用户名: 密码: 验证码:
公路钢拱桥新型不锈钢吊杆疲劳性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于国民经济的持续快速发展,公路交通量、重车数量和车速都大幅提高,公路桥梁的建设也进入一个快速发展时期。钢桥由于具有轻质高强以及便于工厂化生产等优点,在桥梁建设中日益受到青睐。轻质高强材料在桥梁工程中的广泛应用,以及公路交通量的大幅提高,使得活荷载所占比例越来越大,疲劳问题日益突出。我国现行的《公路桥涵钢结构及木结构设计规范》(JTJ025-86)自开始实施至今已超过二十五年,其技术水平已无法满足我国公路钢桥发展的需要。本文结合一座三连续坦拱钢结构桥所采用的新型不锈钢吊杆的疲劳分析项目和国家高技术研究发展计划(863计划)项目(2007AA11Z133),开展了一系列工作,主要内容如下:
     (1)对一根直径55mm和两根直径70mm的不锈钢吊杆进行了常幅正弦波加载的疲劳试验,吊杆所用材料为05Cr17Ni4Cu4Nb不锈钢。得到了吊杆的疲劳寿命、疲劳破坏位置以及断口外貌。
     (2)采用理论方法估算了不锈钢吊杆杆体的对称拉一压疲劳极限,直径55mm和70mm的不锈钢吊杆杆体的疲劳极限分别为226MPa和250MPa。根据试验实测的吊杆杆体应变,分析了吊杆杆体应变变程随荷载循环次数的变化关系,结果表明,其中一根直径70mm的吊杆杆体在约300万次循环荷载后杆体内部出现了微小损伤,其它两根吊杆杆体在疲劳试验过程中未出现损伤。
     (3)总结国内外对不锈钢本构模型的研究成果,得出了05Cr17Ni4Cu4Nb不锈钢的三折线本构模型。采用有限元分析软件ANSYS对不锈钢吊杆U型接头和吊杆杆体之间的螺纹联接进行了有限元分析。分析了每一扣螺纹齿所承担的荷载,计算了螺纹齿根的最大Von Mises应力和应变的数值。
     (4)对中、低合金钢的Seeger算法进行修正,得出了高合金钢的Seeger算法,并该用该方法估算出了05Cr17Ni4Cu4Nb不锈钢的Manson-Coffin公式。用名义应力法估算出直径为70mm两根吊杆的疲劳寿命分别为976500次和2365130次;用基于Manson-Coffin公式的局部应力应变法估算出直径70mm的两根吊杆的疲劳裂纹萌生寿命分别为314230次和444919次;使用疲劳分析软件FE-SAFE估算出直径70mm的两根吊杆的疲劳裂纹萌生寿命分别为441165次和695132次。结果表明,用名义应力法准确预测某一特定构件的疲劳寿命几乎是不可能的,局部应力应变法相对于名义应力法精度高,FE-SAFE软件对疲劳裂纹萌生寿命的估算精度更高,适用于具有丰富疲劳强度分析理论知识的使用者。
     (5)总结前人的研究成果,得出了不锈钢吊杆螺纹根部裂纹应力强度因子的计算公式。对不锈钢吊杆的疲劳裂纹扩展寿命进行了研究,提出了描述05Cr17Ni4Cu4Nb不锈钢疲劳裂纹扩展速率的Paris公式参数的推荐参考值为:m=3,C=3.96x10-13。
     (6)对英国BS5400规范、美国AASHTO规范、欧洲规范Eurocode1和Eurocode3以及TB10002.2-2005规范中的抗疲劳设计部分进行了对比分析,从疲劳荷载模型、疲劳细节分类与设计疲劳曲线以及抗疲劳设计方法三个方面提出了对我国公路钢桥抗疲劳设计的建议,可为编制我国公路钢桥抗疲劳设计规范提供参考。
     对不锈钢吊杆螺纹联接的疲劳细节等级进行了研究,推荐取71MPa作为不锈钢吊杆螺纹联接这种构造细节的疲劳细节等级,且当公称直径d>30mm时,应考虑尺寸效应的影响,尺寸效应系数Ks=(30/d)0.25。
     采用有限元分析软件Midas Civil建立实际桥梁主桥结构的有限元模型,分析了桥梁在欧洲规范Eurocode1中的疲劳荷载模型3作用下的吊杆内力。以欧洲规范Eurocode3中的简单疲劳验算方法为基础,采用本文所确定的不锈钢吊杆螺纹联接的疲劳细节等级,对不锈钢吊杆进行了疲劳验算。结果表明:直径为70mm的不锈钢吊杆满足抗疲劳设计要求,直径为55mm的不锈钢吊杆中只有9根吊杆满足抗疲劳设计要求,其余45根吊杆均不满足抗疲劳设计要求。提出了设计修改建议,经验算,改进后的设计方案中的吊杆螺纹联接满足抗疲劳设计要求。
In recent years, due to the sustained and rapid development of the national economy, highway traffic volume, number of heavy vehicles and speed has increased significantly. The construction of highway bridge has also entered a period of rapid development. Due to the advantages of lightweight, high strength and easy to factory production, steel bridge becomes popular. The proportion of live load has increased because of the widely used of lightweight, high strength materials and substantial increase of highway traffic volume. Then, fatigue problems have become increasingly prominent. The current code "Specification for Design of Steel Structure and Timber Structure Highway Bridges and Culverts"(JTJ025-86) has been implemented more than25years. It has long been unable to meet the needs of the development of highway steel bridge in our country. In this paper, on the basis of a project of stainless steel suspender fatigue analysis of a three-span continuous steel arch bridge and a project of863Program (2007AA11Z133), a series of work has been done. The main contents are as follow:
     (1) The constant amplitude sine wave fatigue tests had been done on a stainless steel suspender with a diameter of55mm and two stainless steel suspenders with a diameter of70mm. Material of these suspenders is stainless steel of05Cr17Ni4Cu4Nb. The fatigue life, fatigue failure locations and fracture appearance were obtained.
