用户名: 密码: 验证码:
热连轧Ti-6Al-4V合金的力学、蠕变行为及微观结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过对热连轧Ti-6Al-4V合金进行不同工艺热处理、蠕变性能测试及组织形貌观察,研究制备工艺对合金组织结构和蠕变性能的影响;热处理对合金组织结构、力学性能和蠕变性能的影响,及长期时效对合金组织结构和蠕变性能的影响,通过EDS分析和XRD分析,研究了不同工艺制备合金的相组成,热处理对合金相组成的影响,通过SEM形貌观察及TEM衍衬分析,研究合金在蠕变期间的微观变形与断裂机制。得出如下结论:
     热连轧合金的微观组织结构由两相组成,相沿流变方向呈板条状分布,白色线条状β相沿相边界连续分布。与锻造态合金相比,板条状相的宽度较小。在400℃~420℃和550MPa~600MPa施加温度和应力范围内,测定出锻造和热连轧态合金稳态蠕变期间的蠕变激活能分别为102kJ/mol,108kJ/mol。锻造态合金在蠕变期间的变形机制是位错的双取向滑移,其中,近水平方向的位错在(2110)柱面滑移,垂直的位错在(1103)非基面滑移。热连轧态合金中相的变形机制是类直线的位错和位错在HCP结构的锥面和柱面发生双取向滑移。表明,热连轧态合金中易开动的滑移系较多,蠕变抗力较低,蠕变期间位错易于滑移是合金具有较高应变速率和较短蠕变寿命的主要原因。
     热连轧合金经两相区固溶及时效处理后,获双态组织,由高固溶度的等轴相和高体积分数的片层状组织组成,随着固溶温度提高,合金中等轴相的体积分数逐渐减少,且针状和羽毛状马氏体相存在于层片状组织中。热连轧合金经单相区固溶及时效处理后,组织结构为网篮组织,其中,片层状α相与β相呈多组平行束形式存在,各组平行束互成一定角度的。热连轧态合金经480℃时效150h,合金中相呈螺旋状形态,β相沿相界不连续分布,有粒状β相在相内析出,且弥散分布,并沿一定取向规则排列。经两相区和单相区固溶及长期时效处理后,合金仍获双态和网篮组织,并有大量粒状相在晶内和相内弥散析出。
     随着固溶温度的升高,合金中等轴相的体积分数减少,使其在室温、400℃~500℃的抗拉强度提高。经1000℃固溶及长期时效处理合金在室温的抗拉强度高于960℃和980℃固溶及时效处理合金,但该合金在400℃~500℃范围内的抗拉强度低于960℃和980℃固溶及时效处理合金,且该合金的断裂机制为韧性混晶断裂。
     在400℃~420℃和575MPa~625MPa施加温度和应力范围内,940℃和1000℃固溶及时效处理合金在稳态蠕变期间的激活能分别为185kJ/mol和249.8kJ/mol。在试验的温度和应力范围内,与双态组织合金相比,网篮组织合金具有较好的蠕变抗力。双态组织合金的蠕变机制是波浪状位错在HCP结构的相中发生锥面滑移;而网篮组织合金的蠕变机制是(1/2)<111>位错在BCC结构的β相中发生多系滑移,其中,高体积分数富含元素V的β相是使合金具有较高蠕变抗力的主要原因。
     在400℃~420℃和550MPa~600MPa的温度和施加应力范围内,与热连轧合金、1000℃固溶及时效合金相比较,1000℃固溶及长期时效合金具有较好的蠕变抗力和较长的蠕变寿命。直接长期时效态合金在蠕变期间发生动态再结晶,并形成亚晶,随着蠕变进行,应变量增大,亚晶尺寸减小,并在亚晶中继续发生位错的滑移是直接长期时效态合金在蠕变期间的变形机制。直接长期时效态合金的蠕变机制是弯钩状位错在HCP结构的相中发生柱面滑移。两相区及单相区固溶处理合金,经长期时效处理后,其组织结构仍为双态和网篮组织,其中,大量粒状相在晶内和相内析出,可阻碍位错运动,是使合金具有良好蠕变抗力和较长蠕变寿命的主要原因。
By means of heat treatment, creep properties measurement and microstructureobservation, the influence of preparation technique and heat treatment on microstructure andcreep properties of hot rolled alloy are investigated. By means of SEM/EDS compositionanalysis and XRD analysis, and combined to the contrast analysis of dislocationconfiguration, the influences of heat treatment on the phases constitution and deformationmechanism of the alloy during creep are investigated. Some results are obtained given asfollows:
     The microstructure of hot rolled alloy consists of and phases, phase in the alloydisplays the strip-like configuration along the rolling direction, and the line-like phase isdistributed along the boundary of the stripe-like phase, but the width of the stripe-like phase is less than that of the forged alloy. In the range of the applied stress(550MPa~600MPa) and temperature (400℃~420℃), the creep activation energies of theforged and hot rolled alloy are measured to be102kJ/mol and108kJ/mol, respectively. Thedeformation mechanism of the forged alloy during creep is duplex slips of dislocations, the dislocations with horizontal direction are activated on the (2110) prismatic planes,and the
dislocations with upright feature are activated on the (1103) non-basal planes.
