用户名: 密码: 验证码:
铜钴镍锌锰螯合物的微波固相合成及其抑菌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属螯合物的形成特征是过渡金属中心原子(或离子)具有空的d轨道,能接受孤对电子,与某种能提供孤对电子的双齿配体中的配位原子以配位键相结合可形成螯合物。过渡金属螯合物的显著特性是具有较高的热力学稳定性,其稳定性由过渡金属离子、有机螯合剂、螯合环三个方面的因素决定。基于过渡金属螯合物的稳定性和其结构的特殊性质,近年来在催化剂、功能材料、生物活性等领域有着广泛的应用,是当前配位化学的研究热点之一。
     Schiff碱是一类含有O、N配位原子的双齿配体,与过渡金属离子有很强的配位作用,形成结构独特的过渡金属螯合物,这类螯合物在氧化还原性、催化活性、生物活性等方面表现出优越的性能,使得这类螯合物的研究成为配位化学领域的一个热点。芳香基β-二酮类配体是含有O配位原子的双齿配体,其烯醇式结构中的两个O原子与过渡金属离子有极强的配位作用,可形成稳定的螯合物,这类螯合物在磁性、荧光性能、螯合萃取、离子交换、气体储存、分子载体、生物活性等方面具有广阔的应用前景。
     基于Schiff碱及β-二酮类配体与过渡金属离子形成的螯合物在磁性、荧光性能、催化活性、生物活性等方面的重要应用,我们开展了卤代水杨醛Schiff碱及芳香基β-二酮过渡金属(Cu, Co, Ni, Zn, Mn)螯合物的微波固相合成、结构表征及其性质研究,具体从以下四个方面进行了研究。
     首先,建立了一种3,5-二碘水杨醛和5-氯水杨醛的新合成方法。该方法以水杨醛为初始原料,用碘酸盐和碘化物为碘代剂,以乙醇为溶剂,在冰醋酸和磷酸混合酸介质中,于50℃~70℃的反应温度反应2h,可得到黄色的3,5-二碘水杨醛,产率可达80%以上。以水杨醛为初始原料,以乙醇为溶剂,加入等体积的冰醋酸和浓盐酸,滴加氯酸钾水溶液,在常温下搅拌1h,得到淡黄色5-氯水杨醛固体,产率可达44%。在此基础上,设计合成了13种卤代水杨醛Schiff碱配体。
     其次,改进了2,4-二羟基苯乙酮的合成方法。采用微波辐射合成法,将间苯二酚、无水氯化锌与冰醋酸混合,在微波功率为150W的条件下辐射数分钟即可得到产品,产率可达68%。建立了一种2,4-二羟基-3,5-二氯苯乙酮的新合成方法,以2,4-二羟基苯乙酮为原料,加入2:1体积比的冰醋酸和浓盐酸,滴加氯酸钾水溶液,在50℃~60℃温度下搅拌1h,得到土黄色2,4-二羟基-3,5-二氯苯乙酮固体,产率可达76%。在此基础上,采用微波法合成了4种芳香基β-二酮新型配体,并通过红外光谱、元素分析、单晶X-射线衍射等方法对其进行了结构表征。
     第三,采用微波辐射辅助固相合成法,分别将卤代水杨醛Schiff碱配体、芳香基β-二酮配体与铜、钴、镍、锌、锰5种过渡金属盐作用,合成了65种卤代水杨醛Schiff碱过渡金属螯合物和20种芳香基β-二酮过渡金属螯合物,并培养出了32种螯合物的单晶。探索了过渡金属螯合物微波固相合成的条件,并通过红外光谱、元素分析、单晶X-射线衍射等方法对合成的螯合物进行了结构表征。
     最后,采用MTT(3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐(噻唑篮))法测试了所合成螯合物对3种革兰氏阳性细菌和3种革兰氏阴性细菌的抑菌活性,探索了过渡金属螯合物与抑菌活性之间的构效关系。研究表明,中心离子的类型、螯合物的配位环境以及分子内氢键对革兰氏细菌抑制作用有不同的影响。以铜为中心离子的螯合物抑制作用为最好,镍、钴为中心离子螯合物的抑制作用居中,锌、锰为中心离子螯合物的抑制作用较弱。四配位的螯合物对革兰氏细菌的抑制能力强于六配位的螯合物。四边形结构配位环境螯合物的抑菌活性优于四面体结构配位环境的螯合物,含有分子内氢键的螯合物的抑菌活性好于不含分子内氢键的螯合物。两种卤代水杨醛Schiff碱系列的过渡金属螯合物对革兰氏细菌抑制效果明显好于芳香基β-二酮系列的过渡金属螯合物。
     该论文有图103幅,表78个,参考文献237篇。
The transition-metal complexes are built by empty d orbitals of transition-metal ionand bidentate ligand. Transition-metal complexes have thermodynamics stability ontransition-metal ion, organic chelate reagent and chelate ring. The transition-metalcomplexes have been widely used in the field of activator, functional material,biologic activities and so on. All of the discoveries brought this field to be a focus inthe coordination chemistry.
