science Forum, 2003, 419-422: 51-56
    [3] Achim Wendt, Konrad Weiss, Arye Ben-Dov, et al. Magnesium castings in aeronautics applications–special requirements, Magnesium Technology 2005, Edited by N.R. Neelameggham, H.I. Kaplan, and B.R. Powell, TMS (The Minerals, Metals & Materials Society), 2005, p.269-273
    [4] A. Luo, M.O. Pekguleryuz. Review cast magnesium alloys for elevated temperature applications. Journal of Materials Science, 1994, 29: 5259-5271
    [5] C.J. Bettles, An elevated temperature magnesium alloy suitable for precision sand casting of power train components, Magnesium Technology 2003, Edited by H.I. Kaplan, TMS (The Minerals, Metals & Materials Society), 2003, p.223
    [6] Kittel C. Introduction to solid state physics, 5th ed., New York, 1976
    [7] Cahn R W, Hasen P Kramer E J ed. Materials Science and Technology-A Compressive Treatment. In Matucha K H (ed.). Structure and properties of nonferrous alloys (Vol 8). VCH Weinheim, 1996
    [8]陈振华,变形镁合金,化学工业出版社,北京,2005
    [9] E.F. Emley, Principle of Magnesium Technology, Pergamon, Oxford, UK. 1966
    [10] J.W. Christian, S. Mahajan, Deformation twinning, Progress in Materials Science, 1995, 39, p.1
    [11] M.H. Yoo, Slip, twinning and fracture in hexagonal close-packed metals, Metallurgical Transaction A, 1981, 12: 409-418
    [12] U. F. Kocks, Metall. Trans. A, 1985, 16: 2109-2129
    [13] P. Lukác. Strengthening and softening in some magnesium base alloys, Proc. of Third International Magnesium Conference, April 10-12, 1996, Manchester, Ed. G. W. Lorimer, The Institut of Materials, 1997, p.381-390
    [14] A. Akhtar, E. Teghtsoonian. Solid Solution Strengthening of Magnesium Single Crystals-1, 2, Acta Metall, 1969, 17(11): 1339-1349, 1951-1956
    [15] A. Akhtar, E. Teghtsoonian. Substitutional Solution Hardening of Magnesium Single Crystals, Phil. Mag., 1972, 25: 897-916
    [16] A. J. Ardell. Precipitation hardening. Metall. Trans. A, 1985, 16: 2131-2165
    [17] B. L. Mordike, T. Ebert. Magnesium: properties-applicationspotential. Mater. Sci. Eng. A, 2001, 302: 37-45
    [18] L.L. Rokhlin. Magnesium alloys containing rare earth metals, London:Taylor and Francis, 2003
    [19] G. Nussbaum, Strengthening mechanisms in the rapidly solidified AZ91 magnesium alloy, Scripta Metall., 1989, 23: 1079-1084
    [20] B.Q. Han, D.C. Dunand, Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids, Mater. Sci. Eng. A, 2000, 277: 297-304
    [21]吴人洁,复合材料,天津大学出版社,天津,2000
    [22] Y. Cai, M.J. Tan, G.J. Shen, Microstructure and heterogeneous nucleation phenomena in cast SiC particles reinforced magnesium composite, Materials Science and Engineering A, 2000, 282(1-2) : 232-239
    [23] B. Inem, G. Pollard, Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles, Journal of Materials Science, 1993, 28(16) : 4427-4434
    [24]郑明毅,吴昆,赵敏等,不连续增强镁基复合材料的制备与应用,宇航材料工艺, 1997, 6: 6-9
    [25] M.M. Avedesian, H. Baker, ASM Speciality Handbook-Magnesium and Magnesium Alloys, Ohio, ASM International, 1999, p.22.
    [26] T. B. Massalski, Binary Phase Diagrams, 2nd edn., ASM International, Metals Park, Ohio, 1990
    [27] L. L. Rokhlin, Dependence of the rare earth metal solubility in solid magnesium on its atomic number, J. Phase Equil., 1998, 19: 142-145
    [28] T. E. Leontis, J. Metals, 1949, 1(12): 968-983.
    [29] T. E. Leontis, Effect of Rare-Earth Metals On the Properties of Extruded Magnesium, J. Metals, 1951, 3(12): 987-993.