     The deformation mechanism of the phase in hot rolled alloy during creep is duplexslips of the line-like and
dislocations on the prismatic and pyramidal planes.Therefore, the lower creep resistance is thought to be the main reason of the alloy having thehigher creep strain rate and short creep life.
     After solution treatment at the temperature being lower than β phase transition point,the microstructure of hot rolled alloy consists of bimodal structure, including thatsuper-saturation equiaxed phase and lamellar structure. The quantity of the equiaxedphase decreases as solution temperature enhances, and the needle-like and feather-likemartensite are distributed in the lamellar structure. After solution treatment at thetemperature being higher than β phase transition point, the microstructure of hot rolled alloyconsists of basketweave structure, the lamellar structure of phases is arranged along thedirections at a certain angle. After aging at480℃for150h, phase in the alloy displays theconfiguration with spiral-like feature, the particle-like phase is distributed along theboundary of lamellar phase, and the particle-like β phase is dispersedly precipitated withinphase along the certain orientation. After aging for150h at480℃, the microstructures of the alloy solution treated in α/β phase and β phase region still consists of bimodal structureand basketweave structure, respectively, but significant amount of particle-like phase isdispersedly precipitated within the grains and phase.
     The quantity of the equiaxed phase in the alloy decreases as solution temperatureincreases, which enhances tensile strength of the alloy at room temperature and400℃~500℃range. Compared to the strength of the alloy solution treated at960℃and980℃, afteraging at480℃for150h, the alloy solution treated at1000℃displays a higher tensilestrength at room temperature, but the alloy displays a lower tensile strength at400℃~500℃ranges.
     In the applied stress of575MPa~625MPa and temperature of400℃~420℃ranges, thecreep activation energies of the alloy solution treated at940℃,1000℃are measured to be185kJ/mol and249.8kJ/mol, respectively. Compared to the alloy with bimodal structure, thealloy with basketweave structure has the better creep resistance under the conditions of theapplied stresses and temperatures. The deformation mechanism of the alloy with bimodalstructure during creep is the wavy-like dislocations activated on the pyramidal planesin phase with HCP structure, while deformation mechanism of the alloy with basketweavestructure during creep is (1/2)<111> dislocations activated in slip systems in phase withBCC structure,and it is thought that the V-rich β phase with high volume fraction isresponsible for improving creep resistance of the alloy.
     In the range of the applied stress (550MPa~600MPa) and temperature (400℃~420℃),compared to hot rolled alloy and the alloy solution treated at1000℃, after aging for150h at480℃, the alloy solution treated at1000℃displays the better creep resistance and longercreep lifetime. The dynamic recrystallization of the alloy during creep occurs to form thesubgrains structure, and the size of the subgrains decreases as the creep goes on. Anddislocation slip in the subgrains is thought to be deformation mechanism of the alloy in thelater stage of creep. Moreover, deformation mechanism of the alloy during creep is thehook-like dislocations activated on the prismatic planes in phase with HCP structure.After aging for150h at480℃, the alloy solution treated in α/β phase and β phase regionstill obtain bimodal structure and basketweave structure, respectively, thereinto, significantamount of particle-like phase precipitating within the grains and phases may hinderdislocation motion, which is thought to be the main reason of the alloy possessing bettercreep resistance and longer creep lifetime.
