用户名: 密码: 验证码:
长寿命服役条件下DZ125合金的蠕变行为及影响因素
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过对DZ125镍基合金进行不同工艺的热处理、蠕变性能测试及组织形貌观察,研究热处理工艺对合金组织结构和蠕变性能的影响;通过热力学计算预测合金在不同条件下的相形筏化时间,通过晶格错配度的计算,研究了不同状态合金中′/两相的晶格应变程度。通过微观形貌观察及衍衬分析,研究了合金在蠕变期间的微观变形特征与断裂机制,得出如下主要结论:
     铸态DZ125镍基合金的组织结构主要由基体、相、共晶组织以及块状碳化物组成,在枝晶干/间区域存在明显的成分偏析及/两相的尺寸差别。合金经完全热处理后,元素偏析程度及晶格错配度有所减小,但仍在枝晶干/间区域存在不同尺寸的′相,尺寸约为0.4m的细小立方相均匀分布在枝晶干区域,尺寸约为1—1.2m的粗大立方相存在于枝晶间区域,并有块状碳化物存在于枝晶间区域,其放射状或筛网状的共晶组织存在于枝晶间区域。
     在中温/高应力蠕变期间,合金中的′相不形成筏状组织;而在高温/低应力蠕变期间,合金中的立方′相转变成与施加应力轴垂直的筏状结构。合金在1040℃/137MPa蠕变3h,相转变成与应力轴垂直的N型筏状结构。采用热力学方法计算出元素在不同条件蠕变期间的扩散迁移速率,并预测出合金在840℃和760℃蠕变期间相的筏形化时间各自需近400h和3000h,即:随蠕变温度下降,相的筏形化时间延长。
     在中温/高应力蠕变期间,该合金的变形机制是位错在基体中滑移和剪切相,其中,剪切进入相的位错可以分解,形成两肖克莱不全位错加层错的位错组态,切入相的位错也可以从{111}面交滑移至{100}晶面,形成具有非平面芯的K-W锁,可以有效抑制位错在{111}面滑移,提高合金的蠕变抗力。在高温/低应力蠕变条件下,合金在稳态蠕变期间的变形机制是位错在基体中滑移和攀移越过相,其中,在位错攀移期间,位错的割阶易于形成,空位的形成和扩散是位错攀移的控制环节。蠕变后期,合金的变形机制是位错在基体中滑移和剪切进入筏状相,且在{111}面滑移。蠕变期间,分布在/两相界面的六边形或四边形位错网络,可释放晶格错配应力,减缓应力集中,提高合金的蠕变抗力。
     高温蠕变的后期,合金中的裂纹首先在晶界处萌生与扩展,且不同形态晶界具有不同的损伤特征,其中,沿应力轴呈45角的晶界承受较大剪切应力,是易于使其产生蠕变损伤的主要原因;而加入的元素Hf,可促进细小粒状相沿晶界析出,可抑制晶界滑移,提高晶界强度,是使合金蠕变断裂后,断口呈现非光滑特征的主要原因。
     与传统工艺热处理相比,随固溶温度提高至1260℃,合金中难熔元素的偏析程度及晶格错配度明显减小,在枝晶间区域的粗大相可完全溶解。经时效处理后,高体积分数的细小立方相均匀分布在枝晶干和枝晶间区域,可完全消除合金中的共晶组织,使合金中原大尺寸块状碳化物发生分解,并沿晶界弥散析出细小碳化物,可抑制晶界滑移。因此,与传统工艺热处理相比,高温固溶处理可改善合金的组织均匀性,提高合金蠕变抗力和蠕变寿命。
By means of heat treatments at different regimes, creep property measurement andmicrostructure observation, the influence of the heat treatment on the microstructure and creepperformance of DZ125nickel-based superalloy has been investigated. By thermodynamiccalculations, the rafting time of phase has been measured and predicted. And the strainextent of lattices for the′/double phase alloy at different states has been studied by means ofthe calculation of the lattice mismatch. The deformation and fracture mechanisms of the alloyduring creep are studied by microstyructue observation and contrast analysis od dislocationconfiguration. Some main conclusions have be obtained given as follows:
     The microstructure of the as-cast DZ125nickel-base superalloy is mainly composed of matrix,′phase, eutectic and carbides. And the obvious elements segregation and nonuniformof′and phases in size exist in the dendrite arm and inter-dendrite regions. After the alloly isfull heat treated, the segregation extent of refractory elements between the dendritic arm/interdendritic regions and the lattice mismatch of/phases decrease. But the obviousdifference of′phase in size still exists in the dendritic arm and inter-dendritic regions, thefine cuboidal′precipitates is uniformly distributed in the dendritic regions, while the coarseones are distributed in the interdendritic regions. And the block-like carbides and radial ormesh-like eutectic microstructure distribute in the inter-dendritic regions.
