用户名: 密码: 验证码:
Pr_xO_y对铸造Al-Cu合金组织和性能的影响规律及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,铝合金的强韧性、抗高温蠕变性和耐蚀性等性能还远远不能满足军工、航空航天与汽车等制造业的快速发展。本文研究了Pr_xO_y对铸造Al-Cu合金组织与性能的影响规律及机制。为发展超高强韧、高抗蠕变、高耐蚀铸造Al-Cu合金提供数据和一定的理论基础。
     提出了AlPrO_3相作为初生α-Al相形核的异质核心,使细小枝晶合并形成细小的“蔷薇”状枝晶组织的变质观点。
     研究发现,1.5wt.%Pr_xO_y变质铸造Al-Cu合金最高抗拉强度和延伸率同时分别达到520MPa和13.5%,比未变质合金分别提高9.5%和68.8%。提出了细小的“蔷薇”状枝晶组织和大量纳米尺寸θ′析出相(Al_2Cu)有效地限制和阻止了位错启动和运动,使强韧性同时提高的观点。
     揭示了耐腐蚀性原因为:在Pr_xO_y变质合金的整个表面(包括晶界和枝晶间)形成了连续的Al_2O_3和Pr_2O_3复合保护膜;在未变质合金表面只形成不连续(晶界和枝晶间缺少保护膜)的Al_2O_3单一保护膜。
     揭示了Pr_xO_y变质合金最小蠕变速率约是未变质合金的1/5~1/3的高的抗高温蠕变性能原因为:Pr_xO_y变质合金中大量、细小的θ′析出相,在高温蠕变过程中具有高的热稳定性,长大缓慢,从而有效地阻碍了位错的运动。
     揭示了较低的应变速率诱发了Pr_xO_y变质合金中纳米尺寸θ′析出相生长和长大的现象。
Recently, there is growing interest in Al alloys because of their interesting properties such as high strength, good ductility, excellent mechanical properties at high temperature and cast ability. Generally, the Al alloys with good mechanical properties applied for the structural materials are used at high temperature, such as Al alloy engine body. It is very important to investigate the creep resistance at high temperature and understand the hot processing parameters. In comparison with the study of the creep behavior for the wrought Al alloys, the creep behavior of the cast Al alloys is not well understood. However, in the cast Al-Cu alloys (such as ZL205A), the precipitations of small coherent Al_2Cu particles increase their tensile strength, but Cu and other alloy elements or impurities, like Fe, which also precipitate as larger intermetallics particles forming a very heterogeneous microstructure and leading to the bad corrosion resistance of these alloys. In order to meet the demand of aircraft construction, space technology, high-speed train, automobile manufacturing and the sailing vessel engine body, it is necessary to investigate the mechanical properties, creep resistance and corrosion resistance of the cast Al-Cu alloys.
     In the present study, it is expected to increase the strength and ductility, improve the creep resistance at high temperature and enhance the corrosion resistance of the cast Al-Cu alloy by Pr_xO_y addition. Therefore, the research of the effect of Pr_xO_y on the microstructure and properties of the cast Al-Cu alloys and their mechanisms has great significance. The major research efforts of the present study are as follows:
     (1) Pr_xO_y was decomposed to form AlPrO_3, which acted as the effective heterogeneous nuclei for the crystallization of the primaryα-Al phase by measurement of the cooling curves and analysis of two-dimensional lattice misfit. It is because there are more nuclei in the modified Al-Cu alloy by Pr_xO_y that the crystal grains and dendrites in the modified Al-Cu alloy are much finer than those of the unmodified Al-Cu alloy.
     (2) The rosette-like microstructure formation of the cast modified Al-Cu alloy was investigated under different cooling rate due to different rapid solidification conditions, i.e. the melt-spun and spurt casting method. At the initial solidification stage, PrAlO_3 phase forms prior toα-Al phase crystal from the liquids, acting as the effective heterogeneous nuclei forα-Al crystals and enhancing the amount of nuclei forα-Al crystals. At the cooling rate of 3.65×106 K/s, only a few uniformly distributed refinedα-Al crystals have the chance to join together and form large grains. When the cooling rate is 105~103 K/s, some refinedα-Al crystals have more opportunity to coalesce each other forming even larger grains to reduce the surface energy. As the cooling rate is 102 K/s, the coalescence and growth of many refinedα-Al crystals lead to the rosette-like microstructure formation.
     (3) The average width and length of the regular, needle-networkθ′phase in the modified Al-Cu alloy by Pr_xO_y were about 10 and 120 nm, respectively. At the same time, the distribution of the nanoscaleθ′phase was regular and homogeneous. However, there were only a few needle-shapedθ′phases with a width of 10-15 nm and length of 120-140 nm in the unmodified Al-Cu alloy.
     (4) A modified cast Al-Cu alloy with ultrahigh tensile strength and ductility of about 520 MPa and 13.5% was obtained by Pr_xO_y addition. The simultaneous increasing of the strength and ductility of the modified alloy may be mainly attributed to the effect of a large number of regular and homogeneous nano-scaleθ′phase precipitates and more crystal grain and dendrite boundaries formed by their refinement on restricting and impeding the dislocation actuation and movement.