     The especial structure transition-metal complexes are created by Schiff bases ofcontaining N, O bidentate ligand and transition-metal ion. The complexes exhibitsuperior performance in terms of redox, catalyse activity, biologic activity and so on.The steady transition-metal complexes are synthesized by β-diketonates with enolstructure of containing O bidentate ligand and transition-metal ion. The complex has abroad application prospect in the areas of magnetism, fluorescence, chelate extraction,ion exchange, gas storage, molecular carrier, biologic activity and so on. Importantapplications in magnetism, fluorescence, catalyse activity, biologic activity etc. basedon the complexes for Schiff bases and β-diketonates. We conduct halogen substituentsalicylaldehyde Schiff base and β-diketonates transition-metal(Cu, Co, Ni, Zn, Mn)complexes microwave solid-state synthesis, structure characterization and propertiesresearch. All research is divided into following four sections.
     Firstly, a new synthesis method of3,5-diiodo-salicylaldehyde and5-chloro-salicylaldehyde are presented. Salicylaldehyde, KI and KIO3were dissolvedin the mixture solution of ethanol, glacial acetic acid and phosphoric acid, followed bythe addition of water after stirring for2h at50~70℃. Plentiful yellow color prismcrystals were precipitated.Yield:>80%. Salicylaldehyde, KClO3were dissolved in themixture solution of ethanol, glacial acetic and HCl, followed by the addition of waterafter stirring for1h at the room temperature. Plentiful pale yellow color prismcrystals were precipitated. Yield:44%. On this basis,13kinds of halogen substituentsalicylaldehyde Schiff base ligands were designed and synthesized.
     Secondly, the synthesis methods of2,4-dihydroxyacetophenone are improved. Theresorcinol, glacial acetic acid, anhydrous zinc chloride mixed together. The mixturewas microwave-irradiated(150W) for a few minutes and than precipitated. Yield:68%.A new synthesis method of3,5-dichloro-2,4-dihydroxyacetophenone was established.The2,4-dihydroxyacetophenone, glacial acetic and HCl were dissolved in the mixture solution of ethanol followed by the addition of KClO3aqueous solution after stirringfor1h at50~60℃. Yield:76%. On this basis,4kinds of β-diketonates ligands weredesigned and synthesized. By infrared spectroscopy, elemental analysis and singlecrystal X ray diffraction analysis and other methods to characterize its structure.
     Thirdly,65kinds of halogen substituent salicylaldehyde Schiff basestransition-metal complexes and20kinds of β-diketonates transition-metal complexeswere synthesized by halogen substituent salicylaldehyde Schiff bases ligands,β-diketonates ligands and5kinds of transition metal salts(Cu, Co, Ni, Zn, Mn) onmicrowave solid state synthesis, respectively. The32kinds of complexes crystals areproduced. Microwave solid state synthesis conditions transition-metal complexeswere explored. By infrared spectroscopy, elemental analysis and single crystal X raydiffraction analysis and other methods to characterize its structure.
     Finally, Antibacterial activity of transition-metal complexes was tested against3kinds of Gram-positive bacteria and3kinds of Gram-negative bacteria. Therelationships between the structures and the antibacterial activities have been studied.Have the effect of the central ion, coordination environment of complexes andintramolecular hydrogen bond on Gram bacteria inhibition. Inhibition of coppercomplex is the best. Inhibitory effect of nickel and cobalt complex is medium.Inhibitory effect of zinc and manganese complex is the weakest. The inhibitory effectof four-coordinated complex against Gram bacteria is better than six-coordinatedcomplex. The inhibitory effect of quadrilateral coordination environment complexagainst Gram bacteria is better than tetrahedron coordination environment complex.Antibacterial activity of complexes containing intramolecular hydrogen bond againstGram bacteria is better than does not contain hydrogen bonds. Antibacterial activity ofhalogen substituent salicylaldehyde Schiff bases transition-metal complexes againstGram bacteria is better than β-diketonates transition-metal complexes.103figures,78tables,237referneces.