     During the creep at intermediate temperatures, the′phase in the alloy can not transforminto the rafted structure. While during creep at high temperatures, the cuboidal′phase in thealloy are transformed into the rafted structure along the direction perpendicular to the stressaxis. After crept for3h at1040°C/137MPa, the′phase in the alloy is transformed into theN-type rafted structure. The diffusion migration rate of the elements in the alloy at varioustemperatures can be calculated, by means of thermodynamic calculations, to forecast therafting time of the′phase in the alloy at different conditions. It is indicated according to thecalculation that the rafting time of′-phase prolongs as the creep temperatures decrease.Furthermore, the needed times of the′phase in the alloy during creep at840and760℃arecalculated to be400hand3000h, respectively.
     The deformation mechanism of the alloy during creep at intermediate temperature is thedislocations slipping in the matrix and shearing into phase. Thereinto, the dislocationsshearing into the phase may be decomposed to form the configuration of two Shockleypartial dislocations plus stacking faults. Moreover, the super-dislocations shearing into phase may cross-slip from {111} plane to (100) plane to form the configuration of K-Wdislocation locking, which can effectively hinder dislocation slipping on {111} plane toimprove the creep resistance of alloy. Undef the conditions of high temperature and lowerstress, the dislocations slipping in the matrix and climbing over the rafted phase is thoughtto be the deformation mechanism of the alloy during the steady state creep. Thereinto, duringthe dislocations climbing, the dislocation jogs are easily formed, and the formation anddiffusion of vacancies are the control links for dislocation climbing. At the latter stage of creep,the deformation mechanism of the alloy is the dislocations slipping in matrix and shearinginto the phase. During creep, the hexagonal and quadrilateral dislocations networks locatedat the/interfaces can release mismatch stress of the lattice and delay the stressconcentration to improve the creep resistance of the alloy.
     In the latter stage of creep at high termperature, the cracks in the alloy are firstly initiatedand propagated along the grain boundaries, and the various damage features display in thegrain boundary regions with different morphologies. Thereinto, the grain boundaries beingabout45angles relative to the stress axis support the bigger shear stress, which is the mainreason for promoting the occurrence of creep damage. The addition of Hf element maypromote the precipitation of the fine carbides along grain boundaries to restrain the boundariessliding, which may enhance the bonding strength of the grain boundaries. This is the mainreason for grain boundaries displaying the non-smooth surfaces after creep rupture of thealloy.
     Compared to the conventional heat treatment regime, when the solution temperatureenhances to1260°C, the segregation extent of refractory elements between the dendritic/inter-dendritic regions and misfits of/phases decreases obviously, and the coarse phasein the inter-dendritic regions may be completely dissolved. After aging treatment, the fine precipitates with high volume fraction are dispersedly distributed in the dendrite andinter-dendrite regions, and the eutectic structure can be completely eliminated. Moreover, theoriginal blocky-like carbides in the alloy can be decomposed, and the fine particle-like carbides can precipitate along the boundaries to inhibit boundary slipping. Consequently,compared to the conventional heat treatment regime, the high-temperature solution treatmentcan improve the homogeneity of the microstructure in the alloy, which may enhance the creepresistance to prolong the creep life of the alloy.
引文
[1]陈金国.军用航空发动机的发展趋势[J].航空科学技术,1994,5:9-13.
    [2] Nabarro F R., Villiers H L D. The physics of creep[M]. London: Taylor and Francis Ltd.,1997:83-86.