     (5) The modified cast Al-Cu alloy is found to have higher ductility at lower strain rates (10-3s-1 and 10-4s-1). The results show that the nano-scale precipitates growth phenomenon is mainly responsible for the higher ductility of the present alloy at lower strain rates. The nano-scale precipitates which grow during the deformation process decrease the sites of the stress concentration, helping further plastic deformation to enhance the ductility. Besides, the dislocation motion is mainly responsible for the tensile plastic deformation of the present alloy at relatively high strain rates (10-1s-1 and 10-2s-1).
     (6) The apparent stress exponents and creep activation energies of the modified and unmodified Al-Cu alloys are 12.4-18.5, 173.5 kJ/mol and 12.9-17.2, 150.2kJ/mol, respectively, which has been explained by means of introducing a threshold stress. The induction of a threshold stress in the analysis leads to a stress exponent of 5, which suggests that the creep behavior of both the present alloys is associated with the lattice diffusion-controlled dislocation climb (n=5). Creep behavior of the unmodified and modified cast Al-Cu alloys was investigated at temperatures from 393 to 483K in the tension test. The creep resistance ability of the Al-Cu alloy modified by Pr_xO_y is almost 3-5 times as high as that of the unmodified Al-Cu alloy, which is attributed to a large number of nano-scaleθ′precipitates with high thermal stability in the modified Al-Cu alloy restricting and impeding the dislocation movement during the creep.
     (7) It was found that the average weight loss of the alloys modified by Pr_xO_y was lower than that of the unmodified alloys under the same conditions. The corrosion potential Ecorr (~–1.07V) of the modified alloy by 1.5wt.%Pr_xO_y shifted positively about 440 mV compared with that of the unmodified alloy. The impedance value of the modified sample by Pr_xO_y was much higher than that of the unmodified sample. These results indicated that the modified Al-Cu alloy by Pr_xO_y had better corrosion resistance than the unmodified Al-Cu alloy.
     (8) The modified Al-Cu alloy by Pr_xO_y had better corrosion resistance than the unmodified Al-Cu alloy, which was mainly attributed to a proposed mechanism, i.e. the dominated existence of continuous and compact protective Al_2O_3 and Pr_2O_3 films enhanced the corrosion resistance of the modified sample by Pr_xO_y during corrosion, while no continuous and compact protective Al_2O_3 films led to the poor corrosion resistance of the unmodified sample.
引文
[1] ZHANG S Y, WANG F P. Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with different SiC particles [J]. Journal of Materials Processing Technology, 2007, 182: 122-127.
    [2] UYYURU R K, SURAPPA M K, BRUSETHAUG S. Effect of reinforcement volume fraction and size distribution on the tribological behavior of Al-composite/brake pad tribo-couple [J]. Wear, 2006, 260: 1248-1255.
    [3]燕战秋,华润兰.论汽车轻量化[J].汽车工程,1994, 16(6): 375-383.
    [4]朴东学,齐笑冰,李惠玉,等.汽车轻量化用金属材料的现状与发展[J].水利电力机械,1999, 6: 38-40.
    [5] JHA A K, DIWAKAR V, SREEKUMAR K, et al. Cracking of AFNOR 7020 aluminium alloy component: A metallurgical investigation [J]. Engineering Failure Analysis, 2006, 13: 1233-1239.
    [6] ZHOU T G, JIANG Z Y, WEN J L, et al. A method to produce aluminum alloy tube busbars by continuous casting-expansion extrusion [J]. Journal of Materials Processing Technology, 2006, 177: 163-166.
    [7] BOUAESHI W B, LI D Y. Effects of Y_2O_3 addition on microstructure, mechanical properties, electrochemical behavior and resistance to corrosive wear of aluminum [J]. Tribology International, 2007, 40: 188-199.
    [8] SANNINO A P, RACK H J. Dry sliding wear of discontinuously reinforced aluminum composites:review and discussion [J]. Wear, 1995, 189: 1-19.
    [9] DAVID A L, RAY M H. Aluminum alloy development efforts for compression dominated structure of aircraft [J]. Light Metal Age, 1991, 2(9): 11-15.
    [10] GUO J Q, OHTERA K. Microstructures and mechanical properties of rapidly solidified high strength Al–Ni based alloys [J]. Acta Materialia, 1998, 46(11): 3829-3838.
    [11] MUNOZ-MORRIS M A, GUTIERREZ-URRUTIA I, CALDERON N, et al. Refinement of precipitates and deformation substructure in an Al-Cu-Li alloy during heavy rolling at elevated temperatures [J]. Material Science and Engineering, 2008, A492: 268-275.
    [12] LIU Y B, LIU Z Y, LI Y T, et al. Enhanced fatigue crack propagation resistance of an Al-Cu-Mg alloy by artificial aging [J]. Material Science and Engineering, 2008, A492: 333-336.
    [13] NIE J F, MUDDLE B C. Strengthening of an Al-Cu-Sn alloy by deformation resistantprecipitate plates [J]. Acta Materialia, 2008, 56: 3490-3501.