    [30] D. Mizer, J. B. Clark, The Magneium-Rich Region of the Magnesium-Yttrium Phase Diagram, Trans. AIME, 1961, 221: 207-208
    [31] D. Mizer, B. C. Peters, A Study of Precipition at Elevated Temperatures in a Mg-8.7Pct Y Alloys, Met. Trans., 1972, 3: 3262-3264
    [32] R. V. London, R. E. Edelman, H. Markus, Trans. ASM, 1966, 59(2): 250-261
    [33] T. J. Pike, B. Noble, The Formation and Structure of Precipitates in a Dilute Magnesium-Neodymium Alloy, Journal of the Less-Common Metals, 1973, 30: 63-74
    [34] G. Omori, S. Matsuo, H. Asada, Precipitation Process in a Mg-Ce Alloy, Trans. JIM, 1975, 16: 247-255
    [35] L. L. Rokhlin, An Investigation of the Decomposition of the Supersaturated Solid Solution in Alloys of Magnesium with Dysprosium, Fiz. Metal. Metalloved., 1983, 55: 733-738
    [36] G. W. Lorimer, Structure-Property Relationships in Cast Magnesium Alloys, Proceedings Magnesium Technology, Institute of Metals, London, 1986, p.47-53
    [37] L. L. Rokhlin, N. I. Nikitina, Magnesium - Gadolinium and Magnesium - Gadolinium - Yttrium Alloys, Z. Metallkd., 1994, 85(12): 819-823
    [38] L. Y. Wei, G. L. Dunlop, H. Westengen, Age hardening and precipitation in a cast magnesium-rare-earth alloy, J. Mater. Sci., 1996, 31: 387-397
    [39] M. Hisa, J. C. Barry, G. L. Dunlop, Precipitation during Age Hardening of Mg-Rare Earth Alloys, Proceedings of the Third International Magnesium Conference, The Institute of Materials, London, 1997, p.369-379.
    [40] M. Hisa, J. C. Barry, G. L. Dunlop, New type of precipitate in Mg-rare-earth alloys, Philosophical Magazine A, 2002, 82(3): 497-510.
    [41] B. Smola, I. Stulíková, F. von Buch, B. L. Mordike, Structural Aspects of High Performance Mg Alloys Design, Materials Science and Engineering A, 2002, 324:113-117
    [42] F. Hehmann, F. Sommer, B. Predel, Mater. Sci. and Eng. A, 1990, 125(2): 249-265
    [43] F. von Buch, J. Lietzau, B. L. Mordike, A. Pisch, R. Schmid-Fetzer, Development of Mg-Sc-Mn Alloys, Mater. Sci. Eng. A, 1999, 263: 1-7
    [44] B. L. Mordike, Development of highly creep resistant magnesium alloys, J. Mater. Process. Technol., 2001, 117: 391-394
    [45] I. A. Anyawu, S. Kamado, Y. Kojima, Aging Characteristics and High Temperature Tensile Properties of Mg-Gd-Y-Zr Alloys, Materials Transactions, 2001, 42(7): 1206-1211
    [46] I. A. Anyawu, S. Kamado, Y. Kojima, Creep Properties of Mg-Gd-Y-Zr Alloys, Materials Transactions, 2001, 42(7): 1212-1218
    [47] T. Honma, T. Ohkubo, K. Hono, S. Kamado, Chemistry of nanoscale precipitates in Mg-2.1Gd-0.6Y-0.2Zr (at. %) alloy investigated by the atom probe technique, Materials Science and Engineering A, 2005, 395: 301-306
    [48] T. Mohri, M. Mabuchi, N. Saito, M. Nakamura, Microstructure and Mechanical Properties of a Mg-4Y-3RE Alloy Processed by Thermo-mechanical Treatment, Materials Science and Engineering A, 1998, 257: 287-294
    [49] J. F. Nie, B. C. Muddle, Precipitation in Magnesium Alloy WE54 during Isothermal Ageing at 250℃, Scripta Materialia, 1999, 40: 1089-1094
    [50] J. F. Nie, B. C. Muddle, Characterisation of Strengthening Precipitate Phase in a Mg-Y-Nd Alloy, Acta Materialia, 2000, 48: 1691-1703
    [51] C. Antion, P. Donnadieu, F. Perrard, A. Deschamps, C. Tassin, A. Pisch, Hardening Precipitation in a Mg-4Y-3RE Alloy, Acta Materialia, 2003, 51: 5335-5348
    [52] P. J. Apps, H. Karimzadeh, J. F. King, G. W. Lorimer, Precipitation Reactions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium of Dysprosium, Scripta Materialia, 2003, 48: 1023-1028