    [3]吴仲棠,钟振纲,代修彦,等.我国第一个单晶燃气涡轮叶片合金DD3的研究[J].航空制造工程,1996,2:3-5.
    [4]孔祥鑫.第四代战斗机及其动力装置[J].航空科学技术,1994,5:21-27.
    [5] McLean M. Directionally solidified materials for high temperature service[C]. Warrendale: TMS,1983:9-14.
    [6] Xie G, Lou L H. Influence of the characteristic of recrystallization grain boundary on the formation ofcreep cracks in a directionally solidified Ni-base superalloy[J]. Materials Science and Engineering A,2012,532(15):579-584.
    [7] Tavakkoli M M, Abbasi S M. Effect of molybdenum on grain boundary segregation in Incoloy901superalloy[J]. Materials&Design,2013,46(4):573-578.
    [8] Jennifer L W C, Michael W K, Michael D U, et al. Characterization of localized deformation neargrain boundaries of superalloy René-104at elevated temperature[J]. Materials Science andEngineering A,2014,605:127-136.
    [9] VerSnyder F L, Shank M E. The development of columnar grain and single crystal high temperaturematerials through directional solidification[J]. Materials Science and Engineering A,1970,6(4):213-247.
    [10] Henderson P J, McLean M. Creep transient in the deformation of anisotropic nickel-base alloys[J].Acta Metallurgica,1982,30(6):1121-1128.
    [11] VerSnyder F L, Guard R W. Directional grain structures for high temperature strength[J].Transactions of the ASM,1960,52:485-496.
    [12] Gell M, Dupta D N, Sheffler K D. High temperature super conductors with Tc over30K[J]. Journalof Metals,1987,39(6):11-12.
    [13]刘忠元,李建国,付恒志.凝固速率对定向凝固合金DZ22枝晶臂间距和枝晶偏析的影响[J].金属学报,1995,31(3):329-332.
    [14] Ma X F, Shi H J. In situ SEM studies of the low cycle fatigue behavior of DZ4superalloy at elevatedtemperature: Effect of partial recrystallization[J]. International Journal of Fatigue,2014,61:255-263.
    [15]张国栋,刘绍伦,何玉怀,等.定向合金DZ125热/机械疲劳寿命预测模型评估[J].航空动力学报,2004,19(1):17-22.
    [16]师昌绪,仲增墉.我国高温合金的发展与创新[J].金属学报,2010,46(11):1281-1288.
    [17] Tan X P, Liu J L, Jin T, et al. Effect of ruthenium on high-temperature creep rupture life of a singlecrystal nickel-based superalloy[J]. Materials Science and Engineering A,2011,528(29-30):8381-8388.
    [18] Jin D, Liu Z Q, Yi W, et al. Influence of cutting speed on surface integrity for powder metallurgynickel-based superalloy FGH95[J]. The International Journal Advanced Manufacturing Technology,2011,56(7-8):553-559.
    [19] Ren W L, Lu L, Yuan G Z, et al. The effect of magnetic field on precipitation phases of single-crystalnickel-base superalloy during directional solidification[J]. Materials Letters,2013,100:223-226.
    [20]李志军,周兰章,郭建亭,等.新型抗热腐蚀镍基高温合金K44的高温低周疲劳行为[J].中国有色金属学报,2006,16(1):136-141.
    [21]侯介山,丛培娟,周兰章,等.Hf对抗热腐蚀镍基高温合金微观组织和力学性能的影响[J].中国有色金属学报,2011,21(5):945-953.
    [22] Hu Q, Liu L, Zhao X, et al. Effect of carbon and boron additions on segregation behavior ofdirectionally solidified nickel-base superalloys with rhenium[J]. Transactions of the NonferrousMetals Society of China,2013,23(11):3257-3264.
    [23] Garosshen T J, Tillman T D, Mccarthy G P. Effect of B, C, and Zr on the structure and properties of aP/M nickel base superalloy[J]. Metallurgical and Materials Transactions A,1987,18(A):69-77.
    [24] Yan B C, Zhang J, Lou L H. Effect of boron additions on the microstructure and transverse propertiesof a directionally solidified superalloy[J]. Materials Science and Engineering A,2008,474(1-2):39-47.
