用户名: 密码: 验证码:
面向制造的摆线齿锥齿轮啮合理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球经济一体化、市场经济加速发展、顾客需求复杂多变的趋势,使众多企业日益感受到市场竞争的激烈和残酷。企业需要依靠倾听顾客的心声,创造顾客需要的价值,保持与顾客的良好关系,才能维持竞争优势。为此,企业需要从战略高度对顾客关系进行管理,开拓、培育和维持与顾客的互动关系,使顾客忠诚于企业,从而获取长期的竞争优势。
     论文通过对顾客关系管理理念的发展回顾,分析了传统的营销战略框架的局限性,构建了基于价值链的CRM模型,指出顾客感知价值和顾客价值是顾客关系管理的两个支撑点,它们之间是一个互动的增强系统,先进的信息技术起使能作用。通过构建基于价值链的顾客关系管理模型,有利于企业理解顾客关系管理的本质,使企业通过深入分析自己和竞争对手之间的差距,从而设计和配置出自己独特的CRM价值创造和传递系统,为顾客提供最大化的顾客感知价值,使顾客建立长期的顾客忠诚,以获取最大化的顾客价值。
     顾客感知价值满足水平对顾客价值有重要影响,假设顾客购买到达是一Poisson事件,且购买到达率只依赖于最近一次与企业交互的结果,构建了整合顾客感知价值因素的顾客预期购买量模型,然后又考虑了顾客异质性,用净利润函数来表示顾客价值进行顾客价值的建模,并运用具体数字实例对结果进行讨论,得出如下结论:如果不考虑顾客感知价值因素,将低估顾客预期购买量。传统预测顾客全部购买量的RFM(Recency,Frequency,Monetary)模型应得到拓展进而包括顾客感知价值因素;提出了一个为追求顾客价值最大化,存在一个内部最优感知价值满足水平的条件,企业不应不遗余力地去追求最大化提升顾客感知价值满足水平,要根据企业的具体情况,寻求一个最佳的投资平衡点,使顾客价值最大化;企业应该权衡顾客价值和提升顾客感知价值满足水平的成本,以实现顾客收益最大化和企业收益最大化之间的均衡,从而与顾客建立稳定、可持续的顾客关系。
     分析了CRM使能技术在顾客关系管理战略中的重要性体现,研究了知识发现、数据仓库和数据挖掘技术的基本理论和实现方法,探讨了数据挖掘技术在徐工集团营销公司顾客关系管理战略实施中不同方面的应用,结果显示这些数据挖掘的技术的具体应用提高了企业在顾客关系管理方面的绩效,如提升了顾客满意度、运作效率的提高和利润的增加。实证结果验证了这些使能技术的应用是企业CRM实践成功的保证。
     随着越来越多的企业实施顾客关系管理战略,对CRM有效性评价显得十分重要。根据基于价值链的顾客关系管理的基本原理,构建了顾客关系管理的过程模型,基于此,建立了CRM有效性的的评价指标体系,主要包括四个重要维度:顾客知识、顾客互动、顾客满意和顾客价值。结合BP算法的自适应性、自学习性、自组织性特点,用BP算法对CRM有效性进行评价,最后,运用实证证明其可行性和有效性。
The straight or skew bevel gears of tempered tooth flank are still widely used in large machine equipment in coal mine, metallurgy and petroleum industries around our country at present. And there exist problems such as lower in carrying capacity, shorter in service life and larger in storage quantity of spare parts. It is an emergent demand for the development in modern heavy machinery to substitute the spiral bevel gears with hardened tooth-surface for the straight or skew bevel gears of tempered tooth flank as earlier as possible to satisfy with the higher requirements in driving velocity and carrying capacity.
     Spiral bevel gears could get rid of the deformation and errors in heat treatment by cutting a rather thin layer of metal off the gear face with a hardness of HRC 58 to 62 using the scraping technique for harder gear face, have features in higher cutting efficiency for larger and hardened gears, especially apply for heavy machinery, and represent a trend of the spiral bevel gear in the field.
     Considering the present situation of manufacturing for bigger epicycloidal bevel gears in China, the purposes of the study are to analyze the relationship between gearing properties and contact areas of spiral bevel gears and manufacturing parameters of machining tools in the design and manufacture from the point of gearing theory, to develop compute aided manufacturing system for epicycloidal bevel gears by combining experiential equations in production, to accomplish the complicated design and check process automatically, and to provide theoretical fundaments for raising the manufacturing capability and developing the machining tools for bigger epicycloidal bevel gears.