引文
[1] Xu, S. P., Liu, C. H., Wang, S. F. Crystal Structure of acetato-μ-N,N′-bis(salicylidene)-3-methyl-3-aza-1,5-pentanediaminocobalt(Ⅲ)[J]. Z.,Kristallogr.,2006,221,409-410.
    [2]孙为银编著.配位化学[M]北京:化学工业出版社,2004.
    [3]吴卫国,孙传尧,朱永揩.有机螯合抑制剂在浮选中的应用[J].有色金属,2006,58(4):81-85.
    [4] Huheey, J. E. Inorganic Chemistry, Principlesof Structure and Reactivity,4rd ed., Harper&International Science, Cambridge,2006.
    [5] Adsule, S., Barve, V., Chen, D., Ahmed, F., Dou, Q. P., Padhye, S. and Sarkar, F. H. NovelSchiff base copper complexes of quinoline-2carboxaldehyde as proteasome inhibitors in humanprostate cancer cells[J]. J. Med. Chem.,2006,49(24):7242-7246.
    [6] Phurat, C., Teerawatananond, T., Muangsin, N.2-[(4-Chlorobenzyl)iminomethyl]phenol[J].Acta Crysta. Sec. E,2010,66(9), o2310.
    [7] Singh, K., Barwa, M. S., Tyagi, P. Synthesis, characterization and biological studies of Co(Ⅱ),Ni(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) complexes with bidentate Schiff bases derived by heterocyclicketone[J]. Eur. J. Med. Chem.,2006,41(1):147-153.
    [8] Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S., Kumari, N. S.Synthesis and biological activeity of Schiff and Mannich bases bearing2,4-dichloro-5-fluorophenyl moiety[J]. Bioorg. Med. Chem.,2006,14:7482-7489.
    [9] Samsel, E. G., Srinivasan, K., Kochi, J. K. Mechanism of the chromium-catalyzed epoxidationof olefins role of oxochromium(V) cations[J]. J. Am. Chem. Soc.,1985,107(25):7606-7617.
    [10] Srinivasan, K., Michaud, P., Kochi, J. K. Epoxidation of olefins with cationic(salen)Mn(Ⅲ)complexes: the modulation of catalytic activity by substituents[J]. J. Am. Chem. Soc.,1986,108(9):2309-2320.
    [11] Zhang, W., Loebach, J. L., Wilson, S. R., Jacobsen, E. N. Enantionselective epoxidation ofunfunctionalized olefins catalyzed by (salen)manganese complexes[J]. J. Am. Chem. Soc.,1990,112:2801-2803
    [12] Irie, R., Noda, K., Ito, Y., Matsumoto, N., Katsuki, T. Catalytic aymmetric epoxidation ofunfunctionalized olefins[J]. Tetrahedron Lett.,1990,31:7345-7348.
    [13]曹国英,奚祖威.四齿锰络合物对α-蒎烯及苯乙烯的催化环氧化研究[J].分子催化,1994,8(3):232-236.
    [14]王胜国,于国清.Schiff碱类镍(Ⅱ)络合物对苯乙烯的催化环氧化[J].石油化工,2002,31(3):183-186.
    [15]李慎新,李建章,谢家庆,陈勇,孟祥光,胡常伟,曾宪诚. Schiff碱铜配合物模拟过氧化物酶的研究[J].化学学报,2004,62(6):567-572.
    [16] Anyanwu, U. K., Venktaraman, D. Soxhlet-dialysis: a method to recover soluble polymersupported catalysts[J]. Green Chem.,2005,7:424-425.
    [17]罗云飞,邹晓川,傅相锴,贾紫永,黄雪梅.手性salen(Mn)催化烯烃不对称环氧化反应的研究进展[J].中国科学:化学,2011,41(3):433-450.
    [18]孙伟,夏春谷.手性金属Salen配合物在不对称催化中的应用[J].化学进展,2002,14(1):8-17.
    [19]杜向东,俞贤达. Schiff base过渡金属配合物在不对称催化中的应用[J].合成化学,1996,4(4):372-379.
    [20] Sakamoto, M., Manseki, K.,ōkawa, H. d-f Hetrtonuclear complexes: synthesis, structures andphysicochemical aspects[J]. Coord. Chem. Rev.,2001,219-221:379-414.