    [25]郑运荣,蔡玉林,马书伟,等.Hf和Zr在高温材料中作用机理研究[J].航空材料学报,2006,26(3):25-34.
    [26]陈荣章.第二代定向凝固高温合金[J].航空材料学报,1995,8(1):47-55.
    [27]宋先跃,唐建新,刘振伟.定向凝固理论与技术的发展[J].金属铸锻焊技术,2009,15(7):59-63.
    [28] Giamei A F, Anton D L. Rhenium additions to a nickel-based superalloy: effect on microstructure[J].Metallurgical Transactions A,1985,16(11):1997-2004.
    [29] Kevin E Y, Ronald D N, David N S.Effects of rhenium addition on the temporal evolution of thenanostructure and chemistry of a model Ni-Cr-Al superalloy[J]. Acta Materialia,2007,55(4):1145-1157.
    [30] Tian S G, Liang F S, Li A N, et al. Microstructure evolution and deformation features of singlecrystal nickel-based superalloy containing4.2%Re during creep[J]. Transactions of NonferrousMetals Society of China,2011,21(7):1532-1537.
    [31]孟凡来,田素贵,于兴福,等.镍基单晶合金组织演化及对晶格错配度的影响[J].材料研究学报,2007,21(3):225-229.
    [32]胡壮麒,刘丽荣,金涛,等.单晶镍基高温合金的发展[J].航空发动机,2005,31(3):1-7.
    [33]马晓峰,刘恩泽,管秀荣,等.新型定向凝固高温合金DZ168中的碳化物[J].金属热处理,2010,35(4):10-13.
    [34] Han-sang L, Do-hyung K, Doo-soo K, et al. Microstructural changes by heat treatment for singlecrystal superalloy exposed at high temperature[J]. Journal of Alloys and Compounds,2013,561:135-141.
    [35]刘丽荣,金涛,王志辉,等.热处理对一种镍基单晶高温合金微观组织和持久性能的影响[J].稀有金属材料与工程,2006,35(5):711-714.
    [36]谢军,田素贵,周晓明,等.固溶温度对FGH95镍基合金持久断裂机制的影响[J].材料热处理学报,2012,41(3):447-451.
    [37] Yu J J, Sun X F, Zhao N R, et al. Effect of heat treatment on microstructure and stress rupture life ofDD32single crystal Ni-base superalloy[J]. Materials Science and Engineering A,2007,460-461:420-427.
    [38] Xie J, Tian S G, Zhou X M, et al. Influence of heat treatment regimes on microstructure and creepproperties of FGH95nickel base superalloy[J]. Materials Science and Engineering A,2012,538:306-314.
    [39] Monajati H, Jahazi M, Bahrami R, et al. The influence of heat treatment conditions on γ′characteristics in udimet720[J]. Materials Science and Engineering A,2004,373:286-293.
    [40]刘洋,田素贵,周晓明,等.FGH95粉末镍基合金的组织结构与蠕变性能[J].材料工程,2007(S1):27-32.
    [41]张卫国,刘林,赵新宝,等.定向凝固高温合金的研究发展[J].铸造,2009,58(1):1-6.
    [42] Gabrisch H, Mukherji D, Wahi R P, et al. Deformation induced dislocation networks at the/interfaces in the single crystal superalloy[J]. Philosophical Magazine A,1996,74(1):229-233.
    [43] Acharya M V, Fuchs G E. The effect of long-term thermal exposures on the microstructure andproperties of CMSX-10single crystal nickel-based superalloys[J]. Materials Science and EngineeringA,2004,381:143-153.
    [44] Fahrmann M, Wolf J G, Pollock T M. The influence of microstructure on the measurement of-lattice mismatch in single-crystal Ni-base superalloys[J]. Materials Science and Engineering A,1996,210:8-15.
    [45] Walston W S, Durst K, G ken M. Micromechanical characterisation of the influence of rhenium onthe mechanical properties in nickel-based superalloys[J]. Materials Science and Engineering A,2004,88:312-316.
    [46]王明罡.元素Re对单晶镍基合金TCP相形态及蠕变行为的影响[D].沈阳:沈阳工业大学,2010.