     (2) The symmetric tension-compression fatigue limits had been estimated by theoretical methods, and the value was226MPa for the stainless steel suspender body with a diameter of55mm and250MPa for the stainless steel suspender body with a diameter of70mm, respectively. On the basis of the measured stress and strain of suspender body, the variation relationship of strain range with load cycles had been analyzed. The results showed that one of the stainless steel suspender body with a diameter of70mm appeared tiny damage after about3million cyclic loading, and no damage was found in other two suspender bodies.
     (3) The trilinear constitutive model was proposed. The stress analysis had been performed on the threaded connections of suspenders with finite element software ANSYS. The conclusive results were drawn from the analysis including load distributions on the thread teeth and the locations and values of maximum Von Mises stress and strain.
     (4) The Manson-Coffin formula of05Cr17Ni4Cu4Nb stainless steel was proposed. The fatigue lives of the two suspenders with a diameter of70mm had been estimated with the nominal stress method, and the value were976500cycles and2365130cycles, respectively. The fatigue crack initiation lives of the two suspenders with a diameter of70mm had been estimated with the local stress-strain method and the value were314230cycles and444919cycles, respectively. Then, the fatigue crack initiation lives of the two suspenders with a diameter of70mm were estimated with FE-SAFE, and the value were441165cycles and695132cycles, respectively. The results showed that the nominal stress method to accurately predict the fatigue life of a particular component is almost impossible, FE-SAFE has higher accuracy than local stress-strain method on estimating the fatigue initiation life, and it suitable for the user with rich theoretical knowledge of fatigue analysis.
     (5) The stress intensity factor formula for thread root was proposed. An analysis of the fatigue crack propagation lives of stainless steel suspenders had been performed. The recommendation values of Paris equation parameters of05Cr17Ni4Cu4Nb stainless steel were proposed as m=3, C=3.96×10-13.
     (6) The comparative analysis had been performed on the anti-fatigue design of BS5400, AASHTO, Eurocode1and Eurocode3, as well as TB10002.2-2005. The suggestions of fatigue load model, detail categories and design fatigue curves, as well as anti-fatigue design method were proposed on the anti-fatigue design of China's highway steel bridge.
     The detail category of threaded connection of stainless steel suspender was recommended to be taken as71MPa, and considered size effect when the nominal diameter d>30mm. The size effect factor is ks=(30/d)0.25.
     The finite element model of arch bridge was established with finite element software Midas Civil to perform an axial force analysis of the suspenders of arch bridge under the fatigue load model3of Eurocode1. The fatigue assessment had been performed on the stainless steel suspenders with the simple fatigue assessment method of Eurocode3and the detail category of threaded connection of stainless steel suspender recommended in this paper. The results showed that the fatigue resistance of the stainless steel suspenders with a diameter of70mm meet design requirement, and only9of the stainless steel suspenders with a diameter of55mm meet the anti-fatigue design requirement, the fatigue design requirements of the remaining45stainless steel suspenders with a diameter of55mm are not met. The suggestions of dedign modification were proposed and met the anti-fatigue design requirement.
引文
[1]费罗斯特N E,马什K J,普克LP著,江一麟,邵本逑译.金属疲劳[M].北京:冶金工业出版社,1984.
    [2]郭聪.钢桥节点焊接局部疲劳寿命分析[D]:(硕士学位论文).大连:大连理工大学,2007.