    [21] Forsberg, V. H. Gemeline Handbuch der Anorgenishen Chime D2,1980,25.
    [22] Daneshvar, N., Entezami, A. A., Khandar, A. A., Saghatforoush, L. A. Synthesis andcharacterization of copper(Ⅱ) complexes with dissymmetric tetradentate Schiff base ligandsderived from aminothioether pyridine[J]. Polyhedron,2003,22:1437-1445.
    [23] Kumar, S., Dhar, D. N., Saxena, P. N. Applications of metal complexes of Schiff bases-areview[J]. J. Sci. Ind. Res.,2009,68(3):181-187.
    [24] Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Qian, L., Fan, D. W., Dong,W. K., Chen, L. L., Qiu, Y. Q. Synthesis, crystal structure and photoluminescentproperties of an aromatic bridged Schiff base ligand and its zinc complex[J]. Inorg. Chem.Acta,2008,361:233-240.
    [25] Boghaei, D. M., Gharagozlou, M. Spectral characterization of novel ternary zinc(Ⅱ)complexes containing1,10-phenanthroline and Schiff bases derived from amino acids andsalicylaldehyde-5-sulfonates[J]. Spect. Chem. Acta A,2007,67:944-947.
    [26] Saghatforoush, L. A., Aminkhani, A., Ershad, S., Karimnezhad, G., Ghammamy, S., Kabiri,R. Preparation of zinc(Ⅱ) and cadmium(Ⅱ) complexes of the tetradentate Schiff base ligand2-((E)-(2-(2-(pyridine-2-yl)-ethylthio)ethylimino)methyl)-4-bromophenol (PytBrsalH)[J].Molecules,2008,13:804-811.
    [27]张晓松,丁国华,齐巧珍.3,5-二氯水杨醛缩邻苯二胺铜配合物的合成、晶体结构及光谱学性质[J].应用化学,2010,27(11):1334-1338
    [28]夏金虹,刘峥,王松梅,王渊.3,5-二氯水杨醛氨基硫脲酰腙钴(Ⅱ)配合物的合成及其晶体结构[J].合成化学,2010,4:446-450
    [29]赵全芹,王兴坡,柳翠英,王德凤.5-氯水杨醛类缩氨基硫脲的合成和抑菌活性研究[J].华西药学杂志,1998,13(2):75-76.
    [30]柳翠英,赵全芹,于爱华,胡国荣,刘旭.5-溴-N-(2-羟基乙基)水杨醛亚胺合铜(Ⅱ)配合物的合成与表征[J].华西药学杂志,1999,14(5):360-361.
    [31]赵全芹,柳翠英,孟凡德.3,5-二溴水杨醛Schiff碱及其铜(Ⅱ)配合物的合成和抑菌活性[J].化学试剂,2001,23(1):30-31.
    [32]王浩,王茂军.5-氯水杨醛缩甘氨酸与过渡金属离子配合物的合成及性质研究[J].化工中间体,2011,9:57-60
    [33] Hodnett, M. E., Mooney, P. D. Antitumor activities of some Schiff bases[J]. J. Med. Chem.,1970,13(4):768-771.
    [34] Hodnett M. E., Dunn W. J.3rd. Cobalt derivatives of Schiff bases of aliphatic amines asantitumor agents[J]. J. Med. Chem.,1972,15(3):339~339.
    [35] Offiong, O. E., Martelli, S. Stereochemistry and antitumour activity of platinum metalcomplexes of2-acetylpyridine thiosemicarbazones[J]. Transition Met. Chem.,1997,22(3):263-269.
    [36] Offiong, O. E., Nfor, E., Ayi, A. A., Martelli, S. Synthesis, spectral and cytotoxicity studiesof palladium(II) and platinum(II) amino acid Schiff base complexes[J]. Transition Met. Chem.,2000,25(4):369-373.
    [37] Raman, N., Kulandaisamy, A., Shunmugasundaram, A., Jeyasubramanian, K. Synthesis,spectral redox and antimicrobial activities of Schiff base complexes derived from1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide[J]. Transition Met. Chem.,2001,26(1-2):131-135.
    [38] Khuhawar M. Y., Lanjwani S. N. Simultaneous solvent extraction and high-performanceliquid chromatographic determination of uranium, iron, nickel and copper in mineralore samplesand phosphate rock residues using N,N′-ethylenebis(salicylaldimine) as complexing reagent [J]. J.Chromatogr A,1996,740(2):296-301.