    [47] Tian S G, Wang M G, Yu X F, et al. Influence of element Re on lattice misfits and stress ruptureproperties of single crystal nickel-based superalloys[J]. Materials Science and Engineering A,2010,527:4458-4465.
    [48]王春涛,田素贵,王明罡,等.一种单晶合金的高温蠕变行为及其变形特征[J].材料与冶金学,2006,5(2):133-136.
    [49]胥国华,焦兰英,张北江,等.固溶冷却速度对GH4586合金组织及850℃拉伸性能的影响[J].材料热处理学报,2006,27(2):47-49.
    [50]颜晓峰,马惠萍,卢亚轩,等.碳含量对GH648合金组织和性能的影响[J].钢铁研究学报,2001,13(6):40-42.
    [51]陈焕铭,胡本芙,余泉茂,等.FGH95粉末枝晶间合金元素偏析的研究[J].材料工程,2002(3):32-35.
    [52]刘建涛,张义文,陶宇,等.预处理过程中FGH96合金粉末中碳化物演变[J].材料热处理学报,2012,33(5):53-58.
    [53]马文斌,吴凯,刘国权,等.PREP FGH4096粉末凝固组织和碳化物研究[J].钢铁研究学报,2011,23(S2):490-493.
    [54]郑磊,焦少阳,董建新,等.690合金等温热处理过程中晶界碳化物和贫铬区演化规律[J].机械工程学报,2010,46(12):48-52.
    [55]姚志浩,董建新,张麦仓,等.固熔温度对GH864合金组织性能的影响[J].材料热处理学报,2011,32(7):44-50.
    [56]田素贵,谢军,周晓明,等.FGH95镍基合金的蠕变行为及影响因素[J].稀有金属材料工程,2011,40(5):807-812.
    [57] Thorsten K, Dietmar B, Eckhard N. The formation of precipitate free zones along grain boundaries ina superalloy and the ensuing effects on its plastic deformation[J]. Acta Materialia,2004,52(4):2095-2108.
    [58] Ding Z, Zhang J, Wang C S, et al. Dislocation configuration in DZ125Ni-based superalloy after hightemperature stress rupture[J]. Acta Metallurgica Sinica,2011,47(1):47-52.
    [59]于慧臣,谢世殊,赵光普,等.GH141合金的高温拉伸及持久性能[J].材料工程,2003(9):3-6.
    [60] Peng Y D, Yi J H, Luo S D, et al. Microstructure analysis of microwave sintered ferrous PM alloys[J].Journal of Wuhan University of Technology Materials Science Edition,2009,24(2):214-217.
    [61] Mckamey C G, Carmichael C A, Cao W D, et al. Creep properties of phosphorus, boron modifiedalloy718[J]. Scripta Materialia,1998,38(3):485-491.
    [62]周晓和,胡壮麒,介万奇.凝固技术[M].北京:机械工业出版社,1998.
    [63] Chen Q Z, Jones C N, Knowles D M. The grain boundary microstructures of the base and modifiedRR2072bicrystal superalloys and their effects on the creep properties[J]. Materials Science andEngineering A,2004,385(1-2):402-418.
    [64] Nganbe M, Heilmaier M. Creep behavior and damage of Ni-base superalloys PM1000and PM3030[J]. Metallurgical and Materials Transactions A,2009,40(12):2971-2979.
    [65] Xia P C,Yu J J, Sun X F, Guan H R. Influence of precipitate morphology on the creep property of adirectionally solidified nickel-base superalloy[J]. Materials Science and Engineering A,2008,476:39-45.
    [66] Tian S G, Yong S, Qian B J, et al. Creep behavior of a single crystal nickel-based superalloycontaining4.2%Re[J]. Materials and Design,2012,37:236-242.
    [67] Zhang J X, Wang J C, Harada H, et al. The effect of lattice misfit on the dislocation motion insuperalloys during high-temperature low-stress creep[J]. Acta Materialia,2005,53(3):4623-4633.
    [68] Yu X F, Tian S G, Wang M G, et al. Creep behaviors and effect factors of single crystal nickel crystalnickel-base superalloys[J]. Materials Science and Engineering A,2009,499(1-2):352-359.