    [14] ELISABETTA G, CASARO F. Intermediate temperature creep behavior of a forged Al-Cu-Mg-Si-Mn alloy [J]. Material Science and Engineering, 2007, A462: 384-388.
    [15] MATHIESEN R H, ARNBERG L. Stray crystal formation in Al-20wt % Cu studied by synchrotron X-ray video microscopy [J]. Material Science and Engineering, 2005, A413: 283-287.
    [16] BAKAVOS D, PRANGNELL P B, BES B, et al. The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu: Mg ratio during ageing to a T8 temper [J]. Material Science and Engineering A, 2008, 492: 214-223.
    [17] TZIMAS E, ZAVALIANGOS A. Mechanical behavior of alloys with equiaxed microstructure in the semisolid state at high solid content [J]. Acta Materialia, 1999, 47: 517-528.
    [18] XIE F Y, KRAFT T, ZUO Y, et al. Microstructure and microsegregation in Al-rich Al-Cu-Mg alloys [J]. Acta Materialia, 1999, 47: 489-500.
    [19] LIU C L, LIU X Y, BORUCKLI J. Defect generation and diffusion mechanisms in Al and Al-Cu [J]. Applied Physics Letters, 1999, 74: 34-36.
    [20] ZHANG Z F, WU S D, LI Y J, et al. Cyclic deformation and fatigue properties of Al-0.7wt.% Cu alloy produced by equal channel angular pressing [J]. Materials Science and Engineering A, 2005, 412: 279-286.
    [21] KURUM E C, DONG H B, HUNT J D. Microsegregation in Al-Cu alloys [J]. Metallurgical and Material Transactions A, 2005, 36: 3103-3110.
    [22] SUN X, LI R, WONG K C, et al. Surface effects in chromate conversion coatings on 2024-T3 aluminum alloy [J]. Journal of Materials Science, 2001, 36: 3215-3220.
    [23] ILEVBARE G O, SCULLY J R. Oxygen reduction reaction kinetics on chromate conversion coated Al-Cu, Al-Cu-Mg, and Al-Cu-Mn-Fe intermetallic compounds [J]. Journal of the Electorchemical Society, 2001, 148: B196-B207.
    [24] MA Z Y, TJONG S C. The high-temperature creep behaviour of 2124 aluminium alloys with and without particulate and SiC-whisker reinforcement [J]. Composites Science and Technology, 1999, 59: 737-747.
    [25] ZEREN M. Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys [J]. Journal of Materials Processing Technology, 2005, 169: 292-298.
    [26] WANG X F, SUN D L, WU G H, et al. Effects of aging in electric field on 2024 alloy [J]. Transactions of Nonferrous Metals Society of China, 2002, 12: 283-286.
    [27] BENAVIDES S, LI Y, MURR L E, et al. Low-temperature friction-stir welding of 2024 aluminum [J]. Scripta Materialia, 1999, 41: 809-815.
    [28] YANG C G, GUO X M, HONG Z F, et al. Effect of electromagnetical stirring on the structure and mechanical properties of weld metal of 2219Al-Cu alloy [J]. Acta Metallurgica Sinica, 2005, 41: 1077-1081.
    [29] CLARK W J, RAMSEY J D, MCCREERY R L, et al. A galvanic corrosion approach to investigating chromate effects on aluminum alloy 2024-T3 [J]. Journal of the Electrochemical Society, 2002, 149: B179-B185.
    [30] LEE C S, CHOI Y, PARK I G. Stress corrosion cracking behavior of Al-Cu-Li-Mg-Zr(-Ag) alloys [J]. Metals and Materials International, 2002, 8: 191-196.
    [31] HUTCHINSON C R, FAN X, PENNYCOOK S J, et al. On the origin of the high coarsening resistance of Omega plates in Al-Cu-Mg-Ag alloys [J]. Acta Materialia, 2001, 49: 2827-2841.
    [32]程英亮.铝合金在本体溶液以及薄层液膜下腐蚀的电化学研究[D].杭州:浙江大学,2003.
    [33] OLAFSSON P, SANDSTROM R. Calculations of electrical resistivity for Al-Cu and Al-Mg-Si alloys [J]. Material Science and Technology, 2001, 17: 655-662.
    [34] CHEN L, MYUNG N, SUMODJO P T A. A comparative electrodissolution and localized corrosion study of 2024Al in halide media [J]. Electrochimica Acta, 1999, 44: 2751-2764.
    [35] WANG C Y, MENG Y S, CEDER G, et al. Electrochemical properties of nanostructured Al1-xCux alloys as anode materials for rechargeable lithium-ion batteries [J]. Journal of the Electrochemical Society, 2008, 155: A615-A622.
    [36] PINHERO P J, ANDEREGG J W, SORDELET D J, et al. Surface oxidation of a quasicrystalline Al-Cu-Fe alloy: No effect of surface orientation and grain boundaries on the final state [J]. Journal of Materials Research, 1999, 14: 3185-3188.
    [37] LI W H, BIAN X F, LI H Y, et al. Interaction between rare earth Ce and hydrogen in Al-Cu eutectic alloy melt [J]. Acta Metallurgica Sinica, 2001, 37:825-828.
