用户名: 密码: 验证码:
Mg-Gd-Y(Sc)合金的制备技术和高温性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为一种轻质结构材料,其应用领域不断扩展,部分镁合金零件要在一定高温环境下使用,但是目前大部分镁合金在使用温度超过120℃后,力学性能随温度的升高而降低,因此开发新的耐热合金系成为扩大镁合金应用领域的一个关键。
     论文以Mg-9Gd(5Gd)-3Y和Mg-5Gd-0.5Sc-0.5Mn为研究对象,运用高频耦合等离子发射光谱分析(ICP),差示扫描热分析(DSC),光学显微镜(OM)、扫描电子显微镜(SEM)、透射电镜(TEM)观察以及电子束微区分析(EDS)等手段和析方法,系统研究了合金的制备工艺、室温和高温性能以及合金在高温变形过程中的组织演变等。
     确定了铸造Mg-9Gd(5Gd)-3Y-0.3Zr合金的热处理工艺。研究发现两种合金均适合采用固溶+时效(T6)工艺进行热处理强化,固溶后在峰值时效状态下,均析出半共格的强化相β′,含Gd量高的Mg-9Gd-3Y-0.3Zr合金中β′相的体积分数和密度均高于Mg-5Gd-3Y-0.3Zr合金,25℃时Mg-9Gd-3Y-0.3Zr合金的抗拉强度和屈服强度分别达到314MPa和256MPa,高于Mg-5Gd-3Y-0.3Zr合金的230MPa和167MPa,但Mg-5Gd-3Y-0.3Zr合金室温下的伸长率为9.9%,比Mg-9Gd-3Y-0.3Zr合金的伸长率高了100%,具有更高的塑性,随着温度的升高,两种合金的强度下降缓慢,伸长率提高。
     研究了合金高温塑性变形过程中应力和应变的关系,结果显示Mg-9Gd-3Y-0.3Zr合金的真应力-真应变曲线属于动态再结晶型,随变形温度的提高,合金发生不同程度的动态再结晶,动态再结晶机制主要是应变诱发晶界迁动形核、孪晶形核和亚晶合并长大。
     挤压Mg-9Gd-3Y-0.3Zr合金和Mg-5Gd-3Y-0.3Zr合金都适宜采用直接时效(T5)工艺进行强化,时效后合金中均析出了片状过渡相β′,且析出相互成一定角度,交织成网状,β′相与α-Mg基体的关系为:[001]_(β′)∥[0001]_α,(100)_(β′)∥(2(?)0)_α,只是Mg-9Gd-3Y-0.3Zr合金中析出相的体积分数和密度高于Mg-5Gd-3Y-0.3Zr合金;挤压Mg-9Gd-3Y-0.3Zr-T5合金25℃时的抗拉强度和屈服强度分别为375MPa和335MPa,伸长率为5.1%,300℃时合金的强度分别为314MPa和284MPa,伸长率则达到了18%;相同温度下,Mg-5Gd-3Y-0.3Zr合金的强度低于Mg-9Gd-3Y-0.3Zr合金,但塑性更好。
     挤压Mg-9Gd-3Y-0.3Zr-T5合金室温条件下的断裂模式为混合断裂,200℃是延性断裂为主,脆性断裂为辅的混合断裂模式,250-300℃时则为微孔聚集型的韧性断裂;Mg-5Gd-3Y-0.3Zr-T5合金在200-300℃的断裂方式也是微孔聚集型的延性断裂。
     系统研究了挤压Mg-9Gd-3Y-0.3Zr-T5合金在200-300℃温度范围内的蠕变行为,表明在试验温度范围内合金的最小蠕变速率随温度升高和应力增大而增大,平均应力指数为3.62,蠕变激活能随温度升高而增加,在200-250℃范围内,激活能为85.6 KJ/mol,蠕变机制为伴随管扩散的位错蠕变;在250-300℃范围内,激活能为245.5 KJ/mol,蠕变机制为位错攀移和晶界滑移。
     蠕变过程中温度对析出相的转变有显著影响。在应力作用下,随着温度的升高,时效析出的过渡相β′粗化或颈缩,β_1在粗化的β′相中,或在β′相的颈缩处形核;当蠕变温度升高到300℃时,β′相和β_1相全部原位转化为平衡相β,并随蠕变时间的延长,β相粗化;应力和时间对第二相的影响比温度的影响小,随蠕变时间的延长和应力的增大,β′相逐渐粗化并有部分转化为β_1相;蠕变过程中在应力和温度的双重作用下,强化相出现动态析出。
     对铸造和挤压Mg-5Gd-0.5Sc-0.5Mn合金的性能进行了研究,表明铸造和挤压合金分别适合采用固溶+时效和直接时效工艺进行强化,两种状态下合金的强化相均为棒状的Mg和Gd化合物、圆盘状的Mn_2Sc相和β′相;铸造和挤压合金的抗拉强度和屈服强度在250℃以内随温度升高有上升趋势,温度升高到300℃时强度开始下降,伸长率随温度升高而增加,合金强度比Mg-5Gd-3Y-0.3Zr合金低,但塑性更好;蠕变温度为250℃时,随应力增加,挤压合金最小蠕变速率升高,应力低于70MPa条件下,蠕变速率比挤压Mg-5Gd-3Y-0.3Zr-T5合金低一个数量级,说明合金同样具有高温应用的潜力。
Magnesium alloy is one kind of light structural metal material,and its application fields extend wider and wider.Some parts of the magnesium alloy are used in elevated temperature.But the service temperature of most magnesium products are not higher than 120℃,because the mechanical properties fall down rapidly when the temperature is increased.It is a key point to develop novel heat resistant magnesium alloy system to expand the application of the alloys.