    [69] Tian S G, Zeng Z, Liu C, et al. Creep behavior of a4.5%-Re single crystal nickel-based superalloy atintermediate temperatures[J]. Materials Science and Engineering A,2012,543:104-109.
    [70]刘丽荣,金涛,赵乃仁,等.一种镍基单晶高温合金蠕变机制的研究[J].金属学报,2005,41(11):1215-1220.
    [71]王跃臣,李守新,艾素华,等.单晶镍基高温合金DD8反位相热机械疲劳后的层错[J].金属学报,2003,39(2):150-154.
    [72]田素贵,苏德龙,曾征,等.一种4.5%单晶镍基合金的中温蠕变行为[J].材料热处理学报,201233(10):55-60.
    [73] Vitek V. Atomic structure of dislocation in intermetallics with close packed structure: a comparativestudy[J]. Intermetallics,1998,6(7-8):579-585.
    [74]王晓明,朱祖昌.Ni3Al有序金属间化合物的主要特性和应用[J].热处理,2010,25(3):6-11.
    [75]李唐,孟凡来,杜洪强,等.元素铼对一种镍基合金晶格常数及/错配度的影响.动力与能源用高温结构材料[C].上海,2007:478-481.
    [76] Link T, Epishin A, Bruckner U. Increase of misfit during creep of superalloys and it’s correlationwith deformation[J]. Acta Materialia,2000,48:1981-1994.
    [77] Caron P, Ohta Y, Nakagawa Y G et al. Creep deformation anisotropy in single crystal superalloys[J].Superalloys1988, Metal Park: TMS-AIME,1988:215-224.
    [78] Hopgood A A, Martin J W. Study of crystallographic creep parameters of nickel-based singlecrystal[J]. Materials Science and Engineering A,1986,82(1-2):27-36.
    [79] Muller L, Glatzel U, Feller K M. Modeling thermal misfit stresses in nickel-based superalloycontaining high volume fraction of phase[J]. Acta Metallurgica Materialia,1992,40(4):1321-1327.
    [80] Li P, Li S S, Han Y F. Effect of heat treatment on microstructure and stress rupture properties of aNi3Al base single crystal superalloy IC6SX[J]. Intermetallics,2011,19:182-186.
    [81] Kamaraj M. Rafting in single crystal nickel-base superalloys–An overview[J]. Sadhana,2003,28(1-2):115-128.
    [82] Reed R C. The superalloys: fundamentals and applications[M]. Cambridge: Cambridge UniversityPress,2006.
    [83]李嘉荣,唐定中.铼在单晶高温合金中作用[J].材料工程,1997(8):12-17.
    [84]沙玉辉,张静华,徐涛波,等.镍基单晶高温合金定向粗化行为的取向依赖性I—形态的SEM观察[J].金属学报,2000,36(3):254-257.
    [85]沙玉辉.镍基单晶高温合金高温变形、定向粗化及疲劳裂纹扩展行为的研究[D].沈阳:中国科学院金属研究所,1999.
    [86] Liu J L, Jin T, Sun X F, et al. Anisotropy of stress rupture properties of a Ni base single crystalsuperalloy at two temperatures[J]. Materials Science and Engineering A,2008,479:277-284.
    [87] Driand L, Comier J, Jacques A, et al. Measuret of the effective/lattice mismatch during hightemperature creep of Ni-based single crystal superalloy[J]. Materials Charaterization,2013,77:32-46.
    [88] Dinsdale A T. SGTE data for pure elements[J]. Calphad,1991,15(4):317-321.
    [89]彭志方,Glatzel U,Feller-Kniepmeier M.一种镍基单晶高温合金中沉淀的定向粗化[J],金属学报,1995,31(12):531-536.
    [90] Kakehi K, Latief F H, Sato T. Influence of primary and secondary orientations on creep repturebehavior of aluminized single crystal Ni-based superalloy[J]. Materials Science and Engineering A,2014,604:148-155.
    [91] Koji K. Effect of primary and secondary precipitates on creep strength of Ni-base superalloy singlecrystals[J]. Materials Science and Engineering A,2000,278(1-2):135-141.
    [92] Kuttner T, Feller-Kniepmeier M. Microstructure of a nickel-base superalloy after creep in [011]orientation at1173K[J]. Materials Science and Engineering A,1994,188:147-152.