引文
[1] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Materials Science andEngineering: A,1996,213(1-2):103-114.
    [2] Eylori D, Seagle S R. Titanium technology in the USA—an overview [J]. Journal of MaterialsScience and Technology,2001,17(4):439.
    [3] Leyens C. Titanium and titanium alloys [M]. second ed. Weinheim: WILEY-VCH,2003.
    [4] Lutjering G. Titanium [M]. second ed. Berlin Heidelberg: Springer-Verlag,2007.
    [5]李梁,孙健科,孟祥军.钛合金的应用现状及发展前景[J].钛工业进展,2004,(05):19-24.
    [6]娄贯涛.钛合金的研究应用现状及其发展方向[J].钛工业进展,2003,(02):9-13.
    [7]付艳艳,宋月清,惠松骁,等.航空用钛合金的研究与应用进展[J].稀有金属,2006,(06):850-856.
    [8]黄张洪,曲恒磊,邓超,等.航空用钛及钛合金的发展及应用[J].材料导报,2011,(01):102-107.
    [9]李重河,朱明,王宁,等.钛合金在飞机上的应用[J].稀有金属,2009,(01):84-91.
    [10]毛小南,赵永庆,杨冠军.国外航空发动机用钛合金的发展现状[J].稀有金属快报,2007,(05):1-7.
    [11]彭艳萍,曾凡昌,王俊杰,等.国外航空钛合金的发展应用及其特点分析[J].材料工程,1997,(10):3-6.
    [12]钱九红.航空航天用新型钛合金的研究发展及应用[J].稀有金属,2000,(03):218-223.
    [13]许国栋,王凤娥.高温钛合金的发展和应用[J].稀有金属,2008,(06):774-780.
    [14]赵永庆.高温钛合金研究[J].钛工业进展,2001,(01):33-39.
    [15]杨冬雨,付艳艳,惠松骁.高强高韧钛合金研究与应用进展[J].稀有金属,2011,04:575-580.
    [16]张平平,王庆娟,高颀.高强β钛合金研究和应用现状[J].热加工工艺,2012,14:51-55.
    [17]张翥,惠松骁,刘伟.高强高韧TB10钛合金棒材研究[J].稀有金属,2006,02:221-225.
    [18]沈桂琴,徐斌,彭益群. Ti-15Mo-2.7Nb-3Al-0.2Si高强钛合金的相变[J].材料工程,1999,03:19-23.
    [19]路纲,张翥,惠松骁,等. Ti-18高温高强钛合金研制[J].稀有金属,2002,04:271-276.
    [20]罗媛媛,赵永庆.热处理工艺对紧固件用高强钛合金棒材的组织和性能的影响[J].热加工工艺,2009,18:118-121.
    [21]赵永庆,朱康英,曲恒磊,等.两种Ti-V-Cr阻燃钛合金的热稳定性能[J].稀有金属材料与工程,2003,08:610-614.
    [22]冯颖芳.发展中的汽车用钛合金[J].钛工业进展,2002,03:9-11.
    [23]费超.钛合金在汽车上的应用[J].钛工业进展,1995,01:31-33.
    [24]杨遇春,王燕.低成本钛合金与汽车制造[J].稀有金属,1997,05:52-59.
    [25]裴大荣.钛合金在汽车制造中的应用[J].钛工业进展,1997,05:23.
    [26]张菽浪.钛及钛合金在汽车工业中的应用[J].特钢技术,2006,01:20.
    [27]李中.钛及钛合金在汽车上的应用[J].中国有色金属学报,2010,S1:1034-1038.
    [28]刘静安.钛合金的特性与用途及其在汽车上的应用潜力[J].轻金属,2003,03:51-58.