     In this thesis,Mg-9Gd(5Gd)-3Y and Mg-5Gd-0.5Sc are investigated.ICP,DSC, OM,SEM,TEM and EDS etc are used to study the manufacture technology of the alloys.The properties of the alloys at room temperature and higher temperature and the structure evolution at the high temperature are studied.
     The heat treatment technology of cast Mg-9Gd(5Gd)-3Y-0.3Zr alloy is decided. It is found that the solid solution and aging(T6) technology is suitable for both alloys. After the aging and at the peak aging condition,half coherentβ' phase precipitated in the two alloys.In high Gd content Mg-9Gd-3Y-0.3Zr alloy,the density and the volume fraction ofβ' phase are higher than that in Mg-5Gd-3Y-0.3Zr alloy.At 25℃the tensile strength and yield strength for Mg-9Gd-3Y-0.3Zr alloy are 314MPa and 256MPa,respectively and higher than that 230MPa and 167MPa for Mg-5Gd-3Y-0.3Zr alloy.Mg-5Gd-3Y-0.3Zr alloy has better plasticity and the percentage elongation of Mg-5Gd-3Y-0.3Zr alloy at room temperature is 9.9%,100% higher than that of Mg-9Gd-3Y-0.3Zr alloy.While the temperature is increased,the strength decreased for both alloys,but the elongations are improved.
     From the curves true stress to true strain at elevated temperature,the Mg-9Gd-3Y-0.3Zr alloy shows a typical dynamic recrystallization type.The alloy experienced different scale dynamic recrystallizations when the temperature increased. The mechanisms of the dynamic recrystallization of the alloy are nucleation of grain boundary migration under the strain,nucleation of twins and mergence and growth of subgrains.
     Extruded Mg-9Gd-3Y-0.3Zr and Mg-5Gd-3Y-0.3Zr are all suitable for direct aging(T5) technology.After the aging,there are plate like metastableβ' phase precipitates in both alloys and the precipitates have different directions forming a kind of net.The orientation relationship between the Mg matrix and theβ' precipitate is as[001]_β',//[0001]α,(100)_β'//(2(?)0)_α,But the density and volume fraction of theβ' precipitates in Mg-9Gd-3Y-0.3Zr alloy are higher than that in Mg-5Gd-3Y-0.3Zr alloy.At 25℃the tensile strength and yield strength for the extruded Mg-9Gd-3Y-0.3Zr alloy are 375MPa and 335MPa,respectively and the elongation is 5.1%.At 300℃the tensile strength and yield strength for the extruded Mg-9Gd-3Y-0.3Zr alloy are 314MPa and 284MPa,respectively and the elongation reaches 18%.At the same temperature,the strength of Mg-5Gd-3Y-0.3Zr alloy is lower than that of Mg-9Gd-3Y-0.3Zr alloy,but the plasticity is better.
     The fracture mode of extruded Mg-9Gd-3Y-0.3Zr alloy with T5 aging condition is a kind of mixture fracture.At 200℃the plastic fracture is the main mode,but with ductile fracture together as mixture fracture behavior.Between 250 and 300℃the ductile fracture with micropore aggregation occurs.Between 200 and 300℃the fracture mode for Mg-5Gd-3Y-0.3Zr alloy(T5) is also the ductile fracture with micropore aggregation.