    [53] P. J. Apps, H. Karimzadeh, J. F. King, G. W. Lorimer, Phase Compositions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium, Scripta Materialia, 2003, 48: 475-481
    [54] P. Lyon, New Magnesium Alloy for Aerospace and Speciality Applications, MagnesiumTechnology 2004, Edited by A. A. Luo, TMS, 2004, p.311-315
    [55] A. I., Murphy, R. J. M. Payne, J. Inst. Metals, 1946, 73: 105-127
    [56] T. E. Leontis, D. H. Feisel, J. Metals, 1957, 9(10): 1245-1252
    [57] P. A. Nuttall, T. J. Pike, B. Noble, Metallography of Dilute Mg-Nd-Zn Alloys, Metallography, 1980, 13: 3-20
    [58] R. Wilson, C. J. Bettles, B. C. Muddle, J. F. Nie, Precipitation Hardening in Mg-3wt%Nd(-Zn) Casting Alloys, Materials Science Forum, 2003, 419-422: 267-272
    [59] M. Suzuki, T. Kimura, J. Koike, K. Maruyama, Strengthening Effect of Zn in Heat Resistant Mg-Y-Zn solid solution alloys, Scripta Mater., 2003, 48: 997-1002
    [60] M. Suzuki, T. Kimura, J. Koike, K. Maruyama, Effect of Zinc on Creep Behavior and Deformation Substructures of Mg-Y alloy, Materials Science Forum, 2003, 419-422: 473-478
    [61] R. J. M. Payne, N. Bailey, Improvement of the Age-Hardening Properties of Magneium-Rare-Earth Alloys by Addition of Silver, J. Inst. Metals, 1959-60, 88: 417-427
    [62] K. I. Gradwell, Ph. D. Thesis, Manchester University, 1972
    [63]赵志远,铸造稀土镁合金在我国航空工业中的应用,材料工程,1993, 7: 8-10
    [64]黄伯杰,聂邦盛,贾延杰,吴雅琴,Mg-Nd-Zn-Zr耐热高强铸造镁合金,特种铸造及有色合金, 1998, 6: 40-42
    [65]赵志远,镁-钇-锌-锆系铸造合金热强性能的研究,特种铸造及有色合金,1984, 2: 31-34
    [66] Z. P. Luo, S. Q. Zhang, L. Q. Lu, G. Wei, Effects of Heat Treatments on the Properties and Microstructures of Extruded Mg-Nd-Zr Alloy, Journal of Rare Earths, 1994, 12(4): 296-298
    [67] Y. Negishi, S. Iwasawa, S. Kamado, Y. Kojima, R. Ninomiya, Effect of Yttrium and Neodymium Additions on Aging Characteristics and High Temperature Tensile Properties of Mg-10mass%Gd and Mg-10mass%Dy Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10): 549-554
    [68] Y. Negishi, T. Nishimura, S. Iwasawa, S. Kamado, Y. Kojima, R. Ninomiya, Aging Characteristics and Tensile Properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10): 555-561
    [69] Y. Negishi, T. Nishimura, M. Kiryuu, S. Kamado, Y. Kojima, R. Ninomiya, Phase Diagrams of Magnesium-rich Portion, Aging Characteristics and Tensile Properties of Mg-Heavy Rrare Earth Metal(Gd, Dy)-Nd Alloys, Journal of Japan Institute of Light Metals, 1995, 45(2): 57-63
    [70] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota, Ageing Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, in G.W. Lorimer(Ed.), Proceedings of the Third International Magnesium Conference, The Institute of Materials, London, 1997, p.327-342
    [71] M. Kiryuu, H. Okumura, S. Kamado, Y. Kojima, R. Ninomiya, I. Nakatsugawa, Corrosion Resistance of Heat Resistance Magnesium Alloys Containing Heavy Rare Earth Elements, Journal of Japan Institute of Light Metals, 1996, 46(1): 39-44
    [72] G. W. Lorimer, P. J. Apps, H. Karimzadeh, J. F. King, Improving the Performance of Mg-Rare Earth Alloys by the Use of Gd or Dy Additions, Materials Science Forum, 2003, 419-422: 279-284
    [73] HTTP://www.magnesium–elektron.com/data/downloads/DS466WE54.pdf
    [74] J. F. King, P. Thistlethwaite, New corrosion resistant wrought magnesium alloys, in B.L. Mordike, F. Hehmann (Ed.), Magnesium Alloys and Their Applications; DGM-Informationsges, Oberursel, 1992, p.327-334
    [75] J.M. Arlhac, J.C. Chaize, New magnesium alloys and protections in new helicopters, in G.W. Lorimer(Ed.), Proceedings of the Third International Magnesium Conference, The Institute of Materials, London, 1997, p.213-230