    [29]李玲玲.新型耐腐蚀钛合金[J].钛工业进展,1994,05:29-30.
    [30]袁少冲,毛小南,张鹏省.热强钛合金BT25组织与性能[J].钛工业进展,2006,03:19-22.
    [31]李明强,奚正平,李长亮.成分微调对中强钛合金组织与力学性能的影响[J].稀有金属材料与工程,2007,03:480-483.
    [32]韩明臣.钛及钛合金的熔炼和精炼[J].钛工业进展,1999,06:22-23.
    [33]窦永庆.钛及钛合金铸锭熔炼[J].钛工业进展,1997,05:43-44.
    [34]王琛,毛小南,于兰兰.钛合金熔炼技术的进展[J].热加工工艺,2009,17:42-45.
    [35] E.I.Morozov,龙克昌.钛合金的各种熔炼和铸造方法研究[J].稀有金属材料与工程,1982,05:101-105.
    [36]李宝成,党水利.钛及钛合金铸造工业的现状与展望[J].钛工业进展,1999,04:15-18.
    [37]周彦邦,甘敬林.国外钛合金铸造技术的发展[J].现代铸造,1981,01:60-66.
    [38]彭规绵.钛合金铸造技术[J].铸造,1991,07:40-42+36.
    [39]张金林,陈红,郭培军.真空自耗凝壳炉直接熔配和铸造钛合金件的工艺研究[J].铸造,2006,05:452-455.
    [40]胡宗式.钛及钛合金锻造[J].钛工业进展,1994,01:53-56.
    [41]曲银化,孙建科,孟祥军.钛合金等温锻造技术研究进展[J].钛工业进展,2006,01:6-9.
    [42]丁平平,杨屹,刘剑.钛合金等温锻造工艺优化研究[J].锻压技术,2009,03:121-124.
    [43]张智,巨建辉,戚运莲.钛合金锻造工艺及其锻件的应用[J].热加工工艺,2010,23:34-37.
    [44]孙朋朋,姚泽坤,郭鸿镇.等温锻造温度对TC6钛合金组织和性能的影响[J].热加工工艺,2011,03:30-32.
    [45]郭拉凤,朱艳春,孔虎星,等.钛合金复杂构件等温锻造工艺研究[J].稀有金属,2012,(03):357-362.
    [46]尤振平,惠松骁,叶文君,等. TC4钛合金轧板的织构对动态力学性能影响[J].稀有金属,2012,(01):31-35..
    [47]张仁岐. α+β钛合金界面相的SEM研究[J].稀有金属材料与工程,1986,(05):1-3.
    [48]辛社伟,赵永庆.关于钛合金热处理和析出相的讨论[J].金属热处理,2006,(09):39-42.
    [49] Tiley J, Searles T, Lee E, et al. Quantification of microstructural features in α/β titanium alloys [J].Materials Science and Engineering: A,2004,372(1):191-198.
    [50] Wagner F, Bozzolo N, Van Landuyt O, et al. Evolution of recrystallisation texture and microstructurein low alloyed titanium sheets [J]. Acta Materialia,2002,50(5):1245-1259.
    [51] Zeng L, Bieler T. Effects of working, heat treatment, and aging on microstructural evolution andcrystallographic texture of α, α′, α″and β phases in Ti–6Al–4V wire [J]. Materials Science andEngineering: A,2005,392(1):403-414.
    [52] Seshacharyulu T, Medeiros S, Morgan J, et al. Hot deformation and microstructural damagemechanisms in extra-low interstitial (ELI) grade Ti–6Al–4V [J]. Materials Science and Engineering:A,2000,279(1):289-299.
    [53] Semiatin S, Knisley S, Fagin P, et al. Microstructure evolution during alpha-beta heat treatment ofTi-6Al-4V [J]. Metallurgical and Materials Transactions A,2003,34(10):2377-2386.
    [54] Lutjering G. Influence of processing on microstructure and mechanical properties of ([alpha]+[beta])titanium alloys [J]. Materials Science and Engineering A,1998,243(1-2):32-45.