    [93] Svoboda J, Luká P. Model of creep in001oriented superalloy single crystals[J]. Acta Materialia,1998,46(10):3421-3431.
    [94]田素贵,于兴福,卢旭东,等.单晶镍基合金拉伸蠕变期间γ′相定向生长及影响因素[J].稀有金属材料与工程,2009,38(3):434-438.
    [95]田素贵,张静华,徐永波,等.单晶镍基合金拉伸蠕变期间γ′相定向粗化的特征及影响因素[J].航空材料学报,2000,20(2):1-7.
    [96] Feng H, Biermann H, Mughrabi H. Computer simulation of the initial rafting process of anickel-base single-crystal superalloy[J]. Metallurgical and Materials Transactions A,2000,30:585-597.
    [97]吴文平.镍基单晶高温合金的界面微结构及定向粗化行为分析[D].北京:北京交通大学,2010.
    [98] Schmidt I, Mueller R, Gross D. The effect of elastic in homogeneity on equilibrium and stability oftwo particle morphology[J]. Mechanics of Materials,1998,30:181-196.
    [99]张军,杨敏,王常帅,等.DZ125高温合金熔体超温处理定向凝固组织的演化规律[J].铸造技术,2009,30(9):1108-1111.
    [100]闵志先,沈军,王灵水,等.定向凝固镍基高温合金DZ125平界面生长的微观组织演化[J].金属学报,2010,46(9):1075-1080.
    [101] Yang X G, Dong C L, Shi D Q, et al. Experimental investigation on both low cycle fatigue andfracture behavior of DZ125base metal and the brazed joint at elevated temperature[J].Metallurgical and Materials Transactions A,2011,528(22-23):7005-7011.
    [102] Ge B M, Liu L, Zhao X B, et al. Effect of Directional Solidification Methods on the CastMicrostructure and Grain Orientation of Blade Shaped DZ125Superalloy[J]. Rare Metal Materialsand Engineering,2013,42(11):2222-2227.
    [103] Yu J J, Sun X F, Zhao N R, et al. Effect of heat treatment on microstructure and stress rupture life ofDD32single crystal Ni-base superalloy[J]. Metallurgical and Materials Transactions A,2007,460-461:420-427.
    [104]林万明,段剑锋,王春龙,等.高温时效对高温镍基合金沉淀强化的影响[J].金属热处理,2008,33(12):66-68.
    [105]任英磊,金涛,管恒荣,等.热处理制度对一种单晶镍基高温合金相形貌演化的影响[J].机械工程材料,2001,25(4):7-10.
    [106] Tien J K, Copley S M. The effect of orientation and sense of applied stress on the morphology ofcoherent gamma prime precipitates in stress annealed nickel-base superalloy crystals[J].Metallurgical Transaction A,1971,2(2):543-553.
    [107] Nathal M V. Effect of initial gamma prime size on the elevated temperature creep properties ofsingle crystal nickel base superalloys[J]. Metallurgical Transaction A,1987,18:1961-1968.
    [108] Tian S G, Zhang S, Li C X, et al. Microstructure evolution and analysis of a [011] orientation,single-crystal, nickel-based superalloy during tensile creep[J]. Metallurgical and MaterialsTransactions A,2012,43:3887-3889.
    [109] Engstrom A, Hoglound L, Agren J. Computer simulation of diffusion in multiphase systems[J].Metallurgical and Materials Transactions A,1994,25:1127-1134.
    [110] Nabarro F R N, Cress C M, Kotsehy P. The thermodynamic driving force for rafting insuperalloys[J]. Acta Materialia,1996,44(8):3189-3198.
    [111] Tian S G, Zhou H H, Zhang J H, et al. Directional coarsening of the phase for a single crystalnickel-based superalloy[J]. Materials Science and Technology,2000,16:451-458.
    [112] Raujiol S, Pettinari F, Locq D, et al. Creep straining micro-mechanisms in a powder-metallurgicalnickel-based superalloy[J]. Materials Science and Engineering A,2004,387-389(2):678-682.