    [3]刘帮俊.桥梁钢结构疲劳全寿命设计研究[D]:(硕士学位论文).西安:长安大学,2006.
    [4]师义军.既有公路钢桥剩余疲劳寿命评估及疲劳可靠性研究[D]:(硕士学位论文).西安:西安建筑科技大学,2005.
    [5]李莹.公路钢桥疲劳性能及可靠性研究[D]:(博士学位论文).哈尔滨:哈尔滨工业大学,2008.
    [6]Lee Y L, Pan J, Hathaway R B, et al. Fatigue Testing and Analysis [M]. Burlington: Elsevier Butterworth-Heinemann,2005.
    [7]熊峻江.飞行器结构疲劳与寿命设计[M].北京:北京航空航天大学出版社,2004.
    [8]苏尔茨著,王光中译.材料的疲劳[M].北京:国防工业出版社,1993.
    [9]钟炜辉.钢结构的高周疲劳损伤有限元分析模型研究[D]:(硕士学位论文).西安:西安建筑科技大学,2005.
    [10]British Standard. BS 5400:Steel, concrete and composite bridges-part 10:Code of practice for fatigue [S]. Britain:Standards Policy and Strategy Committee, 1980.
    [11]American Association of State Highway and Transportation Officials, AASHTO LRFD Bridge Design Specifications [S], Washington, DC:AASHTO,2007.
    [12]BS EN 1993-1-9, Eurocode 3:Design of steel structures-part 1-9:Fatigue [S]. Brussels:European Committee for Standardization,2005.
    [13]BS EN 1993-2, Eurocode 3:Design of steel structures-part 2:Steel bridges [S]. Brussels:European Committee for Standardization,2006.
    [14]Rules and Guidelines, Industrial Services. Guideline for the Certification of wind Turbines [S]. Hamburg:Germanischer Lloyd,2010.
    [15]An International Code.2010 ASME Boiler and Pressure Vessel Code VIII, Division 2, Alternative Rules, RULES FOR CONSTRUCTION OF PRESSURE VESSELS [S]. ASME Boiler and Pressure Vessel Committee on Pressure Vessels,2010.
    [16]李飞.疲劳寿命计性能测试与钢桥疲劳寿命估算[D]:(硕士学位论文).长沙:中南大学,2007.
    [17]常大民,江克斌.桥梁结构可靠性分析与设计[M].北京:中国铁道出版社,1999.
    [18]王光煜.钢结构缺陷及其处理[M].上海:同济大学出版社,1988.
    [19]钱冬生.科学地对待桥渡和桥梁[M].北京:中国铁道出版社,2003.
    [20]魏建东.宜宾小南门大桥的抢修加固与恢复工程[J].公路,2003,(4):34—38.
    [21]曾春华,邹十践.疲劳分析方法及应用[M].北京:国防工业出版社,1991.
    [22]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [23]Ramberg W, Osgood W R. Description of stress-strain curves by three parameters [R]. Washington D C:NACA,1943.
    [24]Rasmussen K J R. Full-range stress-strain curves for stainless steel alloys [J]. Journal of Constructional Steel Research,2003,59:47-61.
    [25]Rasmussen K J R, Rondal J. Strength curves for metal columns [J]. Journal of Structural Engineering, ASCE 1997,123(6):721-728.
    [26]Abdella K. Inversion of a full-range stress-strain relation for stainless steel alloys [J]. International Journal of Non-Linear Mechanics,2006,41:456-463.
    [27]Abdella K. An explicit stress formulation for stainless steel applicable in tension and compression [J]. Journal of Constructional Steel Research,2007,63:326-331.
    [28]SEI/ASCE-8-02, ASCE specification for the design of cold-formed stainless steel structural members [S]. Reston:American Society of Civil Engineers,2002.
    [29]AS/NZS 4673, Cold-formed stainless steel structures [S]. Sydney:Australian/New Zealand Standard,2001.
    [30]SABS, Structural use of steel-Part 4:the design of cold-formed stainless steel structural members [S]. Pretoria:The South African Bureau of Standards,1997.
    [31]BS EN 1993-1-4, Eurocode 3:Design of steel structures-part 1-4:General rules-Supplementary rules for stainless steels [S]. Brussels:European Committee for Standardization,2006.
    [32]Chen J, Young B. Stress-strain curves for stainless steel at elevated temperatures [J]. Engineering Structures,2006,28:229-239.
    [33]陈驹,金伟良,杨立伟.建筑用不锈钢的抗火性能[J].浙江大学学报(工学版)2008,42(11):1983—1989.
    [34]Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]. In:Proceeding of the 7th international symposium on ballistics, the hague, Netherlands,1983:541-547.
    [35]Zerilli F J, Armstrong R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987,61(5):1816-1825.