    [55] Kobryn P A, Semiatin S L. Microstructure and texture evolution during solidification processing ofTi-6Al-4V [J]. Journal of Materials Processing Technology,2003,135(2-3):330-339.
    [56] Ding R, Guo Z, Wilson A. Microstructural evolution of a Ti–6Al–4V alloy during thermomechanicalprocessing [J]. Materials Science and Engineering: A,2002,327(2):233-245.
    [57] Ankem S, Greene C. Recent developments in microstructure/property relationships of beta titaniumalloys [J]. Materials Science and Engineering: A,1999,263(2):127-131.
    [58] Chun Y, Yu S-H, Semiatin S, et al. Effect of deformation twinning on microstructure and textureevolution during cold rolling of CP-titanium [J]. Materials Science and Engineering: A,2005,398(1):209-219.
    [59]刘清华,惠松骁,叶文君,等.合金元素对TC4钛合金动态力学性能的影响[J].稀有金属材料与工程,2013,(07):1464-1468.
    [60]吴欢,赵永庆,葛鹏,等. β稳定元素对钛合金α相强化行为的影响[J].稀有金属材料与工程,2012,(05):805-810.
    [61]赵永庆,周廉,邓炬.合金元素Cr对钛合金燃烧行为的影响[J].稀有金属材料与工程,1999,03:5-8.
    [62] Kerr W R. The effect of hydrogen as a temporary alloying element on the microstructure and tensileproperties of Ti-6Al-4V [J]. Metallurgical Transactions A,1985,16(6):1077-1087.
    [63]常辉,周廉,张廷杰.钛合金固态相变的研究进展[J].稀有金属材料与工程,2007,(09):1505-1510.
    [64]常辉, Gautier E., Bruneseaux F.,等. Ti-B19钛合金的β→α+β等温相变动力学[J].稀有金属材料与工程,2006,(11):1695-1699.
    [65]常辉,曾卫东,罗媛媛,等.近β型钛合金Ti-B19时效过程中的相变及显微组织[J].稀有金属材料与工程,2006,(10):1589-1592.
    [66]辛社伟.钛合金固态相变的归纳与讨论(Ⅴ)——相与相变谈[J].钛工业进展,2013,(03):12-15.
    [67]辛社伟,赵永庆,曾卫东.钛合金固态相变的归纳与讨论(I)——同素异构转变[J].钛工业进展,2007,(05):23-28.
    [68]辛社伟,赵永庆,曾卫东.钛合金固态相变的归纳与讨论(Ⅱ)——共析和有序化转变[J].钛工业进展,2008,(01):40-44.
    [69]张廷杰.钛合金相变的电子显微镜研究(Ⅱ)——钛及其合金的两个基本相的结晶结构和它们可能产生的晶格缺陷[J].稀有金属材料与工程,1989,(03):54-60.
    [70]张廷杰.钛合金相变的电子显微镜研究(Ⅲ)——钛合金中的马氏体相变[J].稀有金属材料与工程,1989,(04):71-78.
    [71]张廷杰.钛合金相变的电子显微镜研究(Ⅳ)——钛合金中的ω相变[J].稀有金属材料与工程,1989,(05):77-82.
    [72]张廷杰.钛合金相变的电子显微镜研究(Ⅴ)——亚稳β相时效分解中的两类α相沉淀[J].稀有金属材料与工程,1989,(06):76-80.
    [73]朱知寿,王新南,童路,等.新型TC21钛合金相变行为和相组成研究[J].稀有金属快报,2006,(12):23-27.
    [74]赵永庆,奚正平,曲恒磊.我国航空用钛合金材料研究现状[J].航空材料学报,2003,(S1):215-219.
    [75]朱知寿.航空结构用新型高性能钛合金材料技术研究与发展[J].航空科学技术,2012,(01):5-9.
    [76]訾群.钛合金研究新进展及应用现状[J].钛工业进展,2008,(02):23-27.
    [77]张宝昌.钛合金发展的现状和趋势[J].稀有金属材料与工程,1985,(04):63-72.