     The meshing properties of a pair of gears are determined by the geometrical characteristics of the tooth surfaces. From the mathematic points of view, the relative positions and motions between the cutter head and the workpiece are usually changed continuously with the same rule during the manufacturing for any kinds of metal-cutting machines. As for epicycloidal bevel gear, the relative motion principle between the cutter and the gear blank are the same, though the driving systems for different types of machining tools are different. Based on the point, the paper researched on gearing theory of epicycloidal bevel gears systemically.
     A mathematical model of the flank for generating gear of epicycloidal bevel gears in manufacture was established. The contact lines of the generating gear was analyzed. When the motion velocity of gearing point on generating surface is equal to the relative velocity to the gearing point on the surface of gear being cut, the relationship were established among the number of gears being manufactured, cutter head radius, cutter position, generating gears radius, spiral angle of reference point and height correction coefficients at the limit point of undercut. The selection method for height correction coefficients in conditions that there was no or little undercut on narrow end for pinion was provided. The paper analyzed the gap distribution between tooth surfaces on two meshing gears along contacting line and deduced approximate equations of minimal gap on meshing tooth surfaces, which could help to judge if there existed diagonal contact.
     The paper deduced the derivational curvature equations along contact line after analysis on locus of meshing points for epicycloidal bevel gears in different reference systems. A conclusion that spiral bevel gears are in point meshes theoretically but in line meshes approximately In fact was reached, which provided bases for analyzing contact stress on tooth surfaces and using Hertz stress equations to calculate the contact strength.
     Theoretically, there is no end contact ratio for the spiral bevel gears in point meshes. However, contact ratios including end and axial ones are calculated according to the equivalent virtual gears in application in fact, and there are errors. Contact line equations were constructed based on the locus of meshing points for epicycloidal bevel gears in fixed reference systems in the paper. The formula to calculate the maximum value of contact ratio was formed which could be used to check if the ratio resulted from the equivalent virtual gears were too bigger. The contact locus and the relationship between the contact positions in meshing gear surfaces for the spiral bevel gears were reached after analysis on the locus of meshing points in dynamic reference systems fixed on the gears.