    [36]Zerilli F J, Armstrong R W. Description of tantalum deformation behavior by dislocation mechanics based constitutive relations [J]. Journal of Applied Physics,1990,68 (4):1580-1591.
    [37]Bodner S R, Partom Y. Constitutive equations for elastic-viscoplastic strain-hardening materials. Journal of Applied Mechanics,1975,6:385-389.
    [38]Khan A S, Huang S. Experimental and theoretical study of mechanical behavior of 1100 aluminum in the strain rate range 10-5-104s-1. International Journal of Plasticity,1992,8:397-424.
    [39]Liang R Q, Khan A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures [J]. International Journal of Plasticity,1999,15:963-980.
    [40]何著,赵寿根,杨嘉陵,等.OCr17Ni4Cu4Nb不锈钢动态力学性能研究[J].材料科学与工程学报,2007,25(3):418-421.
    [41]李润方,龚剑霞.接触问题数值方法及其在机械设计中的应用[M].重庆:重庆出版社,1991.
    [42]安世亚太.ANSYS结构分析指南(中)[M].北京:安世亚太,2000.
    [43]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [44]段巍,温新林,唐贵基,等.不同旋合扣数下钢拉杆螺纹联接强度试验及有限元应力分析[J].机械强度,2008,30(5):823—828.
    [45]Macdonald K A, Deans W F. Stress analysis of drill string threaded connection using the finite element method [J]. Engineering Failure Analysis,1995,2(1):1-30.
    [46]Bahai H. A parametric model for axial and bending stress concentration factors in API drillstring threaded connectors [J]. International Journal of Pressure Vessels and Piping,2001,78:495-505.
    [47]Yuan G J, Yao Z Q, Han J Z, et al. Stress distribution of oil tubing thread connection during make and break process [J]. Engineering Failure Analysis,2004,11:537-545.
    [48]Shahani A R, Sharifi S M H. Contact stress analysis and calculation of stress concentration factors.at the tool joint of a drill pipe [J]. Materials and Design, 2009,30:3615-3621.
    [49]肖建秋,彭蒿,程方强,等.API偏梯形套管螺纹接头极限抗拉能力分析[J].石油矿场机械,2008,37(3):53-56.
    [50]袁光杰,林元华,姚振强,等.API偏梯形套管螺纹连接的接触应力场研究[J].钢铁,2004,39(9):35—38.
    [51]王琍,张汝忻,邹家祥,等.API圆螺纹套管接头应力场分布实验[J].北京科技大学学报,2000,22(6):555-558.
    [52]范志超,杨晓翔,蒋家羚.抽油机井油管接头弹塑性接触有限元分析[J].机械强度,2002,24(2):298-301.
    [53]吴应喜.偏梯形套管螺纹接头多轴疲劳寿命研究[D]:(硕士学位论文).西安:西北工业大学,2007.
    [54]Tanaka M, Miyazawa H, Asaba E, et al. Application of the finite element method to bolt-nut joints (Fundamental studies on analysis of bolt-nut joints using the finite element method) [J]. Bulletin of the JSME,1981,24(192):1064-1071.
    [55]Dragoni E. Effect of nut geometries on screw thread stress distribution: photoelastic results [J]. Journal of Strain Analysis,1992,27(1):1-6.
    [56]Brennan F P, Dover W D. Stress intensity factors for threaded connections [J]. Engineering Fracture Mechanics,1995,50(4):545-567.
    [57]Grewal A S, Sabbaghian M. Load distribution between threads in threaded connections [J]. Journal of Pressure Vessel Technology,1997,119:91-95.
    [58]Bahai H, Glinka G, Esat I I. Numetical and experimental evaluation of SIF for threaded connectors [J]. Engineering Fracture Mechanics,1996,54(6):835-845.
    [59]Tafreshi A. SIF evaluation and stress analysis of drillstring threaded joints [J]. International Journal of Pressure Vessels and Piping,1999,76:91-103.
    [60]温敏,崔小朝,王红霞.复合材料锚杆螺纹螺帽接触有限元分析[J].玻璃钢/复合材料,2008,(4):7—11.
    [61]吴应喜,王峰会,宋生印,等.螺纹接头疲劳参量等效性有限元分析[J].石油矿场机械,2007,36(7):31-34.
    [62]李润方,林腾蛟,唐倩,等.石油钻杆联接螺纹弹塑性接触有限元分析[J].石油矿场机械,1998,27(6):44-46.
    [63]丁凌云,冯进,张慢来,等.拉伸载荷作用下套管接头的应力分析[J].机械研究与应用,2005,18(4):23-24.
    [64]Yuan G J, Yao Z Q, Lin Y H, et al. Tribological properties of API 10-round thread connection during make-and-break process [J]. Tsinghua Science and Technology, 2004,9 (3):281-285.