    [39] Khuhawar M. Y., Lanjwani S. N. High-performance liquid chromatographic determination ofuranium using solvent extraction and bis(salicyladehyde)tetramethylene diimine as complexingreagent[J]. Talanta,1995,42(12):1925-1929.
    [40]孔淑青,徐曲,郝莱安,李先春.用桑色素甲硫氨酸席夫碱荧光法测定锡青铜中痕量铝的研究[J].江西冶金,1999,19(6):48-50
    [41]廖见培,刘国东,黄杉生.水溶性金属席夫碱与DNA相互作用的荧光光谱[J].分析测试学报,2001,20(3):5-8.
    [42]李锦州,安郁美,于文锦,李桂芝.新席夫碱萃取剂(HPMαFP)2EN的合成及其在反相纸色谱中的研究[J].化学试剂,1996,18(6):327-329.
    [43]明阳福,黄震年,许宝安,樊美公,金声,姚思德.双希夫碱-N,N’-二(2-羟基-1-萘甲醛)缩-1,4-苯二胺的电子光谱和光致变色机理研究[J].中国科学(B辑):化学,1997,27(2):120-124.
    [44] Ma, H., Chen, S. H., Niu, L., Shang, S. X., Li, S. L., Zhao, S. Y., Quan, Z. L. Studies onelectrochem-ical behavior of copper in aerated NaBr solutions with Schiff bases[J]. J. Electrochem.Soc.,2001,148:208-216.
    [45]李晓常,孙景志,马於光,沈家骢.聚合物半导体电致发光显示器件[J].高等学校化学学报,1999,20(2):309-314.
    [46]卢莲英,汪敦佳,曹晓艳.重氮苯基β-二酮的合成与表征[J].化学试剂,2011,33(12):1144-1146.
    [47]郑春阳,汪敦佳,范玲,孙婷荃.几种β-二酮化合物互变异构体的光谱性质研究[J].分析测试学报,2009,28(4):445-448.
    [48]庞美丽,张鹏,董轶望,王永梅,王积涛,孟继本.含β-二酮的光致变色化合物的合成、结构表征及其性能研究[J].化学学报,2001,59(1):11-16.
    [49]禇庆辉,高连勋,汪冬梅,齐颖华,丁孟贤.几种β-二酮化合物及其互变异构体的光谱[J].高等学校化学学报,2000,21(3):439-443.
    [50]黄福新,吴谊群,顾冬红,干福熹. α-异恶唑偶氮基-β-二酮类衍生物及其互变异构体的光谱[J].光谱学与光谱分析,2005,25(1):141-144.
    [51] Kunar, R., Joshi, Y. C. Synthesis and antimicrobial, antifungal and anthelmintic activities of3H-1,5-benzodiazepine derivatives[J]. J. Serb. Chem. Soc.,2008,73(10):937-943.
    [52] Singletary, K., Macdonald, C., Iovinelli, M., Fisher, C., Wallig, M. Effect of thebeta-diketones diferuloylmethane (curcumin) and dibenzoylmethane on rat mammary DNAadducts and tumors induced by7,12-dimethylbenz[a]anthracene[J]. Carcinogenesis,1998,19(6):1039-1043.
    [53] Joshi, A., Verma, S., Gaur, R. B., Sharma, R. R. Di-n-butyltin(IV) complexes derived fromheterocyclic β-diketones and N-phthaloylamino acids: Preparation, biological evaluation,structural elucidation based upon spectral [IR, NMR (1H,13C,19F and119Sn)] studies[J]. Bioin.Chem.&Appli.,2005,3:201-215.
    [54]邓崇海,胡寒梅,丁爱琴,邵国泉,吴杰颖.3,6-二(3-苯基-1,3-丙二酮基)-9-乙基咔唑的合成、光谱性质与量子化学研究[J].分析测试学报,2008,27(5):497-500.
    [55] Kolthoff, I. M., Elving, P. J. Treatise on Analytical Chemistry, Pt.Theory and Practice V01.3.2nd Ed John Wiley Sons U. S. A.,1983,3:592.
    [56] Kelin, A. V. Recent advances in the synthesis of1,3-diketones invited review[J]. Curr. Org.Chem.,2003,7:1691-1711.
    [57] Daniel, R. C., Warwack, N. Y. US;5015777,1991-05-14.