    [76] B. Geary, Advances in the application of magnesium in helicopter gearcases, in G.W. Lorimer(Ed.), Proceedings of the Third International Magnesium Conference, The Institute of Materials, London, 1997, p.563-574
    [77] J.F. King, New advanced magnesium alloys, G.B. Brook (Ed.), Adv. Mater. Tech. Int., 1990, p.12-19
    [78] B.L. Mordike, Creep-resistant magnesium alloys, Materials Science and Engineering A, 2002, 324: 103–112
    [79] F. von Buch, B. L. Mordike, Microstructure, Mechanical Properties and Creep Resistance of Binary Magnesium Scandium Alloys. in: Magnesium 97. (Eds. Aghion, E., Eliezer,D.), MRI, Beer-Sheva, 1998, p.163 -168
    [80] B.L. Mordike, F. von Buch, Magnesium Alloys and Their Applications, in K.U. Kainer (Ed.), Wiley-VCH Verlag, Weinheim, 2002, p.35-40
    [81] B.L. Mordike, I. Stulíáková, B. Smola, Mechanisms of Creep Deformation in Mg-Sc-Based Alloys, Metell. Mater. Trans. A, 2005, 36: 1729-1736
    [82] F. von Buch, J. Lietzau, B. L. Mordike, A. Pisch, R. Schmid-Fetzer, Development of Mg-Sc-Mn alloys, 1999, 263: 1-7
    [83] F. von Buch, B. L. Mordike, Microstructure, Mechanical Properties and Creep Resistance of Binary and More Complex Magnesium Scandium Alloys, in: Magnesium Alloys and their Applications, (Eds.: B. L. Mordike, K. U. Kainer), Werkstoff- Informationsgesellschaft mbH, Frankfurt 1998, p.145-150
    [84] I. Stulíková, B. Smola, F. von Buch, B. L. Mordike, Mechanical properties and creep of Mg-rare earth-Sc-Mn squeeze cast alloys, Mat.-wiss. u. Werkstofftech, 2003, 34: 102-108
    [85] I. Stulíková, B. Smola, F. von Buch, B. L. Mordike, Development of Creep Resistant Mg-Gd-Sc Alloys with Low Sc Content, Mat.-wiss. u. Werkstofftech, 2001, 32: 20-24
    [86] I. Stulíková, B. Smola, B. L. Mordike, New High Temperature Creep Resistant Mg–YNd–Sc–Mn Alloy, phys. stat. sol. (a) , 2002, 190(2): 5-7
    [87] B. Smola, I. Stulíková, J. Pelcová, B.L. Mordike, Significance of stable and metastable phases in high temperature creep resistant magnesium–rare earth base alloys, Journal of Alloys and Compounds, 2004, 378: 196–201
    [1] L.L. Rokhlin, Magnesium alloys containing rare earth metals, London, Taylor & Francis, 2003
    [2] L.L. Rokhlin, N.I. Nikitina, Magnesium-Gadolinium and Mg-Gd-Y Alloys, Z. Metallkd.,1994, 85(12): 819-823
    [3] S. Iwasawa, Y. Negishi, S. Kamado, Y. Kojima, R. Ninomiya, Age hardening characteristics and high temperature tensile properties of Mg-Gd and Mg-Dy alloys, Journal of Japan Institute of Light Metals, 1994, 44(1): 3-8
    [4] T. J. Pike, B. Noble, The Formation and Structure of Precipitates in a Dilute Magnesium-Neodymium Alloy, Journal of the Less-Common Metals, 1973, 30: 63-74
    [5] Y. Negishi, S. Iwasawa, S. Kamado, Y. Kojima, R. Ninomiya, Effect of Yttrium and Neodymium Additions on Aging Characteristics and High Temperature Tensile Properties of Mg-10mass%Gd and Mg-10mass%Dy Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10): 549-554
    [6] Y. Negishi, T. Nishimura, S. Iwasawa, S. Kamado, Y. Kojima, R. Ninomiya, Aging Characteristics and Tensile Properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10): 555-561
    [7] Y. Negishi, T. Nishimura, M. Kiryuu, S. Kamado, Y. Kojima, R. Ninomiya, Phase Diagrams of Magnesium-rich Portion, Aging Characteristics and Tensile Properties of Mg-Heavy Rrare Earth Metal(Gd, Dy)-Nd Alloys, Journal of Japan Institute of Light Metals, 1995, 45(2): 57-63