    [65]Yutaka H, Tatsuro M, Kunihiko K, et al. Development of premium threaded connection "FOX" [J]. Kawasaki Steel Technical Report,1988,19:23-29.
    [66]Dragoni E. Effect of nut compliance on screw thread load distribution [J]. Journal of Strain Analysis,1990,25(3):147-150.
    [67]Marco S M, Starkey W L. A concept of fatigue damage [J]. Transaction of the ASME, 1954,76:627-632.
    [68]Mason S S, Freche J C, Ensign C R. Application of a double linear damage rule to cumulative fatigue [R]. Washington D. C.:NASA,1967.
    [69]徐灏.疲劳强度[M].北京:高等教育出版社,1988.
    [70]Buch A. Fatigue strength calculation [M]. Switzerland:Trans Tech Publications, 1988.
    [71]雷宏刚.螺栓球节点网架结构高强螺栓连接疲劳性能的理论与试验研究[D]:(博士学位论文).太原:太原理工大学,2008.
    [72]周欣茹.基于疲劳试验数据的高强螺栓疲劳设计方法[D]:(硕士学位论文).太原:太原理工大学,2005.
    [73]闫亚杰.螺栓球节点网架疲劳性能的试验研究[D]:(硕士学位论文).太原:太原理工大学,2003.
    [74]刘丽君.螺栓球节点网架用高强螺栓的疲劳影响因素及缺口效应分析[D]:(硕士学位论文).太原:太原理工大学,2003.
    [75]晋炜.悬挂吊车作用下的螺栓球节点平板网架动力响应及疲劳问题的仿真分析[D]:(硕士学位论文).太原:太原理工大学,2008.
    [76]李鹏.平板网架结构中钢管-焊接空心球节点连接常幅疲劳性能的理论与试验研究[D]:(硕士学位论文).太原:太原理工大学,2010.
    [77]郜峰,王奇志,张行.各向异性损伤力学在螺纹疲劳寿命预估中的应用[J].应用力学学报,2007,24(1):128-132.
    [78]Wittenberghe J V, Pauw J D, Baets P D, et al. Fatigue investigation of threaded pipe connections [J]. Labo Soete, Ghent University,2010, (10):182-189.
    [79]Veidt M, Berezovski A. Design and application of a drill pipe fatigue test facility [J/OL]. SIF2004 Structural Integrity and Fracture,2004, http://eprint.uq.edu.au/archive/00000836.
    [80]陈勇,练章华,唐玉宏,等.NC50型钻铤公螺纹疲劳寿命计算分析[J].石油矿场机械,2006,35(4):58-60.
    [81]杜洪奎,袁昌明.螺栓疲劳寿命预测[J].机械设计,2008,25(2):10-12.
    [82]王建西,许玉德,王志臣.影响钢轨疲劳裂纹萌生寿命的主要因素[J].同济大学学报(自然科学版),2009,37(7):914-918.
    [83]段权,程光旭,姜培正.16MnR低周疲劳裂纹萌生寿命的统计分布研究[J].压力容器,2000,17(1):42-47.
    [84]吴维青.40Cr钢疲劳裂纹萌生寿命的测量[J].应用力学学报,2003,20(3):141-144.
    [85]张莉,王刚,吕念春,等.航空发动机涡轮盘裂纹萌生寿命的估算方法[J].应用力学学报,2003,20(4):133-135.
    [86]娄路亮,李付国,李庆华.一种计算疲劳裂纹萌生寿命的数值方法[J].机械强度,2000,22(3):203-209.
    [87]钱桂安,王茂廷,王莲.压力容器受低周疲劳裂纹萌生寿命的可靠性分析[J].压力容器,2005,22(7):1-3.
    [88]陈群志,毕世权,魏金龙,等.复杂飞机结构裂纹萌生寿命确定的工程方法[J].实验室研究与探索,2007,26(10):244-247.
    [89]李年,张建中,杜百平,等.双频复合疲劳的裂纹萌生及扩展[J].机械强度,1993,15(1):29-33.
    [90]刘利军,贾维,夏倩.柴油机喷油泵接头疲劳寿命的有限元分析[J].柴油机,2010,32(2):25—28.
    [91]鄢奉林,陆兵,倪利勇.钢制车轮动态弯曲试验疲劳寿命预测[J].机械设计与制造,2010,(6):117-119.
    [92]张逊,姜年朝.基于ANSYS/FE-SAFE的模具联接螺栓疲劳仿真分析[J].机械工程与自动化,2008,(1):23—25.
    [93]杨庆乐.基于ANSYS/FE-SAFE的强夯机臂疲劳寿命分析[D]:(硕士学位论文).大连:大连理工大学,2009.