     The creep deformation of Mg-9Gd-3Y-0.3Zr alloy at a temperature range between 200 and 300℃was investigated.It showed that the creep rate of the alloy increased with the increasing of temperature and stress,and the average stress index is 3.62.The creep active energy increases when the temperature is raised.The creep active energy is 85.6 KJ/mol when the temperature between 200 and 250℃.The creep mechanism is dislocation creep associated with tube diffusion.The creep active energy is 245.5 KJ/mol when the temperature between 250 and 300℃.The creep mechanism is dislocation climb and grain boundary slip.
     In the creep deformation process,the temperature has significant influence on the precipitates transformation.Under the stress,the metastableβ' becomes coarse or neck shrank.β_1 nucleates in coarsed or at the neck shrankedβ' precipitates.When the temperature reached 300℃,β' andβ_1 transformed in situ to the stableβphase.Theβphase becomes coarsen with the creep time becoming longer.The influence of creep stress and time on phase transformation is less than that of creep temperature during creep process.β' becomes coarse and partially transforms toβ_1 phase.In the creep process,the dynamic precipitation occurred under the conditions of stress and temperature.
引文
[1]ки.波尔特诺伊,А.А.列别杰夫.镁合金手册工艺与性质[M].北京:冶金工业出版社,1959:1-30.
    [2]徐日瑶.硅热法炼镁理论与实践[M].长沙:中南工业大学出版社,1996:1-40.
    [3]Cahn R.W.非铁合金的结构和性能[M].北京:科学出版社,1999:119-142
    [4]米歇尔M阿维德西安.镁及镁合金专业手册.洛阳:洛阳有色金属加工设计研究院科技信息中心编译,2001:1-20.
    [5]顾威.ZK60镁合金热变形行为的实验研究与数值模拟.[M],长沙:中南大学,2006:1-50.
    [6]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005:1-200.
    [7]陈振华.变形镁合金[M].北京:化学工业出版社,2005:48-320
    [8]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版社,2004:1-22
    [9]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007:80-150.
    [10]Friedrich H.E,Mordike B.L.Magnesium Technology.Berlin:Springer,2006:603-617
    [11]J.E.坎贝尔,W.W格伯里奇,JH安德伍德等.断裂力学在选材方面的应用[M].北京:冶金工业出版社,1992:90-150.
    [12]Avedesian M.M,Baker H.ASM Speciality Handbook--Magnesium and Magnesium Alloys.Ohio:ASM International,1999:1-55
    [13]刘静安.镁合金加工技术发展趋势与开发应用前景(Ⅱ).稀有金属快报,2003,(002):6-8
    [14]王凤娥.国内外镁合金材料的专利分析[J].轻合金加工技术,2006,34(4):7-10
    [15]殷建华.世界镁工业的发展与前景[J].世界有色金属,2005,(7):58-66
    [16]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006
    [17]Polmear I.J.Magnesium alloys and application[J].Materials Science and Technology,1994,10(1):1-16
    [18]严炎祥.镁合金压铸件在汽车工业中的应用和发展[J].汽车材料,2001,(5):18-21
    [19]美国金属学会.金属手册第九版第二卷[M].北京:机械工业出版社,1994:689-790
    [20]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社.2002:16-28
    [21]Schumann S,Friedich H.Research for a new age of magnesium in the automotive industry[J].J Mater Proc Tech,2002,117:276-281
    [22]Aghion E,Bronfin B,Eliezer D.The role of magnesium industry in protecting environment[J].Journal of Materials Processing Technology,2001,117:381-385.
    [23]Mordike B.L,Ebert T.Magnesium properties-applications-potential[J].Materials Science and Engineering A,2001,302:37-45.
    [24]Luo A,Pekguleryuz M.O.Review cast magnesium alloys for elevated temperature applications[J].Journal of Materials Science,1994,29:5259-5271
    [25]Sauerwald F.Der Entwicklungen der awei and Vielstofflegierungen aufder basis magnesium airkon and magnesium-Thorium-Zirkon[J].Metallkde Z,1954,45:257-269.
    [26]Bailey N,Payne R J M.Improvement of the age hardening properties of magnesium-rare-earth alloys by addition of silver[J].J.Inst.Met.,1959,88:417-427
    [27]Melzer H.J.Hollrigl-rosta F,Just E,Kohler J.Magnesium in the Volkswagen.Light metal age[J],1980,38(7):22-28
    [28]Drits M.E,Sviderskaya Z.A,Rokhlin L.L.Effect of alloying on the properties of Mg-Gd alloys[J].Metallovedenie I Termicheskaya Obrabotla Metallov,1979,21(11):62-66
    [29]Sviderskya Z.A,Padezhnova E.M.Phase equilibrium in the manganese rich part of the alloy system Mg-Y-Nd[J].Metally,1971,(6):141-145
    [30]Drits M.E,Pazhnova E.M,Guzei L.S.An invesitigation of phase equilibrium and properties in magnesium alloys Mg-Y-Zr[J].Metally,1977,(3):218-221
    [31]Hultgren R,Desai P.D,Hawkins T.D.Selected Values of the Thermodynamic Properties of Binary Alloys[J].Ohio:Metals Park,1973:55-79
    [32]Manfrinetti P,Gschneidner K.A.Phase equilibrium in the La-Mg(0-65 at.%Mg)and Gd-Mg systems[J].Less-Common Metals,1986,123:267-275.