     An approach was suggesed to establish solid models through which you could check if there existed undercut for pinion, cutter heads were intervened with bigger gear, any rib was left in groove and the shape of gears were shaved. By taking the milling machine for Klingelnberg bevel gears as an objective, an integrated compute aided manufacturing program was developed to accomplish dimensional and parametric calculations, strength check and parameters adjustment.
引文
1.王统.齿轮技术进步梗概及未来发展趋势.机械制造.1990(4):10-13
    2.徐鸿根.齿轮制造技术的发展动态.制造技术与机床.1994(9):43-45
    3.专题报导.欧美国家锥齿轮加工的动向.世界制造技术与设备市场.1995(2)
    4.黄天铭,梁锡昌.齿轮加工技术的现状及进展.机械工艺师.1994(4):29-31
    5.邹旻.曲齿锥齿轮的应用与发展.机械设计与制造2005(9):160-162
    6.曾韬.螺旋锥齿轮设计与加工.哈尔滨:哈尔滨工业出版社.1989
    7.Anl Ural,Gerd Heber,Paul A.Wawrzynek,Anthony R.Ingraffea,David G.Lewicki and Joaquim B.C.Neto.Three-dimensional,parallel,finite element simulation of fatigue crack growth in a spiral bevel pinion gear.Engineering Fracture Mechanics.2005,72(8):1148-1170
    8.Faydor L.Litvin,Alfonso Fuentes,Kenichi Hayasaka.Design,manufacture,stress analysis,and experimental tests of low-noise high endurance spiral bevel gears.Mechanism and Machine Theory.2006,41(1):83-118
    9.F.Di Puccio,M.Gabiccini and M.Guiggiani.An invariant approach for gear generation with supplemental motions.Mechanism and Machine Theory.2007,42(3):275-295
    10.Vilmos Simon.Computer simulation of tooth contact analysis of mismatched spiral bevel gears.Mechanism and Machine Theory.2007,42(3):365-381
    11.Jèr(?)me Bruère,Jean-Yves Dantan,Régis Bigot and Patrick Martin.Statistical tolerance analysis of bevel gear by tooth contact analysis and Monte Carlo simulation.Mechanism and Machine Theory.2007,42(10):1326-1351
    12.Faydor L.Litvin,Alfonso Fuentes,Qi Fan,Robert F.Handschuh..Computerized design,simulation of meshing,and contact and stress analysis of face-milled formate generated spiral bevel gears.Mechanism and Machine Theory.2002,37(5):441-459
    13.O.Vogel,A.Griewank,G.B(a|¨)r.Direct gear tooth contact analysis for hypoid bevel gears.Computer Methods in Applied Mechanics and Engineering.2002,191(36):3965-3982
    14.Lisa E.Spievak,Paul A.Wawrzynek,Anthony R.Ingraffea,David G.Lewicki.Simulating fatigue crack growth in spiral bevel gears.Engineering Fracture Mechanics.2001,68(1):53-76
    15.邹旻.克林贝格锥齿轮的加工及特点.机械工程师.2004(11):40-41
    16.Simon Vilmons.The Influence of Misalignment on Mesh Performances of Hypoid Gears.Mechanism and Machine Theory.1998(6):1277-1291
    17.K.Kawasaki,H.Tamura.Duplex Spread Blade Method for Cutting Hypoid Gears with Modified Tooth Surface.Journal of Mechanical Design.ASME.1998,120(9):441-447
    18.刘志峰,杨文通,彭映辉等.基于误差的摆线锥齿轮动态加载接触分析方法(上).机床与液压.2005,(2):71-72
    19.刘志峰,杨文通,彭映辉等.基于误差的摆线锥齿轮动态加载接触分析方法(下).机床与液压.2005,(3):14-16
    20.郑昌启.弧齿锥齿轮和准双曲面齿轮-啮合原理、轮坯设计、加工调整和齿面分析计算原理.第1版.北京:机械工业出版社.1988
    21.董学朱.弧齿锥齿轮半展成切齿调整计算新方法.齿轮.1988,12(4):1-7
    22.郑昌启.弧齿锥齿轮和准双曲面齿轮的齿面接触分析计算原理.机械工程学报.1981,17(2):1-12
    23.天津齿轮机床研究所.西安交通大学.格利森锥齿轮技术资料译文集1、3、5分册.北京:机械工业出版社.1986