    [94]姜年朝,谢勤伟,戴勇,等.基于ANSYS/FE-SAFE的无人机复合材料机翼疲劳分析[J].机械强度,2009,(6):3—4.
    [95]易太连,吴杰长,刁爱民,等.基于有限元和FE-SAFE的柴油机排烟管振动下的疲劳寿命[J].内燃机工程,2008,29(3):76—80.
    [96]马宇山,金涛,宫建国,等.注塑机模板的应力与疲劳分析及优化[J].塑料工业,2010,38(9):40-44.
    [97]张逊,姜年朝.转子发动机径向密封片弹簧计算[J].农业装备与车辆工程,2007,(6):51-54.
    [98]徐灏.疲劳强度设计[M].北京:机械工业出版社,1983.
    [99]赵少汴,王忠保.抗疲劳设计─方法与数据[M].北京:机械工业出版社,1997.
    [100]高艳丽.16Mn钢焊接件疲劳裂纹萌生与扩展的研究[D]:(硕士学位论文).沈阳:沈阳大学,2007.
    [101]Bishop N W M, Sherratt F. Finite Element Based Fatigue Calculations [M]. Glasgow: NAFEMS,2000.
    [102]王学颜,宋广惠.结构疲劳强度设计与失效分析[M].北京:兵器工业出版社,1992.
    [103]Baiduya B, Ellingwood B. Continuum damage mechanics analysis of fatigue crack initiation [J]. International Journal of Fatigue,1998,20(9):631-639.
    [104]Murtaza G, Akid R. Modeling short fatigue crack growth in a heated-treated low-alloy steel [J]. International Journal of Fatigue,1995,17(3):207-214.
    [105]Schijve J. Fatigue prediction and scatter [J]. Fatigue & Fracture of Engineering Material & Structure,1994,17(4):381-396.
    [106]张志强.40CrNiMo钢在不同切口下疲劳裂纹萌生寿命规律的研究[J].钢铁研究总院学报,1981,(1):101-106.
    [107]佐藤邦彦等著,张伟昌等译.焊接接头的强度与设计[M].北京:机械工业出版社,1983.
    [108]胡贵方,葛太华.16Mn钢焊接接头疲劳裂纹的扩展[J].机械强度,1990,12(4):69-73.
    [109]张杰.高强钢疲劳裂纹扩展特性研究[D]:(硕士学位论文).哈尔滨:哈尔滨工程大学,2009.
    [110]Kwof ie S, Rahbar N. An equivalent driving force model for crack growth prediction under different stress ratios [J]. International Journal of Fatigue, 2011,33:1199-1204.
    [111]Zhu S J, Peng L M, Moriya T, et al. Effect of stress ratio on fatigue crack growth in TiAl intermetallics at room and elevated temperatures [J]. Materials Science and Engineering,2000, A290:198-206.
    [112]Oberwinkler B. Modeling the fatigue crack growth behavior of Ti-6A1-4V by considering grain size and stress ratio [J]. Materials Science and Engineering, 2011, A528:5983-5992.
    [113]Kumar R, Singh K. Influence of stress ratio on fatigue crack growth in mild steel [J]. Engineering Fracture Mechanics,1995,50(3):377-384.
    [114]Costa J D M, Ferreira J A M. Effect of stress ratio and specimen thickness on fatigue crack growth of CK45 steel [J]. Theoretical and applied fracture mechanics,1998,30(1):65-73.
    [115]吴欢,赵永庆,曾卫东.疲劳裂纹扩展行为的研究现状及钛合金的疲劳裂纹扩展特征[J].稀有金属快报,2007,36(7):1-6.
    [116]Noroozi A H, Glinka G, Lambert S. A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force [J]. International Journal of Fatigue,2007,29:1616-1633.
    [117]庄立健,高增梁,王效贵,等.16MnR钢在不同应力比下的疲劳裂纹扩展的试验研究及模拟[J].压力容器,2007,24(3):1-7.
    [118]Shademan S, Sinha V, Soboyejo A B O, et al. An investigation of the effects of microstructure and stress ratio on fatigue crack growth in Ti-6A1-4V with colony α/β microstructures [J]. Mechanics of Materials,2004,36:161-175.
    [119]Zhang J, He X D, Du S Y. Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method [J]. International Journal of Fatigue,2005,27:1314-1318.
    [120]Lacoviello F, Lacoviello D, Cavallini M. Analysis of stress ratio effects on fatigue propagation in a sintered duplex steel by experimentation and artificial neural network approaches [J]. International Journal of Fatigue, 2004,26:819-828.
    [121]Xu F M, Zhu S J, Zhao J, et al. Effect of stress ratio on fatigue crack propagation in a functionally graded metal matrix composite [J]. Composites Science and Technology,2004,64:1795-1803.