    [33]Mordike B.L,Henning W.Creep and high temperature properties of magnesium based alloys[J].Magnesium Technology,1986:54-59
    [34]Drits M.E,Rokhlin L.L,Oreshkina A.A.Principles of alloying heat-resistance alloys based on magnesium[J].Metally,1982,(5):98-103
    [35]Wang J.G,Hsiumg L.M,Nieh T.G.Creep of a heat treated Mg-4Y-3RE alloy[J].Materials Science and Engineering,2001,A315:81-88.
    [36]杨杰,稀土元素Ce、Nd对AZ91镁合金[M].长沙:中南大学,2006::40-70.
    [37]刘子利,丁文江,袁广银等.镁铝基耐热铸造镁合金的进展[J].机械工程材 料,2001,25(11):1-5
    [38]谢建昌,李全安,李建弘等.Ca对AZ81镁合金高温性能的影响[J].轻金属,2007,12:58-62.
    [39]中山大学金属系.稀土物理化学常数[M].北京:冶金工业出版社,1978:1-79
    [40]徐光宪.稀土上册[M].北京:冶金工业出版社,1995,29-40.
    [41]F.Rosalbino,E.Angelini,S.De Negri,etal Electrochemical behaviour assessment of novel Mg-rich Mg-Al-RE alloys(RE=Ce,Er)[J].Inermetallics,2006,14(12):1487-1492
    [42]Rokhlim L.L.Decomposition kinetics of a supersaturated solid solution in magnesium with yttrium[J].Metallovedemie i Termicheskaya Obrabotka Metallov,1987,29(3):50-52
    [43]Huang Deming,Chen Yungui,Tang Yongbai,et al.Indentation creep behavior of AE42 and Ca-containing AE41 Alloys[J].Materials Letters,2007,(61):1015-1019
    [44]Polmear I.J.Magnesium alloys and application[J],materials science and technology,1994,(1):1-16
    [45]Wiliam Unsworth.A new magnesium alloy for automobile applications[J],light metal age,1987,(7):10-13
    [46]Taniike S,Kitaguchi Y,Kamado S.Forgeaability of Mg-heavy rare earth meatal alloys and aging characteristics and tensile properties of their forged materials[J].Journal of Japan Institute of Light Metals,1997,47(5):261-266
    [47]Shigeru I,Yuji N,Shigeharu K.Age hardening characteristics and high temperature tensile properties of Mg-Gd and Mg-Dy alloys[J].Journal of Japan Institute of Light Metals,1994,44(1):1-8
    [48]Unsworth W.Role of rare earth elements in the development of magnesium alloys[J].International Journal of materials and Product Teehnoloy,1989,4(4):358-378
    [49]Mordike B.L.Creep-resistant magnesium alloys[J].Materials Science and Engineering A,2002,324:103-112.
    [50]赵志远.铸造稀土镁合金在我国航空工业中的应用[J].铸造技术,1993,7:8-10.
    [51]Suzuki M,Kimura T,Koike J.Creep behavior and deformation substructure of Mg-Y alloys containing dilute content of zinc[J].Materials Science Forum,2003,(426-432):593-598.
    [52]Nie J.F,Muddle B.C.Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy[J].Acta Materialia,2000,48:1691-1703.
    [53]Drits M.E,Rokhlin L.L,Abrukina N.P.Combined solubility of samarium and yttrium in solid magnesium[J].Metally,1984,(5):210-214
    [54]Mordike B.L.Development of highly creep resistant magnesium alloys[J].Journal of Materials Processing Technology,2001,117:391-394.