    24.Z.H.Fong,C.B.Tsay.A Study on the Tooth Geometry and Cutting Machine Mechanisms of Spiral Bevel Gears.Journal of Mechanical Design.ASME.1993,115(9):483-489
    25.Z.H.Fong,C.B.Tsay.A Mathematical Model for the Tooth Geometry of Circular-Cut Spiral Bevel Gears.Journal of Mechanical Design,ASME.1991,113(6):74-180
    26.北京齿轮厂.螺旋锥齿轮.第1版.北京:科学出版社.1974
    27.罗建勤,吕传贵.延伸外摆线齿锥齿轮的设计新方法.机械传动.1999,23(3):14-17
    28.严志达.论共轭齿面的法曲率关系及应用.机械工程学报.1979,(1):31-33
    29.吴序堂.准双曲面齿轮的变性全展成加工法原理.齿轮.1984,8(2):1-8
    30.吴序堂.准双曲面齿轮的变性全展成加工法原理.齿轮.1984,8(3):1-7
    31.吴序堂,王小椿,李锋.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价.机械工程学报.1994,30(3):47-52
    32.董学朱。准双曲面齿轮刀倾全展成切齿调整计算方法.齿轮.1988,12(5):1-7
    33.王小椿.线接触曲面的三阶接触分析.西安交通大学学报.1983,17(5):1-12
    34.王小椿.点啮合曲面的三阶接触分析.西安交通大学学报.1983,17(3):1-13
    35.王小椿.弧齿锥齿轮和准双曲线的三阶接触分析及优化调整计算.齿轮.1989,13(2):1-10
    36.王小椿.点啮合齿面三阶接触分析的进一步探讨-V/H检验法的理论.西安交通大学学报.1987,21(2):1-13
    37.S.Bedi,I.Ali and N.Quan.Advanced Interpolation Techniques for NC Machines.Journal of Engineering for Industry.1993,115(3):329-337
    38.F.L.Litvin,J.S.Chen.Computerized Simulation of Transmission Errors and Shift of Bearing Contact for Face-Milled Hypoid Gear Drive.1995,117(6):262-267
    39.F.L.Litvin,A.G.Wang and R.F.Handschuh.Computerized Design and Analysis of Face-Milled,Uniform Tooth Height Spiral Bevel Gear Drives.Journal of Mechanical Design,ASME.1996,118(12):573-579
    40.Krenzer,Theodore.CNC bevel gear generators and flared cup gear grinding.Gear Techol.1993,10(4):18-24
    41.陈志新.共轭曲面原理(上).北京:科学出版社.1973
    42.陈志新.共轭曲面原理(中).北京:科学出版社.1976
    43.吴序堂.曲线齿锥齿轮三阶接触分析法的原理及传动质量评价.机械工程学报.1994,30(3):47-54
    44.万小利,粱桂明,魏任之等.准双曲面齿轮设计新方法.机械工程学报.1993,29(6):8-11
    45.郑昌启,黄昌华,吕传贵.螺旋锥齿轮轮齿加载接触分析计算原理.机械工程学报.1993,29(4):50-54
    46.齿轮手册编委会.齿轮手册.第1版.北京:机械工业出版社.2001
    47.齿轮制造手册编委会.齿轮制造手册.第2版.北京:机械工业出版社.2001
    48.刘志峰.摆线齿锥齿轮传动原理及啮合性能模糊优化的研究.东北大学博士论文.2001
    49.吴联银.基于Free-form型机床加工延伸外摆线锥齿轮的理论研究博士论文.西安交通大学.2001
    50.魏冰阳.螺旋锥齿轮研磨加工的理论与实验研究[D].西北工业大学博士论文.2005
    51.邓效忠.高重合度弧齿锥齿轮的设计理论及实验研究[D].西北工业大学博士论文.2002
    52.田行斌.弧齿锥齿轮啮合质量的计算仿真和控制[D].西北工业大学博士论文.2000
    53.高建平.弧齿锥齿轮和准双曲面齿轮非线性系统动力学[D].西北工业大学博士论文.1999
    54.刘光磊.弧齿锥齿轮传动动态接触特性研究[D].西北工业大学博士论文.2000
    55.李小清.螺旋锥齿轮数控加工与误差修正技术研究[D].华中科技大学博士论文.2004
    56.王沉培.螺旋锥齿轮数控加工及编程系统研究[D].华中科技大学博士论文.2001
    57.李左章.螺旋锥齿轮NC加工的理论、方法及控制技术研究[D].华中科技大学博士论文.2001
    58.[58]王军.基于三坐标测量的弧齿锥齿轮及准双曲面齿轮齿面加工精度控制方法研究[D].西安交通大学博士论文.2003
    59.熊越东.基于虚拟现实技术的螺旋锥齿轮CNC加工仿真理论与方法研究[D].天津大学博士论文.2005
    60.王延忠.高速弧齿锥齿轮热弹流润滑理论和数值分析[D].东北大学博士论文.1999
    61.Zoumin,Zhu Hai-lin,Zhang You-liang.Research on Theory of Gearing for Epicycloidal Bevel Gear.Journal of Coal Science & Engineering.2005,(2):103-108
    62.毛世民,吴序堂.新型万能曲线齿锥齿轮加工机床的运动学.制造技术与机床.1997,(6):22-24
    63.刘志峰,陈良玉,王延忠,丁津原.Klingelnberg摆线齿锥齿轮轮齿几何分析.东北大学学报(自然科学版).1999,20(4):388-391
    64.曹毅.克林根贝格螺旋锥齿轮的CAD及局部计算机仿真[D].淮南:安徽理工大学硕士论文.2002
    65.J.J.Chou,D.C.H.Yang.On the Generation of Coordinated Motion of Five-Axis CNC/CMM Machines.Jornal of Eng.for Industry.ASME.1992,114(1):15-21