    [122]Ding J, Hall R, Byrne J. Effects of stress ratio and temperature on fatigue crack growth in a Ti-6A1-4V alloy [J]. International Journal of Fatigue, 2005,27:1551-1558.
    [123]Zhao J, Miyashita Y, Mutoh Y. Fatigue crack growth behavior of 95Pb-5Sn solder under various stress ratios and frequencies [J]. International Journal of Fatigue, 2000,22:665-673.
    [124]Jones R, Farahmand B, Rodopoulos C A. Fatigue crack growth discrepancies with stress ratio [J]. Theoretical and Applied Fracture Mechanics,2009,51:1-10.
    [125]Sunder R, Portert J, Ashbaught N E. The effect of stress ratio on fatigue crack growth rate in the absence of closure [J]. International Journal of Fatigue, 1997,19:S211-S221.
    [126]欧阳辉,刘俊洲,苏小燕,等.应力比R对疲劳裂纹扩展速率的影响[J].固体力学学报,1984,(4):577—584.
    [127]张卫国,田洪,宓为建,等.应力比r对构件疲劳裂纹扩展的影响分析[J].中国工程机械学报,2008,6(4):403-408.
    [128]中华人民共和国交通部部标准.公路桥涵钢结构及木结构设计规范(JTJ 025-86)[S].北京:人民交通出版社,1989.
    [129]中华人民共和国交通部部标准.公路桥涵地基与基础设计规范(JTJ 024—85)[S].北京:人民交通出版社,1985.
    [130]中华人民共和国行业标准.公路桥涵设计通用规范(JTG D60-2004)[S].北京:人民交通出版社,2004.
    [131]中华人民共和国行业标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTGD62—2004)[S].北京:人民交通出版社,2004.
    [132]李昆.基于可靠度理论的公路钢桥概率极限状态设计方法研究[D]:(博士学位论文).上海:同济大学,2007.
    [133]中华人民共和国国家标准.公路工程结构可靠度设计统一标准(GB/J 50283—1999)[S].北京:中国计划出版社,1999.
    [134]英国标准学会,钢桥、混凝土桥及结合桥(BS5400)[S].成都:西南交通大学出版社,1986.
    [135]British Standard. BS 5400:Steel, concrete and composite bridges-part 2: Specification for loads [S]. Britain:Standards Policy and Strategy Committee, 2006.
    [136]BS EN 1991-2, Eurocode 1:Actions on Structures-part 2:Traffic loads on bridges [S]. Brussels:European Committee for Standardization,2003.
    [137]中华人民共和国行业标准.铁路桥梁钢结构设计规范(TB 10002.2—2005)[S].北京:中国铁道出版社,2005.
    [138]顾安邦,徐君兰.中、下承式拱桥短吊杆结构行为分析[J].公路,2002(5):8-10.
    [139]任伟平,李小珍,李俊,等.现代公路钢桥典型细节疲劳问题分析[J].公路,2007(4):82-87.
    [140]钟轶峰,殷学纲,邓朝荣.基于刚性吊杆法的中(下)承式直吊杆系静张力有限元分析[J].工程力学(增刊),2003,20:447-450.
    [141]钟轶峰,殷学纲,邓朝荣.基于零位移法的中(下)承式直吊杆系静张力有限元分析[J].工程力学(增刊),2003,20:397—401.
    [142]ASCE. Committee on fatigue and fracture reliability of the committee on structural safety and reliability of the structural division [J]. Journal of Structural Division, ASCE,1982,108(ST1):3-88.
    [143]ASTM Committee. Standard Guide for Specifying Harmonized Standard Grade Compositions for Wrought Stainless Steels (A959-09) [S]. West Conshohocken:ASTM international,2009.
    [144]中华人民共和国国家标准.不锈钢棒(GB/T 1220—2007)[S].北京:中国标准出版社,2007.
    [145]冯美斌,何家雯.压应力疲劳述评[J].汽车科技,1990(5):31-40.
    [146]高镇同.疲劳性能测试[M].北京:国防工业出版社,1986.
    [147]高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986.
    [148]Sors L. Fatigue design of machine components [M]. Oxford:Pergamon press,1971.
    [149](前苏)库德里亚弗采夫著,赵少汴译.大型机器零件的疲劳[M].北京:机械工业出版社,1986.
    [150]Peterson R E. Stress concentration factor [M]. New York:John Wiley and Sons, 1974.
    [151]西田正孝.应力集中[M].北京:机械工业出版社,1983.
    [152]航空工业部科技委员会.应力集中系数手册[M].北京:航空工业出版社,1990.
    [153]李洪波,舒赣平.不锈钢在建筑结构中的应用与研究[J].工业建筑,2008(增刊):1896-1901.