    [55]Nie J.F.Effect of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J].Scripta Materialia,2003,48:1009-1015
    [56]Nie J.F,Muddle B.C.Percipitation in magnesiun alloy WE54 during isothermal ageing at 250℃[J].Scripta Materialia,1999,40(10):1089-1094
    [57]航空航天材料编委会.航空航天材料手册[M].北京:航空航天出版社,2003:1-50
    [58]Zaki Almad.The properties and application of scandium reinforced aluminum[J].JOM,2003(2):35-39
    [59]张欣.含钪铝合金及其应用[J].稀有金属,2000,31(6):857-861
    [60]BsmolaI,Stul(?)kov(?),JPelcov(?)etal.Phase transformations due to isochronal annealing of Mg-rare earth-Sc-Mn squeeze cast alloys[J].Z.Metallkd.,2003,94(5):553-558
    [61]Buch F.V,Mordike B.L.Development of Mg-Mn-Sc alloys[J].Materials Science and Engineering A,1999,163:1-7
    [62]Pisch A.Mg-rich phase equilibria and thermodynamic assessment of the Mg-Sc system[J].Zeitschrift fur Metallkunde,1998,88(7):474-477
    [63]肖纪美.合金相与相变[M].北京:冶金工业出版社,2004:281-343
    [64]F.Buch et B.Smola,I.Stulikova.Structural aspects of high performance Mg alloys design[J].Materials Science and Engineering,2002,(A324):113-117
    [65]Rokhlin L.L,Nikitina N.I,Dobatkina T.V.Solid-state phase equilibria in the Mg comer of the Mg-Gd-Sm phase diagram[J].Journal of Alloys and Compounds,1996,239(2):209-213
    [66]Negishi Y,Nishimura T,Kiryuu M.Phase diagrams of magnesium-rich portion,aging characteristics and tensile properties of Mg-heavy rare-earth metal(Gd,Dy)-Nd alloys[J].Journal of Japan Institute of Light Metals,1995,45(2):57-63
    [67]Anyanwu I.A,Kamado S,Kojima Y.Creep properties of Mg-Gd-Y-Zr alloys.Materials Transations[J],2001,42(7):1212-1218
    [68]IStul(?)kov(?),BmolaFVonBuchB.L.Mordike.Development of creep resistant Mg-Gd-Sc alloys with low Sc content[J].Mat.-wiss.u.Werkstofftech.,2001,(32): 20-24
    [69]Sukhanov V.D,Dobromyslov A.V,Rokhlin L.L.Decomposition of supersaturated solid solutions Mg-Ho and Mg-Gd[J].Fizika Metallov I Metallovedenie,2002,94(4):72-81
    [70]Rokhlin L.L,Nikitina N.I.Mg-Gd and Mg-Gd-Y alloys[J].Zeitschfift fur Metallkunde,1994,85(12):819-823
    [71]Kamado S,Kitaguchi Y,Harima Y.High temperature deformation characteristics and forgeability of Mg-heavy rare earth element-Zr alloys[J].Journal of Japan Institute of Light Metals,1998,48(4):168-173
    [72]Kawabata T,Matsuda K,Kamado S.HRTEM observation of the precipitates in Mg-Gd-Y-Zr alloy[J].Materials Science Forum,2003,419-422:303-306
    [73]肖阳,张新明,陈健美.Mg-9Gd-4Y-0.6Zr合金挤压T5态的高温组织与力学性能[J].中国有色金属学报,2006,16(4):709-714.
    [74]肖阳,张新明,陈健美.Mg-9Gd-4Y-0.6Mn合金的微观组织与力学性能.材料热处理学报,2007,28(2):46-50
    [75]郑修麟.材料的力学性能[M].西安:西北工业大学出版社,2000,72-124.
    [76]冯端.金属物理学(第三卷金属力学性质)[M].北京:科学出版社,1998:311-588
    [77]J.P.Poirier.晶体的高温塑性变形[M].关德林译.大连:大连理工大学出版社,1989:25-30
    [78]平修二.金属材料的高温强度理论.设计[M].北京:科学出版社,1983:190-320.
    [79]宋余九.金属的晶界与强度[M].西安:西安交通大学出版社,1987:30-70
    [80]S.Spigarelli,MCabibbo,EEvangelista,etal.Analysis of the creep behaviour of a thixoformed AZ91 magnesium alloy[J].Materials Science and Engineering A,2000,(289):172-181
    [81]哈宽富.金属力学性质的微观理论[M].北京:科学出版社:1983,272-274
    [82]陈振华.耐热镁合金[M].北京:化学工业出版社,2007:120-210
    [83]陈国良.高温合金学[M].北京:冶金工业出版社,1988:1-118
    [84]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003:1-130
    [85]张洪杰,孟健,唐定骧.高性能镁.稀土结构材料的研究、开发与应用[J].中国稀土学报,2004,22(1):40-47
    [86]Matsuda T.Muzutani U,Sakabe Y.ELECTRONIC PEROPERTIES OF ICOSAHEDRAL QUASICRYSTALS in Mg-Al-Ag,Mg-Al-Cu and Mg-Zn-Ca ALLOYS[J].Jphs:Condens Matter,1990,(2):6153-6157
    [87]王峰,刘正,冷爱民.Ca对挤压镁合金组织及性能的影响[J].铸造技术,2006,27(11):1200-1204
    [88]Luo A.A.Michael P,alogh,et al,Microstructure of Magnesium-Aluminum-Calcium based alloy[J].Metallurgical and Materials Transactions A,2002,33(3):567-574
    [89]周吉学,汪彬,童文辉等.Sr对AZ91D枝晶生长和析出相的影响[J].金属学报,2007,43(11):1171-1175.