    [78]张鹏省,毛小南,赵永庆,等.世界钛及钛合金产业现状及发展趋势[J].稀有金属快报,2007,(10):1-6.
    [79]赵永庆.国内外钛合金研究的发展现状及趋势[J].中国材料进展,2010,(05):1-8.
    [80]周廉.美国、日本和中国钛工业发展评述[J].稀有金属材料与工程,2003,(08):577-584.
    [81] Weiss I, Froes F H, Eylon D, et al. Modification of alpha morphology in Ti-6Al-4V bythermomechanical processing [J]. Metallurgical and Materials Transactions A,1986,17(11):1935-1947.
    [82] Filip R, Kubiak K, Ziaja W, et al. The effect of microstructure on the mechanical properties oftwo-phase titanium alloys [J]. Journal of Materials Processing Technology,2003,133(1):84-89.
    [83] Sen I, Tamirisakandala S, Miracle D, et al. Microstructural effects on the mechanical behavior ofB-modified Ti–6Al–4V alloys [J]. Acta Materialia,2007,55(15):4983-4993.
    [84]赵树萍,吕双坤.钛合金在航空航天领域中的应用[J].钛工业进展,2002,06:18-21.
    [85]熊震国. TC4钛合金汽车连杆的精密模锻[J].钛工业进展,2004,01:19-21.
    [86]费超.钛合金在汽车上的应用[J].钛工业进展,1995,01:31-33.
    [87]赵奇祥,赵炜.用于短半径钻井的钛合金钻杆[J].石油机械,2001,05:54-56.
    [88]金红.钛在民用领域中的开发应用现状及发展前景[J].稀有金属,1998,22(6):434-438.
    [89]赵永庆,魏建峰,高占军等.钛合金的应用和低成本制造技术[J].材料导报,2003,17(4):5-7.
    [90]叶勇,王金彦.钛合金的应用现状及加工技术发展概况[J].材料导报,2012,26(z1):360-363.
    [91]郑建民,雷让岐.钛合金在高尔夫球杆上的应用现状[J].稀有金属快报,2008,27(8):7-9.
    [92]李文平.钛合金的应用现状及发展前景[J].轻金属,2002,(5):53-55.
    [93]曲玉福,袁晓光,谢华生等.低温钛合金的研究应用现状及发展趋势[J].机械工程与自动化,2009,(1):189-191.
    [94] Barboza M J R, Moura Neto C, Silva C R M. Creep mechanisms and physical modeling forTi-6Al-4V [J]. Materials Science and Engineering A,2004,369(1-2):201-209.
    [95] Barboza M J R, Perez E A C, Medeiros M M, et al. Creep behavior of Ti-6Al-4V and a comparisonwith titanium matrix composites [J]. Materials Science and Engineering: A,2006,428(1-2):319-326.
    [96] Bourgeois M, Feaugas X, De Mestral F, et al. Creep mechanisms in Ti-6246alloy at773K [J].Titanium'95-Science and technology,1996,1083-1090.
    [97] Es-souni M. Creep deformation behavior of three high-temperature near-Ti alloys: IMI834, IMI829, and IMI685[J]. Metallurgical and Materials Transactions A,2001,32(2):285-293.
    [98] Evans R W, Hull R J. Creep of IMI834[J]. Titanium'95-Science and technology,1996,1058-1064.
    [99] Imam M A, Gilmore C M. Room temperature creep of Ti-6AI-4V [J]. Metallurgical TransactionsA,1979,10(4):419-425.
    [100] Kassner M E. Fundamentals of Creep in Metals and Alloys [M]. second ed.: Elsevier,2009.
    [101] Mishra H, Ghosal P, Nandy T, et al. Influence of Fe and Ni on creep of near α-Ti alloy IMI834[J].Materials Science and Engineering: A,2005,399(1):222-231.
    [102] Odegard B C, Thompson A W. Low temperature creep of Ti-6Al-4V [J]. Metallurgical Transactions,1974,5(5):1207-1213.