    [8] P. J. Apps, H. Karimzadeh, J. F. King, G. W. Lorimer, Precipitation Reactions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium of Dysprosium, Scripta Materialia, 2003, 48: 1023-1028
    [9] P. J. Apps, H. Karimzadeh, J. F. King, G. W. Lorimer, Phase Compositions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium, Scripta Materialia, 2003, 48: 475-481
    [10] G. W. Lorimer, P. J. Apps, H. Karimzadeh, J. F. King, Improving the Performance of Mg-Rare Earth Alloys by the Use of Gd or Dy Additions, Materials Science Forum, 2003, 419-422: 279-284
    [11] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota, Ageing Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, Proceedings of the Third International Magnesium Conference, The Institute of Materials, London, 1997, p.327-342
    [12]进藤大辅,及川哲夫,(刘安生译),材料评价的分析电子显微方法,冶金工业出版社,北京,2001, p.101
    [13]刘振海,热分析导论,化学工业出版社,北京,1991, p.54-55
    [1] Y. Negishi, S. Iwasawa, S. Kamado, Y. Kojima, R. Ninomiya, Effect of Yttrium and Neodymium Additions on Aging Characteristics and High Temperature Tensile Properties of Mg-10mass%Gd and Mg-10mass%Dy Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10): 549-554
    [2] Y. Negishi, T. Nishimura, S. Iwasawa, S. Kamado, Y. Kojima, R. Ninomiya, Aging Characteristics and Tensile Properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10): 555-561
    [3] Y. Negishi, T. Nishimura, M. Kiryuu, S. Kamado, Y. Kojima, R. Ninomiya, Phase Diagrams of Magnesium-rich Portion, Aging Characteristics and Tensile Properties of Mg-Heavy Rrare Earth Metal(Gd, Dy)-Nd Alloys, Journal of Japan Institute of Light Metals, 1995, 45(2): 57-63
    [4] P. J. Apps, H. Karimzadeh, J. F. King, G. W. Lorimer, Phase Compositions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium, Scripta Mater., 2003, 48: 475-481
    [5] A.A. Nayeb-Hashemi, J.B. Clark, Phase Diagrams of Binary Magnesium Alloys, ASM, Ohio, 1988
    [6] S.M. He, X.Q. Zeng, L.M. Peng, X.Gao, J.F. Nie and W.J. Ding, Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy, J. Alloys Compd., 2007, 427: 316-323
    [7] G.G. Libowitz, A.J. Maeland, Handbook on the Physics and Chemistry of Rare Earths, North-Holland Publishing Company, Amsterdam, 1979, p.299
    [1] T. J. Pike, B. Noble, The Formation and Structure of Precipitates in a Dilute Magnesium-Neodymium Alloy, Journal of the Less-Common Metals, 1973, 30: 63-74
    [2] P.J. Apps, H. Karimzadeh, J. F. King, G. W. Lorimer, Precipitation Reactions in Magnesium-Rare Earth Alloys Containing Yttrium, Gadolinium of Dysprosium, Scripta Mater., 2003, 48: 1023-1028
    [3] T. Honma, T. Ohkubo, K. Hono, S. Kamado, Chemistry of nanoscale precipitates in Mg–2.1Gd–0.6Y–0.2Zr (at.%) alloy investigated by the atom probe technique, Mater. Sci. Eng. A, 2005, 395: 301-306
    [4] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Precipitation in a Mg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250°C, J. Alloys Compd., 2006, 421: 309-313
    [5] X. Gao, S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, W.J. Ding, Microstructure evolution in a Mg–15Gd–0.5Zr (wt.%) alloy during isothermal aging at 250°C, J.F. Nie, Mater. Sci. Eng. A, 2006, 431: 322-327
    [6] P. Vostry, B. Smola, I. Stulíková, F. von Buch, Microstructure Evolution in Isochronally Heat Treated Mg-Gd Alloys, phys. stat. sol. (a) , 1999, 175: 491-500
    [7] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota, Ageing Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, Proceedings of the Third International Magnesium Conference, The Institute of Materials, London, 1997, p.327-342