    [38]刘晓涛.高强铝合金电磁场热处理工艺及理论研究[D].沈阳:东北大学,2003.
    [39]王涛,尹志民.高强变形铝合金的研究现状和发展趋势[J].稀土金属,2006, 30(2): 197-202.
    [40] KUSUI J, FUJII K. Development of superhigh strength Al-Zn-Mg-Cu PM alloys [J]. Materials Science Forum, 1996, 217-222: 1823-1828.
    [41]周鸿章,李念奎.超高强度铝合金强韧化的发展过程及方向[J].铝-21世纪基础研究与技术发展研讨会论文集第一分册, 2002.
    [42] XIONG B Q, ZHANG Y A, SHI L K. Research on ultra-high strength Al-11Zn-2 9Mg-1 7Cu alloy prepared by spray forming process [J]. Materials Science Forum, 2005, 475-479: 2785-2789.
    [43] WEI Q, XIONG B Q, ZHANG Y A. Production of high strength Al-Zn-Mg-Cu alloys by spray forming process [J]. Transaction of Nonferrous Metals Society of China, 2001, 11(2): 258-261.
    [44]张永安,朱宝宏,刘伟红,等. Zn含量对喷射成形7xxx系列高强度铝合金组织与力学性能的影响[J].中国有色金属学报, 2005, 15(7): 1013-1017.
    [45]李德成,刘玉贤,丁建国.高强铸造铝合金A-U5GT及其应用[J].铸造,1998, 11: 34-36.
    [46] NAKAYAMA M, MIURA Y. The effect of Scandium on the age-hardening behavior of an Al-Cu alloy [J]. The 4th International Conference on Aluminum, 1994, 538-545.
    [47]舒群,陈玉勇,徐丽娟.砂型铸造ZL205A合金组织与力学性能的研究[J].特种铸造及有色合金, 2005, 25: 75-78.
    [48]吕杰,刘伯操.高强韧铸造铝合金[J].铸造, 2000, 2: 66-67.
    [49]郭国文,李元元.高强韧铸造铝合金材料及其挤压铸造技术的研究[M].广州:华南理工大学出版社,2002.
    [50]刘伯操. ZL205A高强度铸造铝合金的研究,第六研究院第六研究所术总结, 1976.
    [51]黄恢元主编.铸造手册[M].北京:机械工业出版社,1993.
    [52] ADLER P N, DEIASI R. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7075 aluminum alloy [J]. Metallurgical Transaction A, 1972, 3(12): 3191-3200.
    [53] SONG R G, TSENG M K, ZHANG B J. Grain boundary segregation and hydrogen-induced fracture in 7050 alumminum alloy [J]. Acta Materialia, 1996, 44: 3241-3248.
    [54]吴一雷,李永伟,强俊,等.超高强铝合金的发展及应用[J].航空材料学报, 1994, 14: 49-55.
    [55] ALPAY S P, GüRBüZ R. Effect of ageing on the fatigue crack growth kinetics of an Al-Zn-Mg-Cu alloy in two directions [J]. Scripta Metallurgica et Materialia, 1994, 30: 423-427.
    [56] ALDER P N, DEIASI R. Calorimetric studies of 7000 series aluminum alloys: Comparison of 7075, 7050 and RX720 alloys [J]. Metallurgical and Materials Transaction, 1977, 8 (7): A1185-1190.
    [57]张国君,刘刚,丁向东,等.含有不同尺度量级第二相的高强铝合金拉伸延性模型[J].中国有色金属学报, 2002, 12S1: 1-10.
    [58] VAN STONE R H, COX T B, LOW J R. Microstructural aspects of fracture by dimpled rupture [J]. International Metals Reviews, 1985, 30: 157-179.
    [59] BROEK D. The role of inclusions in ductile fracture and fracture toughness [J]. Engineering Fracture Mechanics, 1973, 5: 55-66.
    [60] PANDEY A B, MAJUMDAR B S, MIRACLE D B. Effects of thickness and precracking on the fracture toughness of particle-reinforced Al-alloy composites [J]. Metallurgica Matererialia Transaction A, 1998, 29: 1237-1243.
    [61] PRINCKE C, MARTIN J W. Effects of dispersoids upon the micromechanisms ofcrack propagation in Al-Mg-Si alloys [J]. Acta Metallurgica Materialia, 1979, 27: 1401-1408.
    [62] ZHAO Y H, LIAO X Z, CHENG S, et al. Simultaneously increasing the ductility and strength of nanostructured alloys [J]. Advance Materials, 2006, 18: 2280-2283.
    [63] KIM W J, CHUNG C S, MA D S, et al. Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging [J]. Scripta Materialia, 2003, 49(4): 333-338.
    [64] CHENG S, ZHAO Y H, ZHU Y T, et al. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation [J]. Acta Materialia, 2007, 55: 5822-5832.
    [65]潘青林. Al-Mg-Sc和Al-Mg-Sc-Zr合金的性能与组织结构研究[D].长沙:中南工业大学,2000.
    [66]徐国富,聂祚仁,金头男,等.微量钪对Al-3%Cu合金组织与性能的影响[J].金属热处理,2004, 29(3): 24-27.