    66.Y.Davidov.General idea of generating mechanism and its application to bevel gears.Mechanism and Machine Theory.1998,33(5):505-515
    67.F.L.Litvin,Y.Gutman.Method of Synthesis and Analysis for Hypoid Gear-Drives of Formate and Helixform(Part 1).Journal of Mechanical Design,ASME.1981.03(1):83-88
    68.F.L.Litvin,Y.Gutman.Method of Synthesis and Analysis for Hypoid Gear-Drives of Formate and Helixform(Part 2).Journal of Mechanical Design,ASME.1981.103(1):89-94
    69.F.L.Litvin,Y.Gutman.Method of Synthesis and Analysis for Hypoid Gear-Drives of Formate and Helixform(Part 3).Journal of Mechanical Design,ASME.1981.103(1):102-110
    70.F.L.Litvin.C.Kuan.Minimization of Deviations of Gear Real Tooth Surfaces Determined by Coordinate Measurements.Journal of Mechanical Design,ASME. 1993.115(12):995-1001
    71.C.Gosselin,T.Nonaka and Y.Shiono.Identification of the Machine Setting of Real Hypoid Gear Tooth Surfaces.Journal of Mechanical Design,ASME.1998.120(9):429-440
    72.C.Gosselin,L.Clouter,Q.D.Nguyen.A General Formulation for the calculation of the Load Sharing and Transmission Error under Load of Spiral Bevel and Hypoid Gears.Mech.Mach.Theory.1995.130(3):435-450
    73.吴大任.微分几河讲义.北京:人民教育出版社.1981
    74.吴序堂.齿轮啮合原理.第1版.北京:机械工业出版社.1982
    75.吴大任,骆家舜.齿轮啮合理论.北京:科学出版社.1985
    76.陈惟荣.齿轮啮合理论.北京:煤炭工业出版社.1986
    77.(日)佐佐木重夫.微分几何学.苏步青译.第1版.上海:上海科学技术出版社出版.1963
    78.董学朱.摆线齿锥齿轮及准双曲面齿轮设计和制造.第1版.北京:机械工业出版社.2003
    79.吴从析,唐余勇等.微分几何讲义.北京:高等教育出版社.1985
    80.孙祥.MATLAB 7.0基础教程.北京:清华大学出版社.2005
    81.王家文,王皓,刘海.MTATLAB 7.0编程基础.北京:机械工业出版社.2005
    82.邹旻,张友良.克林贝格锥齿轮的啮合线.机床与液压.2007,35(1):54-56,102
    83.邹旻.克林贝格锥齿轮副中鼓形量的研究.江苏工业学院院学报.2004,16(1):9-11
    84.邹旻,周豪.摆线齿锥齿轮重合度的近似计算.江苏工业学院院学报.2006,18(2):40-43
    85.刘志峰,陈良玉,孙志礼等.Klingelnberg摆线齿锥齿轮接触分析与预报仿真.东北大学学报(自然科学版).1999,20(6):594-597
    86.吴能章.弧齿锥齿轮V/H检验的数学描述.四川工业学院学报.1998,17(2):1-7
    87.桑建国.螺旋锥齿轮加工及接触分析的计算机模拟.机械研究与应用.2001,14(4):24-26
    88.邓效忠,梁桂明.新齿制低噪声螺旋锥齿轮的研究.机械工程学报.1994,30(10):162-164
    89.王三民,张英利,李继庆.弧齿锥齿轮接触特性的概率分析.机械科学与技术.1999,18(3):419-420
    90.Tilo.Pfeifer,Syuhei.Kurokawa,Stefan.Meyer.Derivation of parameters of global form deviations for 3-dimensional surfaces in actual manufacturing processes.Measurement.2001,29(3):179-200
    91.S.H.Suh,W.S.Jih,H.D.Hong,D.H.Chung.Sculptured surface machining of spiral bevel gears with CNC milling.International Journal of Machine Tools and Manufacture,2001,41(6):833-850
    92.R.L.Huston,J.J.Coy.Ideal Spiral Bevel Gears-A New Approach to Surface Geometry.Journal of Mechanical Design,ASME.1981,103(1):127-132.
    93.罗建勤,曾韬.用差曲面确定螺旋锥齿轮的齿面接触区.机械传动.1999,23(1):26-28
    94.黄炎.工程弹性力学.第1版.北京:清华大学出版社.1982
    95.蔡春源.机械设计手册.锥齿轮传动(第3卷,23篇,第4章).北京:机械工业出版社.1991
    96.张建敏,郭奕崇.螺旋齿轮传动精确的齿面接触强度校核与设计计算方法.机械设计.1996,(3):31-33
    97.董学朱.延伸外摆线齿锥齿轮切齿调整计算法的改进.机械传动.1997,21(4):41-47
    98.F.L.Litivn,Y.Gutman.A Method of Local Synthesis of Gears Grounded on the Connections Between the Principal and Geodetic Curvatures of surfaces.ASME.Journal of Mechanical Designe.1981,103:114-125.