    [8] J. F. Nie, B. C. Muddle, Precipitation in Magnesium Alloy WE54 during Isothermal Ageing at 250℃, Scripta Mater., 1999, 40: 1089-1094
    [9] J. F. Nie, B. C. Muddle, Characterisation of Strengthening Precipitate Phase in a Mg-Y-Nd Alloy, Acta Mater., 2000, 48: 1691-1703
    [10] L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals: Structure and Properties, Taylor & Francis, London, 2003
    [11] T. Honma, T. Ohkubo, K. Hono, S. Kamado, Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys, Acta Mater., 2007, 55: 4137-4150
    [12] D. Turnbull, Solid State Physics, Vol. 3, Academic Press, USA, 1956, p.226
    [13] A. Kelly, B. Nicholson, Precipitation Hardening, Pergamon Press, Oxford, UK, 1963, p.245
    [14] D. Hull, D.J. Bacon, Introduction to Dislocations, 4th Edition, Butterworth-Heinemann, Oxford, UK, 2001, p.216
    [15] J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Mater., 2003, 48: 1009–1015
    
    [16] A. J. Ardell, Precipitation hardening, Metall. Trans. A, 1985, 16: 2131-2165
    [17] E.F. Emley, Principle of Magnesium Technology, Pergamon, Oxford, UK, 1966
    [1] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota, Ageing Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare EarthElements, Proceedings of the Third International Magnesium Conference, The Institute of Materials, London, 1997, p.327-342
    [2] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5Zr alloy, J. Alloys Compd., 2007, 427(1-2): 316-323
    [3] L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals: Structure and Properties, Taylor & Francis, London, 2003, p.98
    [4]王祝堂,田荣墇,铝合金及其加工手册,中南大学出版社,长沙, 2005
    [5] T. Hilditch, J.F. Nie, B.C. Muddle, The effect of cold work on the precipitation in alloy WE54, in: B.L. Mordike, K.U. Kainer (Ed.), Magnesium Alloys and Their Applications, Werkstoff-Informationsgesellschaft, Frankfurt, 1998, p.339-344
    [6] A. Kelly, R.B. Nicholson, Precipitation hardening, Pergamon press, Oxford, UK, 1963
    [7] A. Serra, D.J. Bacon, Computer simulation of screw dislocation interactions with twin boundaries in h. c. p. metals, Acta Metall. Mater., 1995, 43(12): 4465?4481.
    [8] A. Serra, D.J. Bacon, R.C. Pond, Twins as barriers to basal slip in hexagonal-close-packed metals, Metall. Trans. A, 2002, 33(3): 809?812.
    [1] H. Karimzadeh, J.M. Worrall, R. Pilkington, G.W. Lorimer, Tensile and creep fracture of a Mg-Y-RE alloy, in: C. Baker (Ed.), Proceedings of the International Conference on Magnesium Technology, The Institute of Metals, 1987, p.138-141
    [2] M.Y. Ahmed, R. Pilkington, P. Lyon, G.W. Lorimer, Creep fracture in a Mg-Y-RE alloy, in: B.L. Mordike and F. Helmann (Ed.), Magnesium alloys and their applications, DGM informationsgesellschaft, Obsrursel, 1992, p.251-257
    [3] R.A. Khosrhoshahi, R. Pilkington, G.W. Lorimer, The microstructure and creep of as-cast and extruded WE54, in: G.W. Lorimer (Ed.), Proceedings of the Third International Magnesium Conference, 1996, Institute of Materials, Manchester, UK, 1997, p.241-256
    [4] B.L. Mordike, P. Lukac, Creep behavior of magnesium alloys produced by different techniques, Proceedings of the Third International Magnesium Conference, 1996, Institute of Materials, Manchester, UK, 1997, p. 419-429
    [5] J.G. Wang, L.M. Hsiung, T.G. Nieh, M. Mabuchi, Creep of a heat treated Mg–4Y–3RE alloy, Mater. Sci. Eng. A, 2001, 315: 81-88
    [6] I. A. Anyanwu, S. Kamado, Y. Kojima, Creep properties of Mg-Gd-Y-Zr alloys, Materials Transactions, 2001, 42(7): 1212-1218