    [67]邢泽炳. Er微合金化的Al-4.5Mg-0.7Mn-0.1Zr合金的组织与性能研究[D].北京:北京工业,2008.
    [68]陈铮,王永欣,丁占来,等.稀土铝锂合金的外强化和内韧化机制[J].稀土,1998, 19(2): 23-32.
    [69] XU L, WANG Y X, ZHAO Z L, et al. Effect of delamination on mechanical properties of Al-Li alloy modified by rare earth element Ce [J]. Rare Metals, 1999, 19(1): 33-42.
    [70]赵志龙,张海南,刘林,等. 2090铝锂合金中稀土Ce微合金化作用分析[J].稀有金属材料与工程, 2000, 29(5): 304-306.
    [71] OKADA Hiroshi, KANNO Motohiro. Hot ductility of Al-Mg and Al-Mg-Y alloys [J]. Scripta Materialia, 1997, 37(6): 781-786.
    [72]崔建忠,胡骏,马龙翔. La对Al-Mg-Li合金组织和性能的影响[J].材料科学进展, 1991, 5(2): 147-151.
    [73]桂全红,蒋晓军,马禄铭,等.微量Y对Al-Li合金的析出相和力学性能的影响[J].金属学报, 1993, 29(4): A165-170.
    [74] SENKOVD O N, MIRACLE D B, MILMAN Yu V, et al. Low temperature mechanical properties of Scandium-modified Al-Zn-Mg-Cu alloys [J]. Materials Science Forum, 2002, 396-402: 1127-1132.
    [75]魏晓伟.高铝锌合金压蠕变行为研究[D].成都:四川大学,2003.
    [76]平修二.金属材料的高温强度[M].北京:北京科学出版社,1983.
    [77]陈国良.高温合金学[M].北京:冶金工业出版社,1988.
    [78] PARK K T, MOHAMED F A. Creep strengthening in a discontinuous SiC-Al composite [J]. Metallurgical Transaction, 1995, A26: 31191-3129.
    [79] KRAJEWSKI P E, ALLISON J E, JONES J W. The influence of matrix microstructure and particle reinforcement on the creep behavior of 2219 aluminum [J]. Metallurgical Transaction, 1993, A24(12): 2731-2741.
    [80] KLOC L, SPIGARELLI S, CERRI E, et al. Creep behavior of an 2024 Al alloy produced by powder metallurgy [J]. Acta Materialia, 1997, 45: 529-540.
    [81] LI Y, NUTT S R, MOHAMED F A. An investigation of creep and substructure formation in 2124 Al [J]. Acta Materialia, 1997, 45: 2607-2620.
    [82] BARDI F, CABIBBO M, EVANGELISTA E, et al. An analysis of hot deformation of an Al-Cu-Mg alloy produced by powder metallurgy [J]. Materials Science and Engineering, 2003, A339: 43-52.
    [83] NAKAJIMA T, TAKEDA M, ENDO T. Accelerated coarsening of precipitates in crept Al–Cu alloys [J]. Materials Science and Engineering, 2004, A387-389: 670-673.
    [84] SOLIMAN M S. Effect of Cu concentration on the high-temperature creep behavior of Al-Cu solid solution alloys [J]. Materials Science and Engineering, 1995, A201: 111-117.
    [85] WANG J, WU X, XIA K. Creep behavior at elevated temperatures of an Al-Cu-Mg-Ag alloy [J]. Materials Science and Engineering, 1997, A234-236: 287-290.
    [86] LUMLEY R N, POLMEAR I J. The effect of long term creep exposure on the microstructure and properties of an underaged Al-Cu-Mg-Ag alloy [J]. Scripta Materialia, 2004, 50: 1227-1231.
    [87] SPIGARELLI S, EVANGELISTA E, CUCCHIERI S. Analysis of the creep response of an Al-17Si-4Cu-0 55Mg alloy [J]. Materials Science and Engineering, 2004, A387-389: 702-705.
    [88] BAILY G H. The corrosion of aluminum in several salts media [J]. Engineering, 1912, 95: 374-379.
    [89] KATOH M. Influence of chelating agent (citric acid) and F- on corrosion of Al [J]. Corrosion Science, 1968, 8(6): 423-431.
    [90] LATIMER W M, JOLLY W L. Heats and entropies of successive steps in the formation of AlF63- [J]. Journal of American Chemical Society, 1953, 75: 1548-1550.
    [91] STIRRUP B N, HAMPSON N A, MIDGLEY I S. Pit formation in relation to the etching of aluminum in chloride [J]. Journal of Applied Electrochemistry, 1975, 5: 229-235.
    [92] VIDEM K. Keller Reports No K R-149, Institute for Atommenergi, 1966.
    [93] RICHARDSON J A, WOOD G C. A study of the pitting corrosion of Al by scanningelectron microscopy [J]. Corrosion Science, 1970, 10: 313-323.
    [94] LTENPHOHL D A, POST W. Hydrated oxide films on aluminum-their growth and their importance in electrolytic capacitors [J]. Journal of the Electrochemical Society, 1961, 108: 628-631.
    [95] BOHNI H, UHLIG H H. Environmental factors affecting the critical pitting potential of aluminum [J]. Journal of the Electrochemical Society, 1969, 116: 906-910.