    [58] Lou, S., Westbrook, J. A., Schaus, S. E. Decarboxylative aldol reactions of allyl β-keto estersvia heterobimetallic catalysis[J]. J. Am. Chem. Soc.,2004,126:11440-11441
    [59] Lou, S., Taoka, M. B., Ting, A., Schaus, S. E. Asymmetric mannich reactions of β-keto esterswith acyl imines catalyzed by cinchona alkaloids[J]. J. Am. Chem. Soc.,2005,127,11256-11257.
    [60] Otway, D. J., Rees. W. S. Group2element β-diketonate complexes: synthetic and structuralinvestigations[J]. Coord. Chem. Rev.,2000,210:279-328.
    [61] Aromi, G., Gamez, P., Reedijk, J. Poly beta-diketones: prime ligands to generatesupramolecular metalloclusters[J]. J. Coord. Chem. Rev.,2008,252:964-989.
    [62]郑春阳,郑静,范玲,汪敦佳.两种芳香β-二酮化合物的合成及表征[J].化学研究与应用,2006,18(12):1436-1439.
    [63] Raner, K. D., Strauss, C. R.. Influence of microwave on the rate of esterification of2,4,6-trimethylbenzoic acid with2-propanol[J]. J. Org. Chem.,1992,57(23):6231-6234
    [64] Dittmer, D. No-solvent organic synthesis[J]. Chem&Industry,1997(19):779-784.
    [65] Bose, A. K., Manhas, M. S., Ghosh, M., Shah, M., Raju, V. S., Bari, S. S., Newaz, S. N.,Banik, B. K., Chauhdary, A. G., Barakat, K. J. Microwave-induced organic reaction enhancementchemistry.2. simplified techniques[J]. J. Org. Chem.,1991,56(25):6968-6870.
    [66] Baghurst, D. R., Mingos, D. M. P. Design and application of a reflux modification for thesynthesis of organometallic compounds using microwave dielectric loss heating effects[J]. J.Organomet. Chem.,1990,384(3): C57-C60.
    [67] Xu, R., Zhang, J., Tian, Y., Zhou, J. Microwave-assisted solvent-free synthesis of1,1-diacetates catalyzed by SbCl3from aldehydes and acetic anhydride[J]. J. Iran. Chem. Soc.,2009,6(2):443-447.
    [68] Faghihi, K., Hagibeygi, M. Using microwave irradiation to prepare new poly(amide-imide)scontaining tetrahydropyrimidinone, tetrahydro-2-thioxopyrimidine, and trimellitic rings in theirmain chains: synthesis and characterization[J]. Macromolecular Res.,2005,13(1):14-18.
    [69] Tambara, K., Ponnuswamy, N., Hennrich, G., Pantos, G. D. Microwave-assisted synthesis ofnaphthalenemonoimides and N-desymmetrized naphthalenediimides[J]. J. Org. Chem.,2011,76(9):3338-3347.
    [70]袁泽利,吴庆,杨兴变,胡庆红,张铭钦,钟永科.新型双(β-二酮)配体的合成研究[J].化学世界,2010,8:491-496.
    [71] Messali, M., Ahmed, S. A. A green microwave-assisted synthesis of new pyridazinium-basedionic liquids as an environmentally friendly alternative[J]. Green and Sustainable Chemistry,2011,1:70-75.
    [72] Reddy, B. M., Bharali, P., Seo, Y. H., Prasetyanto, E. A., Park, S. E. Surfactant-controlledand microwave-assisted synthesis of highly active CexZr1-xO2nano-oxides for CO oxidation[J].Catalysis Lett.,2008,126(1-2):125-133.
    [73] Patel, D., Patel, R., Kumari, P., Patel, N. Microwave-assisted synthesis of coumarin based1,3,5-triazinyl piperazines and piperidines and their antimicrobial activities[J]. Acta Pol. Pharm.,2012,69(5):879-891.
    [74] Lidstr m, P., Tiemey, J., Wathey, B., Westman, J. Microwave assisted organic sythesis–areview[J]. Tetrahedron,2001,57:9225-9283.
    [75] Hayes, B. L. Recent advances in microwave-assisted sythesis[J]. Aldrichimica Acta,2004,37(2):66-76.
    [76] Mistry, B., Medhane, D., Mohanraj, K., Ghone, S. A. Microwave-assisted synthesis of animportant intermediate of benazepril[J]. Indian J. Pharm. Sci.,2010,72(3):378-380.