    [103] Reis D, Silva C, Nono M, et al. Effect of environment on the creep behavior of the Ti–6Al–4Valloy [J]. Materials Science and Engineering: A,2005,399(1):276-280.
    [104] Seco F, Irisarri A. Creep failure mechanisms of a Ti‐6Al‐4V thick plate [J]. Fatigue&Fractureof Engineering Materials&Structures,2001,24(11):741-750.
    [105] Suri S, Neeraj T, Daehn G S, et al. Mechanisms of primary creep in [alpha]/[beta] titanium alloysat lower temperatures [J]. Materials Science and Engineering A,1997,234:996-999.
    [106]王敏敏,赵永庆,周廉.影响钛合金蠕变行为的因素分析[J].稀有金属材料与工程,2002,(02):135-139.
    [107]赵永庆,曲恒磊,朱康英,等.β型Ti40阻燃钛合金高温长期作用的第二相及其对性能的影响[J].稀有金属材料与工程,2002,31(2):84-88.
    [108]王敏敏,赵永庆,周廉,等.第二相对Ti-V-Cr系阻燃钛合金高温蠕变行为的影响[J].金属学报,2002,38(z1):294-297.
    [109]张振祺,洪权,杨冠军,等.Ti600高温钛合金蠕变前后的组织变化[J].材料工程,2000,(10):18-21.
    [110]曾立英,杨冠军,洪权,等.2种制度热处理后Ti-600合金的高温蠕变行为[J].中国有色金属学报,2010,(S1):659-663.
    [111]崔文芳,洪权,汪进,等.近α高温钛合金600℃蠕变变形机制的TEM研究[J].中国有色金属学报,1998,(S2):198-201.
    [112]段锐,张华,蔡建明,等.显微组织对近α型TG6钛合金高温蠕变变形行为的影响[J].中国有色金属学报,2010,(S1):11-15.
    [113]朱康英,赵永庆,李佐臣,等. Ti811合金在不同温度和时间下的蠕变性能[J].中国有色金属学报,1998,(S2):76-79.
    [114]曾泉浦. TC11合金的蠕变和安全工作寿命预测[J].稀有金属材料与工程,1986,(03):20-23.
    [115]王敏敏,赵永庆,周廉,等.Ti40阻燃钛合金的高温蠕变行为[J].稀有金属材料与工程,2003,32(2):117-120.
    [116]曾立英,杨冠军,洪权,等.Ti-600合金的高温蠕变行为[J].材料热处理学报,2011,32(2):81-85.
    [117]李学雄,夏长清,戚延龄,等. TC6钛合金的高温拉伸蠕变行为研究[J].稀有金属材料与工程,2013,(09):1901-1904.
    [118]裴莉,薛虎明,等.热处理制度对TA11钛合金棒材组织及高温蠕变性能的影响[J].金属世界,2013,(5):56-58.
    [119]贾蔚菊,曾卫东,张尧武.热处理对Ti60合金组织及性能的影响[J].中国有色金属学报,2010,(11):2136-2141.
    [120]郭萍,洪权,曾立英等.固溶处理对Ti-600高温钛合金蠕变性能的影响[J].热加工工艺,2006,35(14):50-52.
    [121]辛社伟,洪权,卢亚锋,等. Ti600高温钛合金中析出物与蠕变性能的关系[J].中国有色金属学报,2010,(11):2142-2147.
    [122]雷力明,黄旭,孙福生,等. Ti-25V-15Cr-2Al-2Mo-0.2C阻燃β钛合金的蠕变变形结构研究[J].稀有金属材料与工程,2004,(05):498-501.
    [123]王孔探. TC4钛合金在200℃时的蠕变持久特性[J].稀有金属材料与工程,1998,(02):25-27.
    [124]辛社伟,赵永庆,李倩,等.典型热处理工艺对Ti40合金蠕变性能的影响[J].中国有色金属学报,2010,(S1):654-658.
    [125]辛社伟,赵永庆,吴欢,等.中低温退火处理工艺下Ti40合金高温蠕变机制的研究(Ⅰ)——蠕变本构关系[J].稀有金属材料与工程,2010,(02):224-228.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700