    [90]Pekyulerguz M.O.Development of creep resistant Al-Mg-Sr alloys[J].Metal and materials society,2001:119-125
    [91]k.kucharova et al M.Sovboda,M.Pahutova.Creep and Fracture of engineering materials and structures[J].The Institure of Materials,2001,42:173-181
    [92]Apps P.J,Karimzade H,King J.F.Phase compositions in magnesium-rare earth alloys containing yttrium,gadolinium or dysprosium[J].Scripta Materialia,2003,48:475-481
    [93]宋佩维,郭学锋,井晓天等.Sb对Mg-4Al-2Si合金显微组织和力学性能的影响[J].特种铸造及有色合金,2007,27(2):88-91
    [94]左铁镛.中国镁及镁合金发展战略[J].科学中国人,2006,(3):28-29
    [95]闫蕴琪,张廷杰,邓炬等.耐热镁合金的研究现状与发展方向[J].稀有金属材料与工程,2004,33(6):561-565
    [96]Gschneidner K.A,Calderwood F.W.Handbook of the Physics and Chemistry of Rare Earths.Amsterdam:North-Holland Physics Publishing,1986,8:40-90
    [97]Shigeharu K,Yutaka K,Yoshitada H.High temperature deformation characteristics and forgeability of Mg-Heavy rare earth element-Zr alloys[J].Journal of Japan Institute of Light Metals,1998,48(4):168-173
    [98]Anyanwu I.A.Deppartment of the Air Force.Development of magnesium alloys for aerospace use,In Development of magnesium alloys for aerospace use[M],1989:1-20
    [99]Anyanwu I.A,Kamado S,Kojima Y.Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys[J].Materials Transations,2001,42(7):1206-1211
    [100]S.M.He,X.Q.Zeng,L.M.Peng etal.Precipitation in a Mg-10Gd-3Y-0.4Zr(wt.%) alloy during isothermal aging at 250℃[J].Jounal of Alloy and Compounds,2006,421:309-313
    [101]国家标准化委员会.金属材料高温拉伸试验GB/T4338.北京:中国标准出版社,1995:1-7
    [102]国家标准化委员会.金属拉伸蠕变试验方法In GB/T 2039.北京:中国标准出版社,1980:1-5
    [103]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社,2002,16-28.
    [104]JC(?)zekI,Proch(?)zka,B.Smola.Microstructure and thermal stability of ultra fine gralned Mg and Mg-Gd alloys prepared by high-pressure torsion[J].Materials Science forum,2005,482:183-186
    [105]Suzuki M,Kimura T,Koike J.Effects of zinc on creep strength and deformation substructures in Mg-Y alloy[J].Materials Science and Engineering A,2004,(387-388):706-709
    [106]Peng Z-K,Zheng X-M,Chen J-M.Grain refining mechanism in Mg-9Gd-4Y alloys by Zirconium[J].Materials Science and Technology,2005,21(6):722-726
    [107]Drits M.E,Rokhlin L.L,Nikitina N.I.State diagram of Mg-Y-Gd system in the range rich magnesium[J].Metally,1983,(5):215-219
    [108]Guo Y C,Li J P,Li J S.Mg-Gd-Y system phase diagram calculation and experimental clarification[J].Alloys and Compounds,2006,426:399-404
    [109]肖阳,张新明.Mn,Zr对Mg-Gd-Y合金组织与力学性能的影响[J],中国有色金属学报,2005,15(6):917-922
    [110]侯增寿,卢光熙.金属学原理[M].上海:上海科技出版社,1990,1-176
    [111]X.Gao,S.M.He,X.Q Zeng,etal.Microstructure evolution in a Mg-15Gd-0.5Zr(wt.%) alloy during isothermal aging at 250℃[J].Materials Science and Engineering A,2006,431:322-327
    [112]Drits M.E,Rokhlin L.L,Nikitina N.I.Phase equilibrium in the manganese rich part of the alloy system Mg-Y-Sc[J].Metally,1977,(4):217-221
    [113]Shigeharu K,Shigeru I,Shigeharu K.Effect of yttrium and neodymium additions on aging characteristics and High temperature tensile properties of Mg-10mass%Gd and Mg-10 mass%Dy alloys[J].Journal of Japan Institute of Light Metals,1994,44(10):549-554