    [96] FOROULIS Z A, THUBRIKAR M J. On the kinetics of the breakdown of the passivity of pre-anodized aluminum by chloride ions [J]. Journal of the Electrochemical Society, 1975, 122: 1296-1301.
    [97] ASM. Specialty Handbook: Aluminum and Aluminum Alloys. Materials Park, OH, ASM Int., 1994.
    [98] LIU Y, ARENAS M A, GARCIA-VERGARA S J, et al. Behaviour of copper during alkaline corrosion of Al-Cu alloys [J]. Corrosion Science, 2008, 50: 1475-1480.
    [99]曹发和.高强度航空铝合金局部腐蚀的电化学研究[D].杭州:浙江大学,2005.
    [100] LI J F, ZHENG Z Q, JIANG N, et al. Localized corrosion mechanism of 2000-series Al alloy containing S and Al2Cu precipitates in 4.0% NaCl solution at PH 6.1 [J]. Materials Chemistry and Physics, 2005, 91: 325-329.
    [101] LI J F, ZHENG Z Q, LI S C, et al. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys [J]. Corrosion Science, 2007, 49: 2436-2449.
    [102] BETHENCOURT M, BOTANA F J, CANO M J, et al. Behaviour of the alloy AA2017 in aqueous solutions of NaCl Part I: Corrosion mechanisms [J]. Corrosion Science, 2009, 51: 518-524.
    [103] LI D, ZHANG Q, WANG D Z, et al. Study of the simulated test for the intergranular corrosion of LY12CZ Al alloy [J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(1): 1-4.
    [104] BUCHHEIT R G, MORAN J P, STONER G E. Localized corrosion behavior of alloy 2090-the role of microstructure heterogeneity [J]. Corrosion, 1990, 46(8): 610–617.
    [105] FURNEAUX R C, THOMPSOM G E, WOOD G C. An electronoptical study of the conversion coating formed on aluminium in a chromate/fluoride solution [J]. Corrosion Science, 1979, 19: 63-71.
    [106] GOEMINNE G, TERRYN H, VEREECKEN J. EIS study of the influence of aluminium etching on the growth of chromium phosphate conversion layers [J]. Electrochimica Acta, 1998, 43: 1829-1838.
    [107] CAMPESTRINI P, WESTING V, WIT J H. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy: Part II: EIS investigation [J]. Electrochimica Acta, 2001, 46: 2631-2647.
    [108] AKIYAMA E, MARKWORTH A J, MCCOY J K, et al. Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings on Al Alloys: Kinetics of Release [J]. Journal of the Electrochemical Society, 2003, 150: 83-91.
    [109] ALDYKEWICZ A J, DAVENPORT A J, ISAACS H S. The investigation of cerium as a cathodic inhibitor for aluminum-copper Alloys [J]. Journal of the Electrochemical Society, 1995, 142: 3342-3350.
    [110] LEWINGTON T A, ALEXANDER M R, THOMPSON G E, et al. Shortlisted characterisation of alkyl phosphonic acid monolayers self assembled on hydrated surface of aluminium [J]. Surface Engineering, 2002, 18: 228-232.
    [111] HINTON B R W, ARNOT D R, RYAN N E. Cerium conversion coatings for the corrosion protection of aluminum [J]. Metals Forum, 1986, 9: 162-173.
    [112] MANSFELD F, WANG Y, SHIH H. The Ce-Mo process for the development of a stainless aluminum [J]. Electrochimica Acta, 1992, 37: 2277-2282.
    [113] YU X W, CAO C N, YAO Z M, et al. Study of double layer rare earth metal conversion coating on aluminum alloy LY12 [J]. Corrosion Science, 2001, 43: 1283-1294.
    [114] Yu X W, CAO C N, YAO Z M, et al. Corrosion behavior of rare earth metal (REM) conversion coatings on aluminum alloy LY12 [J]. Materials Science and Engineering, 2000, A284: 56-63.
    [115] CAMPESTRINI P, TERRYN H, HOVESTAD A, et al. Formation of a cerium-based conversion coating on AA2024: relationship with the microstructure [J]. Surface and Coating Technology, 2004, 176: 365-381.
    [116] FAHRENHOLTZ W G, MATTHEW J, ZHOU K, et al. Characterization of cerium-based conversion coatings for corrosion protection of aluminum alloys [J]. Surface and Coating Technology, 2002, 155: 208-213.
    [117] HUGHES A E, HARDIN S G, WITTEL K W, et al. Proceedings of the Third International Symposium on Aluminium Surface Science and Technology, Bonn, Germaay, 2003.
    [118] PALOMINO L E M, CASTRO de J F, AOKI I V, et al. Microstructural and electrochemical characterization of environmentally friendly conversion layers on aluminium alloys [J]. Journal of the Brazilian Chemical Society, 2003, 14: 651-659.
    [119] DECROLY A, PETITJEAN J P. Study of the deposition of cerium oxide by conversion on to aluminium alloys [J]. Surface and Coating Technology, 2005, 194: 1-9.