    [113] Unocic R R, Viswanathan G B, Sarosi P M, et al. Mechanisms of creep deformation inpolycrystalline Ni-base disk superalloys[J]. Materials Science and Engineering A,2008,483-484(4):25-32.
    [114]郭建亭.一种性能优异的低成本定向凝固镍基高温合金ZD417G.金属学报,2002,38(11):1163-1174.
    [115] Viswanathan G B, Sarosi P M, Henry M F, et al. Investigation of creep deformation mechanisms atintermediate temperatures in René88DT[J]. Acta Materialia,2005,53(17):3041-3057.
    [116] Zhang J X, Murakumo T. Dependence of creep strength on the interfacial dislocations in a fourthgeneration SC superalloy TMS-138[J]. Scripta Materialia,2003,48(3):287-296.
    [117]田素贵,周惠华,张静华,等.一种单晶镍基合金蠕变初期的位错组态,1998,34(2):123-128.
    [118]吴文平,郭亚芳,汪越胜,等.镍基单晶高温合金界面位错网在剪切载荷作用下的演化[J].物理学报,2011,60(5):1-7.
    [119] Fleischer R L. Substitutional solution hardening[J]. Acta Metallurgica,1963,11(3):203-209.
    [120] Loomis W T, Freeman J W. The influence of molybdenum on the phase in experimentalnickel-base superalloys[J]. Metallurgical Transactions,1972,3(4):989-1000.
    [121] Kovarik L, Unocic R R, Li J, et al. Microtwinning and other shearing mechanisms at intermediatetemperatures in Ni-based superalloys[J]. Progress in Materials Science,2009,54(6):839-873.
    [122] Voelkl R, Glatzel U, Feller-Kniepmeier M. Analysis of matrix and interfacial dislocation in thenickel-base superalloy CMSX-4after creep in [111] direction[J]. Scripta Metallurgical Materialia,1994,31(11):1481-1486.
    [123] Liu L R, Jin T, Zhao N R,Wang Z H, et al. Effect of carbon addition on the creep properties in aNi-based single crystal superalloy[J]. Materials Science and Engineering A,2004,385(1-2):105-112.
    [124] Tian S G, Wang M G, Yu X F, et al. Influence of element Re on lattice misfits and stress ruptureproperties of single crystal nickel-based superalloys[J]. Materials Science and Engineering A,2010,527(16-17):4458-4465.
    [125] Gilles R, Ukherji D, Tobbens D, et al. Neutron X-ray and electron diffraction measurements for thedetermination of/lattice misfit in Ni-base superalloys[J]. Applied Physics A,2002,74(1):1446-1448.
    [1026Li H Y, Zuo X P, Wang Y L, et al. Coarsening behavior of γ′particles in a nickel-base superalloy[J].Rare Metals,2009,28(2):197-201.
    [1027Tian S G, Zhang J H, Xu Y B, et al. Stress-induced precipitation of fine γ′phase andthermodynamics analysis[J]. Journal of Materials Science and Technology,2001,17(2):257-259.
    [128]赵阳,王磊,于腾,等.定向凝固钴基高温合金DZ40M中碳化物析出与再结晶的交互作用[J].稀有金属材料于工程,2008,37(6):1032-1036.
    [129]王明罡,田素贵,于兴福,等.热处理对单晶镍基合金成分偏析与持久性能的影响[J].沈阳工业大学学报,2009,31(5):525-530.
    [130]赵雪会,白真权,冯耀荣,等.热处理温度及析出相对镍基合金腐蚀性能的影响[J].材料热处理学报,2012,33(8):39-44.
    [131] Pollock T M, Argon A S. Creep resistance of CMSX-3nickel base superalloy single crystals[J]. ActaMetallurgical Materialia,1992,40(1):1-30.
    [132] Tian S G, Zhang J H, Wu X, et al. Features and effect factors of creep of single-crystal nickel-basesuperalloys[J]. Metallurgical and Materials Transactions A,2001,32(12):2947-2957.
    [133]张俊善.材料的高温变形与断裂[M].北京:科学出版社,2007,105.
    [134] Wang D, Zhang J, Lou L H. Formation and stability of nano-scaled M23C6carbide in a directionallysolidified Ni-base superalloy[J]. Materials Characterization,2009,60(12):1517-1521.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700