    99.F.L.Litivn.Generation and geometry of hypoid gear-member with face-hobbed teeth of uniform depth.Mach Tools Manuf.1991,31(2):167-181
    100.F.L.Litivn,Y.Gutman.Methods of Sythesis and Analysis for Hypoid Gear Drives of Formate and Helixform Parts 1-3.,ASME.Jounal of Mechanical Design.1981,103:83-113
    101.F.L.Litiv,Jui_sheng Chen T.M.sepand and Jyh-Chiang Wang,Computerized Simulation of Transmission Errors and Shift of Bearing Contact for Face-Milled Hypoid Gear Drive.Journal of Mechanical Design.Transaction of the ASME.1995,117:67-72
    102.郑昌启.局部共轭的密切抛物面原理及其在螺旋锥齿轮切齿计算中的应用研究.机械工程学报.1979(2)
    103.王延忠,陈良玉,鄂中剀等.弧齿锥齿轮轮齿边缘接触分析.机械设计与制造.1996,(6):23-25
    104.Wiener,Dieter.CNC technology and the system independent manufacture of spiral Bevel Gear.Gear Techol.1992,9(5):22-27
    105.J.J.Chou,D.C.H.Yang.Command Generation for Three-Axis CNC Machining.ASME Jornal of Eng.for Industry.1991,113(3):305-310.
    106.X,Li.Susan,R.B.Jerard.5-axis Machining of Sculptured Surfaces with a Flat-End Cutter.Computer-Aided Design.1994,26(3):165-178
    107.陈良玉.高速弧齿锥齿轮静动应力仿真的研究[D].东北大学博士学位论文.1994
    108.周云飞.多坐标曲面加工直接插补算法和新型CNC系统研究[D].华中理工大学博士学位论文.1993
    109.李敦信,包润阁,王德友.锥齿轮加工简化计算.北京:机械工业出版社.1978
    110.邹旻,张文祥,张友良.克林贝格锥齿轮的计算机加工模拟.机械科学与技术.2003,22(3):412-414
    111.房怀英.克林根贝格螺旋锥齿轮建模软件[D].淮南:安徽理工大学.2002
    112.罗月新.曲线齿轮计算机辅助设计[D].西安交通大学.2000
    113.李左章,王延忠,周云飞等.螺旋锥齿轮拟合齿面接触点求解算法研究.华中理工大学学报.2000,(6)
    114.Lin.ChungYunn,Tsay.ChungBiau,Fong.ZhangHua.Computer-aided manufacturing of spiral bevel and hypoid gears by applying optimization.2001,114:22-35
    115.S.H.Suh,E.S.Lee,H.C.Kim,etc.Geometric error measurement of spiral bevel gears using a virtual gear model for STEP-N.International Journal of Machine Tools and Manufacture.2002(42):335-342
    116.M.S.Shunmugam,B.Subba Rao,V.Jayaprakash.Establishing gear tooth surface geometry and normal deviation of bevel gears.Mechanism and Machine Theory.1998,33(5):525-534
    117.F.L.Litvin,Yi Zhang,J.Kieffer and R.F.Handschuh.Identification and Minimization of Deviations of Real Gear Tooth Surfaces.Journal of Mechanical Design,ASME.1991,113(3):55-61
    118.F.L.Litivn.Computerized inspection of hypoid pinion face-milled tooth surfaces.Mach Tools Manuf.1992,32(6):869-884
    119.万小利,万晓风,江锡卓等.准双曲面齿轮和螺旋锥齿轮设计的统一算法.北京理工大学学报.1999,19(2):167-169
    120.任东锋.弧齿锥齿轮CAD系统的开发与研究[D],洛阳工业学院.2000
    121.赵汝嘉.CAD/CAM在机械工业中的应用.西安:西安交通大学出版社.1993
    122.朱心雄.自由曲面造型技术.第1版.北京:科学出版社.1999
    123.房怀英,洪尚任,杨建红.克林贝格螺旋锥齿轮的建模与仿真.华侨大学学报.2004
    124.F.L.Litvin.The Sytnthesis of Approximate Meshing for Spatial Gears of Mechanisms.Journal of Mechanical Design,ASME.1996.118(12):573-579