    [114]哈宽富.断裂物理基础[M].北京:科学出版社,1999:202-205
    [115]G亨利,D豪斯特曼.宏观断口学和显微断口学[M].北京:机械工业出版社,1990:50-170
    [116]Tsutomu Murai,Shin-ichi Matsuoka,Susumu Miyamoto etal.Effects of extrusion cons on microstructure and mechanical properties of AZ32B magnesium alloy extrusions[J].Journal of Materials Processing Technology,2003,141:207-212
    [117]余琨.稀土变形镁合金组织性能及加工工艺研究[M]长沙,中南大学,2002:130-150
    [118]SHITi,YUKun,LIWen-xian.Hot-compression constitutive relation of as-cast AZ31 magnesium alloy[J].Trans.Nonferrous Met.soc,2007,17:s 336-341
    [119]王春艳,吴昆,郑明毅.ZK60和A11884O33W/ZK60高温压缩流变应力行为的研究[J].材料科学与工艺,2007,15(2):202-210
    [120]张吴,张辉,陈振华等.AM60镁合金的高温热压缩流变应力行为的研究[J].矿冶工程,2006,26(2):92-94
    [121]马志新,张家振,李德富等.Mg-Gd-Y-Zr镁合金热压缩流变应力的研究[J].热处理,2007,36(22):26-33
    [122]张新明,陈健美,邓运来.Mg-Gd-Y-Zr耐热镁合金的压缩变形行为[J].中国有色金属学报,2005,15(12):1925-1932
    [123]余琨,黎文献,王日初等.变形镁合金的研究、开发与应用[J].中国有色金属学报,2003,13(2):277-288
    [124]Poirier J.P.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989,1:99-221
    [125]Yoo M.H,Agnew M.H,Morris J.R.Non-basal slip systems in HCP metals and alloys source mechanisms[J].Materials Science and Engineering A,2001,(319-321):87-92
    [126]Agnew S.R,Tome C.N,Brown D.W.Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling[J].Scripta Materialia,2003,48:1003-1008
    [127]唐仁正.物理冶金基础[M].北京:冶金工业出版社,1997:162-324
    [128]包永千.金属学基础[M].北京:冶金工业出版社,1986:301-334
    [129]吴诗醇.金属超塑性变形理论[M].北京:国防工业出版社,1997:102-104
    [130]C.M.Sellars,S.B.Davenport,N.J.Silk.Development of Constitutive Equations for Modeling of Hot Rolling[J].Mater Sci and Technol,2000,16(5):539-546
    [131]N.Hatta H.Takuda,H.Fujimoto.Modeling on Flow Stress of Mg-Al-Zn Alloys at Elevated Temperatures[J].J Mater Process Technol,1998,80(7):513-516
    [132]A.M.Galiyev,R.O.Kaibyshev.Low temperature superplasticity in a magnesium alloy Proceedings of Superplasticity and Superplastic Forming[J].TMS Publications,superplasticity volume,2002:20-29
    [133]Hatta N.Takuda H,Fujimoto H.Modeling on Flow Stress of Mg-Al-Zn Alloys at Elevated Temperatures[J].J Mater Process Technol,1998,(80):513-516
    [134]陈振华,许艳芳,傅定发等.镁合金的动态再结晶[J].化工进展,2006,25(2):140-145
    [135]夏翠芹,刘平,田保红.Mg-Al-Zn-Nd稀土镁合金热压缩动态再结晶的研究[J].兵器材料科学与工程,2007,30(6):5-9
    [136]李超.金属学原理[M].哈尔滨:哈尔滨工业大学出版社,1996:289-323
    [137]Gottstein G.Galiyev A,Kaibyshev R.Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J].Acta Mater,2001,(49):1199-1207
    [138]余永宁.金属学原理[M].北京:冶金工业出版社,1999:50-90
    [139]Sitdikov o.Kaibyshev R.Dynamic recrystallization of magnesium at ambient temperature[J].Zeitschriftfur Metallkunde,1994,(85):738-743
    [140]刘楚明,刘子娟,朱秀荣等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16(1):1-12
    [141]Shigeharu Kamado,Yo Kojima,Ifeanyi Anthony Anyanwu.Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys.[J]Materials Transactions,2001,42(7):1206-1211
    [142]Honma T,Ohkubo T,Hono K.Chemistry of nanoscale precipitates in Mg-2.1Gd-0.rY-0.2Zr(at.%)alloy investigated by the atom probe technique[J].Materials Science and Engineering A,2005,395:301-306