    [77] Tu, S. J., Zhang, X. H., Han, Z. G., Cao, X. D., Wu, S. S., Yan, S., Hao, W. J., Zhang, G., Ma,N. Synthesis of isoxazolo[5,4-b]pyridines by microwave-assisted multi-component reactions inwater[J]. J. Comb. Chem.,2009,11(3):428-432.
    [78] Hao, W. J., Jiang, B., Tu, S. J., Wu, S. S., Han, Z. G., Cao, X. D., Zhang, X. H., Yan, S., Shi,F. Microwave-assisted combinatorial synthesis of new3-pyrimidin-5-ylpropanamides via asolvent-dependent chemoselective reaction[J]. J. Comb. Chem.,2009,11(2):310-314.
    [79] Tullberg, M., Luthman, K., Gr tli, M. Microwave-assisted solid-phase synthesis of2,5-diketopiperazines: solvent and resin dependence[J]. J. Comb. Chem.,2006,10(6):915-922.
    [80] Wang, S. L., Ding, J., Jiang, B., Gao, Y., Tu, S. J. Microwave-assisted solvent-dependentreaction: chemoselective synthesis of quinoxalin-2(1H)-ones, benzo[d]imidazoles anddipeptides[J]. ACS Comb. Sci.,2011,13(5):572-577.
    [81]张召,王淇,吴琼,胡晓莹,王成蹊,梅文杰,陶韵伊,吴韦黎,郑文杰.微波辅助合成菲并咪唑衍生物及微波非热效应[J].高等学校化学学报,2012,33(11):2441-2446.
    [82] Alam, M., Nami, S. A. A., Parveen, M., Lee, D. U., Park, S. Microwave assisted sythesis andsilico screening of steroidal pyrazolines[J]. Chinese Chem. Lett.,2012,23:1039-1042.
    [83] Kaur, R., Kishore, D. P., Narayana, B. L., Rao, K. V., Balakumar, C., Rajkumar, V., Rao, A.R. A facile microwave-assisted sythesis of8,9-cycloalkathieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-ones[J]. J. Chem. Sci.2011,123(1):69-73.
    [84] Bagley, M. C., Davis, T., Dix, M. C., Murziani, P. g., Rokicki, M. J., Kipling, D.Microwave-assisted synthesis of a pyrazolyl ketone library for evaluation as p38MAPK inhibitorsin Werner syndrome cells[J].2010,2(2):203-213.
    [85] Kotharkar, S. A., Shinde, D. B. Microwave assisted sythesis of1,4-dihydropyridines[J].Ukrainica Bioorganica Acta.2006,1:3-5.
    [86] Regina, G. L., Gatti, V., Famiglini, V., Piscitelli, F., Silvestri, R. Venting-while-heatingmicrowave-assisted sythesis of3-arylthioindoles[J]. ACS Comb. Sci.,2012,14(4):258-262.
    [87] Ahmad, N., Zia-ur-Rehman, M., Siddiqui, H. L., Ullah, M. F., Parvez, M. Microwave assistedsynthesis and structure-activity relationship of4-hydroxy-N'-[1-phenylethylidene]-2H/2-methyl-1,2-benzothiazine-3-carbohydrazide1,1-dioxides as anti-microbial agents[J]. Eur. J. Med. Chem.,2011,46(6):2368-2377.
    [88] Gothwal, P., Malhotra, G., Srivastava, Y. K. Microwave assisted synthesis and antimicrobialactivities of some3-[4’-(4’’-nitrophenoxy)-phenyl]-5-(substitutedaryl)-2-pyrazoline-1-thiocarboamides[J]. Inter. J. Green&Herbal Chem.,2012,1(1):39-45.
    [89] Pore, D., Alli, R., Prabhakar, A. S.C., Alavala, R. R., Kulandaivelu, U., Boyapati, S.Solid-phase microwave assisted synthesis of curcumin analogs[J]. Letters in Organic Chemistry,2012,9(6):447-450.
    [90] Nichols, C. E., Youssef, D., Harris, R. G., Jha, A. Microwave-assisted synthesis of curcuminanalogs[J]. Arkivoc,2006,13:64-72.
    [91] Razus, A. C., Birzan, L., Nae, S., Lehadus, O. L., Pavel, C., Costan, O. Azulenic β-diketones,synthesis, properties and reactions to form five membered aromatic heterocycles[J]. Arkivoc,2005,10:71-85.
    [92]李敏谊,魏丹,刘志雄.微波辐射合成β-二酮类化合物[J].精细石油化工,2009,26(3):4-7.