    125.F.L.Litvinin.Generation of Spiral Bevel Gears with Conjugte Tooth surfaces and tooth contact Analysis.1987.NASA-CR-4088
    126.周艳红.自由曲面CNC直接加工理论与技术的研究.华中理工大学博士学位论文.1997
    127.李左章,王沉培,周云飞.螺旋锥齿轮数控切齿机通用运动学变换.华中理工大学学报.2000,(10):10-12
    128.王水来,朱志红等.自定义齿扇插补控制算法.中国机械工程.1996,7(2):81-83
    129.王水来,周云飞等.基于直接插补的变比齿扇插齿加工研究.华中理工大学学报.1995,23(7):115-119
    130.王水来.曲面实时插补算法及应用研究.华中理工大学博士学位论文.1996
    131.周云飞,李国其.CNC曲面直接插补(SDI)算法和系统.华中理工大学学报.1993,(4)
    132.鲁墨武,蒋玉洁,张奉禄.航空齿轮的计算机辅助设计研究.航空计算技术.2000,30(1):33-36
    133.Y.Takeuchi,T.Watanable.Generation of 5-Axis Control Collision-Free Tool Path and PostProcessing for NC Data.Annals of the CIRP.1992,41(1):547-550
    134.袁哲俊,刘雄伟,刘华明.五坐标端铣数控加工计算理论分析.机械工程学报.1993,29(1):31-37
    135.鲍居武,徐新,程品.软件工程概念.北京:北京师范大学出版社.1996
    136.陈学东,常丹.Visual Basic 6.0程序设计教程.北京:清华大学出版社.2005
    137.周颖.Visual Basic 6.0实例精通.北京:清华大学出版社,2000
    138.孙桂茹,越国瑞.软件工程引论.天津:南开大学出版社.1995
    139.蒋学锋,钟诚,许鸿川.软件工程.重庆:重庆大学出版社.1997
    140.郑人杰,殷人昆.软件工程概论.北京:清华大学出版社.1998
    141.童秉枢.机械CAD技术基础.北京:清华大学出版社.1996
    142.许爱瑾.基于VB的带传动计算机辅助设计中图标数据的处理.机械.2004,31(4):49-51
    143.何文俊,马杰编著.Visual Basic 6.0编程实例精解.北京:北京希望电子出版社
    144.G.J.Gosslin,L.Cloutier.The Generating Space for Parabolic Motion Error Spiral Bevel Gears Cut by the Gleason Method.Journal of Mechanical Design,ASME.1993,115(9):483-489
    145.龚道香,张建军,郑昌启.弧齿锥齿轮和准双曲面齿轮齿形误差精密测量.机械工程学报.1993,29(4):12-15
    146.毛信财.齿轮传动设计Expert/CAD系统的研究[D].长安大学.2001
    147.严勇,王三民,袁茹.弧齿锥齿轮的三维图形显示.机械科学与技术.1997,16(4):639-642
    148.田行斌,方宗德.弧齿锥齿轮加工参数的全局优化设计.航空动力学报.2000,15(1):75-77(1):72-75
    149.F.L.Litvin.Integrated computer program for simulation of meshing and contact of gear drives.Computer Methods in Applied Mechanics and Engineering.2000,181(1-3):71-85
    150.Y.Zhang,F.L.Litvin,N.Maruyama.Computerized Analysis of Meshing and Contact of Gear Real Tooth Surfaces.Journal of Mechanical Design,ASME.1994,116(9):667-682
    151.V.Kin.Computerized Analysis of Gear Meshing Based On Coordinate Measure-ment Date.Journal of Mechanical Design,ASME.1994,116(9):738-744
    152.Y.Zhang,F.L.Litvin and N.Maruyama.etc.Computerized Analysis of Meshing and Contact of Gear Real Tooth Surfaces.Journal of Mechanical Design,ASME.1994,116(9):677-682
    153.F.L Litvin,Wei-Jiung Tiang.Method for Generation of Spiral Bevel Gears with Conjugate Gear Tooth Surfaces.Transactions of the ASME.1987,109(6):163-170
    154.Lin.Chung-Yunn,Tsay.Chung-Biau,Fong.Zhang-Hua.Computer-aided manufacturing of spiral bevel and hypoid gears with minimum surface-deviation.Mechanism and Machine Theory.1998,33(6):785-803
    155.李瑛,肖耘亚。齿轮测量及反调技术在螺旋锥齿轮生产中的应用.仪器仪表与检测.2004(4):71-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700