    [143]Rokhlin L.L,Nikitina N.I..Electron-microscopic investigation of the structure of a precipitated supersaturated Mg-22wt.%Gd solid solution[J].Fizika Metallov Ⅰ Metallovedenie,1986,62(4):781-787
    [144]Peng Q.M,Wu Y.M,Fang D.Q.Microstructures and properties of Mg-7Gd alloy containing Y[J].Alloys and Compounds,2006,421:271-276
    [145]Lorimer G.W,Apps P.J,Karimzadeh H.Improving the performance of Mg-rare earth alloys by the use of Gd or Dy additions[J].Materials Science Forum,2003,(419-422):279-284
    [146]波特,伊斯特林.金属和合金中的相变[M].北京:冶金工业出版社,1988:1-385
    [147]Xiao Yang,Zhang Xin-ming,Chen Bu-xiang.Properties investigation of Mg-9Gd-4Y-0.6Zr alloy[J].Transactions of Nonferrous Metals Society of China,2007, 16(S3):1669-1672
    [148]吕振宜,Mg-Al-Zn合金组织\性能\变形和断裂行为研究.[M]上海:上海交通大学,2001:60-110
    [149]冯端.金属物理学(第一卷 结构与缺陷)[M].北京:科学出版社,1998:5-207
    [150]#12
    [151]Hiroyuki Watanabe,Hidetoshi Somekawa,Kinji Hirai.Dislocation creep behavior in Mg-Al-Zn alloys[J].Materials Science and Engineering A,2005,407:53-61
    [152]Wilson L.Hinton B R W.The corrosion inhibition of zinc with cerous chloride[J].Trans M F,1997,75(5)
    [153]J Gordon.Creep of Metals at High Temperatures[M].London,Mills & Boon Limited,1955:1-30
    [154]Zhi Cheng Li,Hong Zhang,Lu Liu,etal.Growth and morphology of βphase in an Mg-Y-Nd alloy[J].Materials Letters,2004,58:3021-3024
    [155]宫秀敏.相变理论基础及应用[M].武汉:武汉理工大学出版社,2004:112-265
    [156]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,1989:100-130
    [157]Endo T.Nakajima T,Takeda M.Accelerated coarsening of precipitates in crept Al-Cu alloys[J]Materials science and engineering,2004,A1:387-389
    [158]Hidetoshi Somekawa,Kinji Hirai,Hiroyuki Watanabe etal.Dislocation creep behavior in Mg-Al-Zn alloys[J].Materials Science and Engineering A,2005,407:53-61
    [159]Schmid-Fetzer R.J.Gr(O丨¨)bner.Selection of promising quaternary candidates from Mg-Mn-(Sc,Gd,Y,Zr)for development of creep-resistant magnesium alloys[J].Journal of Alloys and compotmds,2001,320:296-301
    [160]杨明波,沈佳,潘复生等.含Sc镁基合金的研究现状及进展[J].铸造,2008,57(5):433-435
    [161]王斌,易丹青,罗文海等.微量Sc元素对AZ91镁合金组织性能的影响[J].铸造,2005,54(5):19-44
    [162]R.Schmid-Fetzer F.V.Buch,B.L.Mordike,A.Pisch.Development of Mg-Mn-Sc alloys[J].Mater.Sci.Eng.,1999,(A263):1-7
    [163]J.Gr(o丨¨)bner,R.Schmid-Fetzer.Selection of promising quatemary candidates from Mg-Mn-(Sc,Gd,Y,Zr) for development of creep-resistant magnesium alloys[J].Journal of Alloys and Compounds,2001,320(2):296-301
    [164]F.Buch et B.Smola,I.Stulikova.Structural aspects of high performance Mg alloys design[J].Materials Science and Engineering,2002,(A324):113-117
    [165]熊创贤,张新明,蒋浩,仲莹莹.热处理对Mg-Y-Mn-Sc合金显微组织演变的影响[J].特种铸造及有色合金,2006,26(3):129-132
    [166]Antion C,Donnadieu P,Perrard F.Hardening precipitation in a Mg-4Y-3RE alloy[J].Acta Materialia,2003,51:5335-5348
    [167]B.SmolalStul(?)kov(?)JPelcov(?)etal.Phase transformations due to isochronal annealing of Mg-rare earth-Sc-Mn squeeze cast alloys.Z.Metallkd.,2003,94(5):553-558
    [168]IvanaStul(?) kov(?),BohumilSmolaJitkaPelcov(?)etal.Phase transformations in creep resistant MgYNdScMn alloy[J].Z.Metallkd,2005,96(7):823-827

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700