    [154]RASMUSSEN K J R, HANCOCK G J. Design of cold-formed stainless steel tubular members. I:Columns [J]. Journal of Structural Engineering,1993,119(8):2349-2367.
    [155]RASMUSSEN K J R, HANCOCK G J. Design of cold-formed stainless steel tubular members. II:Beams [J]. Journal of Structural Engineering,1993,119(8):2368-2386.
    [156]YOUNG B, LIU Y. Experimental investigation of cold-formed stainless steel columns [J]. Journal of Structural Engineering,2003,129(2):169-176.
    [157]GARDNER L, NETHERCOT D A. Experiments on stainless steel hollow sections-Part 1:Material and cross-sectional behaviour [J]. Journal of Constructional Steel Research,2004,60(9):1291-1318.
    [158]GARDNER L, NETHERCOT D A. Experiments on stain-less steel hollow section members-Part 2:Member behaviour of columns and beams [J]. Journal of Constructional Steel Research,2004,60(9):1319-1332.
    [159]YOUNG B, LUI W M. Behavior of cold-formed high strength stainless steel sections [J]. Journal of Structural Engineering,2005,131(11):1738-1745.
    [160]苏庆田,沈祖炎,张其林,等.不锈钢强度设计值取值的试验和理论依据[J].建筑结构学报,2003,24(1):80-83.
    [161]束德林.工程材料力学性能[M].北京:机械工业出版社,2007.
    [162]孙茂才.金属力学性能[M].哈尔滨:哈尔滨工业大学出版社,2003.
    [163]Olsson A. Stainless steel plasticity-material modelling and structural applications [D]. PhD thesis, Department of Civil and Mining Engineering, Lulea University of Technology, Sweden; 2001.
    [164]Yu W W. Cold-formed steel design,3rd Ed. [M]. New York:Wiley,2000.
    [165]中华人民共和国国家标准.不锈钢棒(GB/T 1200-2007)[S].北京:中国标准出版社,2007.
    [166]张振,李静,张忠平.航空铝合金疲劳参数的理论估算方法分析[J].失效分析与预防,2011,6(1):28—31.
    [167]Manson S S. Fatigue:A complex subject-some simple approximation [J]. Experimental Mechanics,1965,5:193-226.
    [168]Muralidharan U, Manson S S. Fatigue:A modified universal slopes equation for estimation of fatigue characteristic of metals [J]. Journal of Engineering Materials and Technology,1988,110:55-58.
    [169]Ong J H. An improved technique for the prediction of axial fatigue life from tensile data [J]. International Journal of Fatigue,1993,15(3):213-219.
    [170]Roessle M L, Fatemi A. Strain-controlled fatigue properties of steels and some simple approximations [J]. International Journal of Fatigue,2000,22:495-511.
    [171]Fe-safe user manual. Volume 2:Fatigue theory reference manual [M]. U.K.:Safe Technology Limited,2008.
    [172]赵光菊,钟蜀晖,邓建华.TA6V钛合金疲劳小裂纹扩展行为研究[J].贵州大学学报(自然科学版),2009,26(3):72-76.
    [173]王雪颖.基于断裂力学理论的焊接球节点网架结构疲劳寿命估算[D]:(硕士学位论文).太原:太原理工大学,2010.
    [174]肖纪美.化学介质与断裂过程[M].北京:北京航空学院出版社,1980.
    [175]沈为,赵廷士,高大兴,等.用环状裂纹圆柱测定断裂韧度[J]//断裂理论与实验研究.武汉:湖北人民出版社,1980:99-116.
    [176]董晓源,王天宰.螺纹根部应力强度因子的计算[J].紧固件技术,1986(2):43-45.
    [177]吕永华,王天宰.强度级别对高强度螺栓用钢缺口疲劳行为的影响[J].兵器材料科学与工程,1987(10):1-7.
    [178]褚武扬,李世琼,肖纪美,等.高强钢水介质应力腐蚀研究[J].金属学报,1980,16(2):179-189.
    [179]姜忠良,王天宰.高强度螺栓应力腐蚀开裂的断裂力学分析[J].工业建筑,1982,12(7):42—48.
    [180]Wirsching P H, Torng T Y, Martin W S. Advanced fatigue reliability analysis [J]. International Journal of Fatigue,1991,13(5):389-394.
    [181]Wirsching P H. Fatigue reliability [J]. Progress in Structural Engineering and Materials,1998,1(2):200-206.
    [182]马丰源,王伟辉.不锈钢SUS630疲劳断口分析[J].中国造船,2007,48(1):117-125.
    [183]周泳涛,翟辉,鲍卫刚,等.公路桥梁标准疲劳车辆荷载研究[J].公路,2009,(12):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700