    [120] GOEMINNE G, TERRYN H, VEREECKEN J. Characterisation of conversion layers on aluminium by means of electrochemical impedance spectroscopy [J]. Electrochimica Acta, 1995, 40: 479-486.
    [121] MOUTARLIER V, GIGANDET M P, NORMAND B, et al. EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species [J]. Corrosion Science, 2005, 47: 937-951.
    [122] MANSFELD F, WANG Y, SHIH H. The Ce-Mo process for the development of a stainless aluminum [J]. Electrochimica Acta, 1992, 37: 2277-2282.
    [123] HUGHES A E, GORMAN J D, PATERSON P J. The characterization ofCe-Mo-based conversion coatings on Al-alloys: Part I [J]. Corrosion Science, 1996, 38: 1957-1976.
    [124]于兴文,曹楚南,林海潮. LY12铝合金表面稀土转化膜腐蚀行为的研究[J].中国稀土学报, 2000, 18(3): 243-247.
    [125]秦庆东. Mg2Si/Al复合材料组织与性能的研究[D].长春:吉林大学,2008.
    [126]许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制[D].长春:吉林大学,2007.
    [127] HAN Q, FENG X, LIU S, et al. Equilibria between cerium or neodymium and oxygen in molten iron [J]. Metallurgical Transaction B, 1990, 21B: 295-302.
    [128] FLEMINGS M C. Solidification Processing [M]. McGraw-Hall, Inc., 1974.
    [129] MIEDEMA A R, CHATEL de P F, BOER de F R. Cohesion in alloys-fundamentals of a semi-empirical model [J]. Phusica B, 1980, 100B: 1-28.
    [130]丁学勇,王文忠.二元系熔体中组元活度的计算式[J].金属学报, 1994, 30B: 444-447.
    [131]王经涛,周新铭,戴红.稀土元素在Al中固溶度亚稳扩展研究[J].金属学报, 1992, 28(3): B95-B100.
    [132]张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用—原子尺度材料设计理论[M].长沙:湖南大学出版社,2003.
    [133] HUME-ROTHERY W, SMELLMAN R E, HAWWORTH C W. Structure of Metals and Alloys [M]. 5th ed. London: Institute of metals, 1969.
    [134]潘金生,仝健明,田民波.材料科学基础[M].北京:清华大学出版社,1998.
    [135] GACHNEIDNER K A. Theory of alloy phase formation [M]. BENNETT L H ed. New York: The Metallurgical Society of AIME, 1980.
    [136] BRAMFITT B L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron [J]. Metallurgical Transactions, 1970, (1): 1987-1991.
    [137]邦达列夫等著,王永海等译.变形铝合金的细化处理[M].北京:冶金工业出版社,1988.
    [138]于承训.工程传热学[M].成都:西南交通大学出版社,1990.
    [139]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [140] DAS J, PAULY S, DUHAMEL C, et al. Microstructure and mechanical properties of slowly cooled Cu47 5Zr47 5Al5 [J]. Journal of Materials Research, 2007, 22(2): 326-333.
    [141] KAMMER D, VOORHEES P W. The morphological evolution of dendritic microstructures during coarsening [J]. Acta Materialia, 2006, 54: 1549-1558.
    [142] CHEN Y Z, YANG G C, LIU F, et al. Microstructure evolution in undercooled Fe-7 5 at% Ni alloys [J]. Journal of Crystal Growth, 2005, 282: 490-497.
    [143] TEE K L, LU L, LAI M O. Synthesis of in situ Al-TiB2 composites using stir cast route [J]. Composite Structure, 1999, 47(1): 589-593.
    [144] TEE K L, LU L, LAI M O. In-situ stir cast Al-TiB2 composite: Matrix modification [J]. Zeitschrift Fuer Metallkunde, 2000, 91(3): 251-257.
    [145] SHAN F L, GAO Z M, WANG Y M. Microhardness evaluation of Cu-Ni multilayered films by X-ray diffraction line profile analysis [J]. Thin solid films, 1998, 324: 162-164.
    [146]赵品,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [147] WANG Y M, MA E, CHEN M W. Enhanced tensile ductility and toughness in nanostructured Cu [J]. Applied Physics Letters, 2002, 80: 2395-2397.
    [148] ZHANG L C, DAS J, LU H B, et al. High strength Ti-Fe-Sn ultrafine composites with large plasticity [J]. Scripta Materialia, 2007, 57: 101-104.
    [149]卢光熙,赵子伟译.物理冶金学基础[M].上海:上海科学技术出版社,1980.
    [150] MEYERS M A, CHAWLA K K, Mechanical Metallurgy. Prentice-Hall, Englewood Cliffs, NJ, 1984.
    [151] FAN G J, WANG G Y, CHOO H, et al. Deformation behavior of an ultrafine-grained Al-Mg alloy at different strain rates [J]. Scripta Materialia, 2005, 52: 929-933.
    [152] WAGENHOFER M, ERICKSON-NATISHAN M, ARMSTRONG R W, et al. Influences of strain rate and grain size on yield and serrated flow in commercial Al-Mg alloy 5086 [J]. Scripta Materialia, 1999, 41: 1177-1184.