    [7] B.L. Mordike, Development of highly creep resistant magnesium alloys, Journal of Materials Processing Technology, 2001, 117: 391-394
    [8] B.L. Mordike, I. Stulíáková, B. Smola, Mechanisms of Creep Deformation in Mg-Sc-Based Alloys, Metell. Mater. Trans. A, 2005, 36: 1729-1736
    [9]张俊善,材料的高温变形与断裂,科学出版社,北京,2007
    [10] W. Henning, B.L. Mordike, Creep in Magnesium-Rare Earth Alloys, in: H.J. McQueen etal (Ed.), Proc. I.C.S.M.A. 7 Montreal, Strength of Metals and Alloys, Pergamon, Oxford, 1985, 1: 803-808
    [11] M. Suzuki, H. Sato, K. Maruyama. H. Oikawa, Creep behavior and deformation microstructures of Mg–Y alloys at 550 K, Mater. Sci. Eng. A, 1998, 252: 248-255
    [12] S.S. Vagarali, T.G. Landon, Deformation mechanisms in hcp metals at elevated temperatures-1. creep behavior of magnesium, Acta Metal., 1981, 29: 1969-1982
    [13] J. Weertman, Trans. ASM, 1968, 61: 681-694
    [14] G..S. Ansell, J. Weertman, Creep of a dispersion-hardened aluminum alloy, Trans. AIME, 1959, 215: 838-843
    [15] J.F. Nie, Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Materialia, 2003, 48: 1009-1015
    [16] I.M. Lifshitz, V.V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids, 1961,19 (1-2): 35-50
    [17] C. Wagner, Theory of Precipitate Aging via Dissolution/Reprecipitation; Ostwald Ripening, Z. Electrochem., 1961, 65(7-8): 581-591
    [18] D.A. Porter, K.E. Easterling, Phase Transformation in Metals and Alloys, Alden Press, Oxford, 1981, p.274
    [19] R.L. Squires, R.T. Weiner, M. Phillips, Grain-boundary denuded zones in a magnesium-1/2wt% zirconium alloy, Journal of Nuclear Materials, 1963, 8(1): 77-80
    [20] F.R.N. Nabarro, Report of a Conference on the Strength of Solids(Bristol), The Physical Society, London, 1948, p.75–90
    [21] C. Herring, Diffusional Viscosity of a Polycrystalline Solid , J. Appl. Phys., 1950, 21(5): 437-445
    [22] R.L. Coble, A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials, J. Appl. Phys., 1963, 34(6): 1679-1682
    [23] J.E. Harris, R.B. Jones, Directional diffusion in magnesium alloys, Journal of Nuclear Materials, 1963, 10(4): 360-362
    [24] A. Karim, D.L. Holt, W.A. Backofen, Diffusional creep and superplasticiy in a Mg-6Zn-0.5Zr alloy, Transactions of the Metallurgical Society of AIME, 1969, 245: 1131-1132
    [25] A. Karim, D.L. Holt, W.A. Backofen, Diffusional flow in a hydrided Mg-0.5wt pct Zr alloy, Transactions of the Metallurgical Society of AIME, 1969, 245: 2421-2424
    [26] W. Vickers, P. Greenfield, Diffusion-creep in magnesium alloys, Journal of Nuclear Materials, 1967, 24: 249-260
    [27] J. Wadsworth, O.A. Ruano, O.D. Sherby, Refutation of the relationship between denuded zones and diffusional creep, Scripta Metallurgica et Materialia, 1993, 29: 515-520
    [28] J. Wadsworth, O.A. Ruano, O.D. Sherby, Denuded zones, diffusional creep, and grain boundary sliding, Metallurgical and Materials Transactions A, 2002, 33: 219-229
    [29] J.E. Harris, R.B. Jones, G.W. Greenwood, M.J. Ward, The inhabitation of Nabarro-Herring creep by second-phase particles, J. of Australian Inst. Of Metals, 1969, 14: 154
    [30] K.R. McNee, G.W. Greenwood, H. Jones, Changes in precipitate distribution during the low-stress creep of a hydrided magnesium-zirconium alloy, Philosophical Magazine A, 2002, 82(15): 2773-2790
    [31] F. C. Monkman, N. J. Grant, An empirical relationship between. rupture life and minimum creep rate in creep-rupture tests, Proc. ASTM, 1956, 56: 593-620

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700