    [153] COURTNEY T H. Mechanical behavior of materials [M]. McGraw-Hill, New York, 1990.
    [154]冯端.金属物理[M].北京:科学出版社,1975.
    [155] LUNDY T S, MURDOCK J R. Diffusion of Al26 and Mn54 in aluminium [J]. Jounal of Applied Physics, 1962, 33: 1671-1673.
    [156] PANDEY A B, MISHRA R S, MAHAJAN Y R. Creep behaviour of an aluminium-silicon carbide particulate composite [J]. Scripta Metallurgica Materialia, 1990, 24: 1565-1570.
    [157] MOHAMED F A, PARK K T, LAVERNIA E J. Creep behavior of discontinuous SiC-Al composites [J]. Materials Science and Engineering, 1992, A150: 21-35.
    [158] LI Y, MOHAMED F A. An investigation of creep behavior in an SiC-2124Al composite [J]. Acta Materialia, 1997, 45: 4775-4785.
    [159] LI Y, LANGDON T G. Creep behavior of an Al-6061 metal matrix composite reinforced with alumina particulates [J]. Acta Materialia, 1997, 45: 4797-4806.
    [160] PURUSHOTHAMAN S, TIEN J X. Role of back stress in the creep behavior of particle strengthened alloys [J]. Acta Metallurgica Materialia, 1978, 26: 519-528.
    [161] LAGNEBORG R, BERGMAN B. Stress/creep rate behavior of precipitation hardened alloys [J]. Metallic Science, 1976, 10: 20-28.
    [162] ZHANG P. Creep behavior of the die-cast Mg-Al alloy AS21 [J]. Scripta Materials, 2005, 52: 277-282.
    [163] SHERBY O D, BURKE P M. Mechanical behavior of crystalline solids at elevated temperature [J]. Progress Materials Science, 1968, 13: 323-390.
    [164] MOHAMED F A, LANGDON T G. Transition from dislocation climb to viscous glide in creep of solid solution alloys [J]. Acta Metallurgica Materialia, 1974, 22: 779-788.
    [165] PANDEY A B, MISHRA R S, MAHAJAN Y R. High-temperature creep of Al-TiB2 particulate composites [J]. Materials Science and Engineering, 1994, Al89: 95-104.
    [166] PARK K T, LAVERNIA E J, MOHAMED F A. High temperature creep of silicon carbide particulate reinforced aluminum [J]. Acta Metallurgica Materialia, 1990, 38: 2149-2159.
    [167] XIAO D H, WANG J N, DING D Y, et al. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al–Cu–Mg–Ag alloy [J]. Journal of Alloys and Compounds, 2003, 352: 84-88.
    [168]杨军军.稀土元素Er在Al-Mg和Al-Zn-Mg合金中的作用机理研究[D].北京:北京工业大学,2004.
    [169] KEDDAM M, KUNTZ C, TAKENOUTI H, et al. Exfoliation corrosion of aluminum alloys examined by electrode impedance [J]. Electrochimica Acta, 1997, 42(1): 87-97.
    [170] CAO C N, WANG J, LIN H C. Effect of Cl- ion on the impedance of passive film covered electrodes [J]. Journal of Chinese Society for Corrosion and Protection, 1989, 9(4): 261-270.
    [171] WLOKA J, VIRTANEN S. Influence of scandium on the pitting behaviour of Al-Zn-Mg-Cu alloys [J]. Acta Materialia, 2007, 55: 6666-6672.
    [172] KERTZ J E, GOUMA P I, BUCHHEIT R G. Localized corrosion susceptibility of Al-Cu-Li-Mg-Zn alloy AF/C458 due to interrupted quenching from solutionizing temperatures [J]. Metallurgical and Materials Transactions, 2001, A 32(10): 2561-2573.
    [173] RYUM N. The influence of a Precipitation-Free Zone on the mechanical properties of an Al-Zn-Mg alloy [J]. Acta Metallurgica, 1968, 16(3): 327-332.
    [174]宫木美光.铝合金的微观组织与性能[J].轻金属, 1976, 26(12): 211-215.
    [175] UNWIN B. The microstructure and mechanical properties of Al-6%Zn-3%Mg alloy [J]. Journal of the Institute of Metals, 1969, 97(6): 299-310.
    [176]肖程波,韩雅芳.钇提高Ni3Al基合金IC6氧化皮/基体粘着力的机制[J].金属学报, 1998, 34: 1158-1162.
    [177]朱日彰,何业东,齐慧滨.高温腐蚀及耐高温腐蚀材料[M].上海:上海科学技术出版社,1995.
    [178]曾小勤.阻燃镁合金及其阻燃机理研究[D].上海:上海交通大学,2001.
    [179] International Center for Diffraction Data: Powder Diffraction File, Alphabetical Indexes (International Center for Diffraction Data, 2000).
    [180]余琨,黎文献,李松瑞.含稀土镁合金的研究与开发[J].特种铸造及有色合金,2001, 1: 41-43.
    [181] HINTON B R W, ARNOTT D R, RYAN N E. Cerium conversion coatings for the corrosion protection of aluminum [J]. Materials Forum, 1986, 9(3): 162-173.
    [182]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700