    [93]游效曾.我国配位化学进展[J].化学通报,1999,10:7-9
    [94] Liu, T. D., Chien, A. D., Lu, J. W., Zhang, G. Q., Fraser, C. Arene effects on difluoroboronβ-diketonate mechanochromic luminescence[J]. J. Mater. Chem.,2011,21(23):8401-8408.
    [95] Yang, M., Liu, B. Y., Wang, L. H., Hegang Ren, H. G., Hu, W. Y., Wen, L. F., Yan, W.D. Novel tandem catalytic system of β-diketonate zirconium/two different cocatalysts forpreparing branched polyethylene[J]. Catal Commun,2009,10,1427-1431.
    [96] Freund, C., Porzio, W., Giovanella, U., Vignali, F., Pasini, M., Destri, S., Mech, A., Di Pietro,S., Di Bari, L., Mineo, P. Thiophene based europium β-diketonate complexes: effect of the ligandstructure on the emission quantum yield[J]. Inorg. Chem.,2011,50(12):5417-5429.
    [97] Tsukube, H., Shinoda, S., Uenishi, J., Kanatani, T., Itoh, H., Shiode, M., Iwachido, T.Yonemitsu, O. Molecular recognition with lanthanide(III) tris(β-diketonate) complexes:extraction, transport, and chiral recognition of unprotected amino acids[J]. Inorg. Chem.,1998,37(7):1585-1591.
    [98]冯云龙.两个β-二酮Co(Ⅱ)配合物[Co(β-diketonate)2(py)2]的合成和晶体结构[J].无机化学学报,2002,18(7):723-725.
    [99] Kopylovich, M. N., Mac Leod, T. C. O., Mahmudov, K. T., Guedes da Silva, M. F. C.,Pombeiro, A. J. L. Zinc(II) ortho-hydroxyphenylhydrazo-β-diketonate complexes and theircatalytic ability towards diastereoselective nitroaldol (Henry) reaction[J].2011,40(19):5352-5361.
    [100] Barreca, D., Gasparotto, A., Maccato, C., Tondello, E., Lebedev, O. I., Tendeloo, G. V.CVD of copper oxides from a β-diketonate diamine precursor: tailoring the nano-organization[J].Cryst. Growth Des.,2009.9(5):2470-2480.
    [101] Starikov, A. G., Minyaev, R. M., Starikova, A. A., Minkin, V. I. Quantum chemical study ofpyridine addition to Ni(II) β-diketonate complexes[J]. Russ. J. Coord. Chem.2010,36(8):597-604.
    [102] Semenov, V. V., Zolotarev, N. V., Lopatin, M. A., Domrachev, G. A. Synthesis ofeuropium(III) phenanthroline-β-diketonate silicon-containing complex. Photoluminescence insolution and in sol-gel film[J]. Russ. J. Gener. Chem.,2010,80(9):1758-1761.
    [103] Wilson, J. J., Lippard, S. J. In vitro anticancer activity of cis-diammineplatinum(II)complexes with β-diketonate leaving group ligands[J]. J. Med. Chem.,2012,55(11):5326-5336.
    [104] Maurer, C., Pittenauer, E., Du, V. A., Allmaier, G., Schubert, U. Cyclic bis(β-diketonate)-and bis(β-ketoesterate)-bridged titanium and zirconium alkoxide derivatives[J]. Dalton Trans,2012,41(8):2346-2353.
    [105] Park, J. W., Koo, S. M., Dimeric barium β-diketonate complexes with polydentate amineadducts: The synthesis and structural characterization of [Ba(THD)2(L)]2(L=diethylenetriamineand triethylenetetramine) complex[J] Bull. Korean Chem. Soc.,1999,20(11):1257-1260.
    [106]罗世霞,张笑一,朱淮武,胡继伟,卫钢.双β-二酮配体配位性的理论研究[J].化学学报,2009,67(15):1784-1790.
    [107]吴茂英,林悟森,林莅萌. β-二酮作用模式和锌基热稳定剂协同作用机理研究(上)[J].塑料助剂,2010,79(1):27-31.
    [108]刘兴旺,王娜,高赛生态,高俊芳. β-二酮(HTPP)、邻菲罗啉分别与铕和铽三元配合物的合成、荧光性能及理论研究[J].有机化学,2009,29(10):1676-1681.
    [109]张华,刘少兵. β-二酮类化合物的研究进展[J].化工中间体,2007,8:24-30.
    [110]陈义朗,李新生,张华,欧阳萌.四种新型β-二酮和钇的配合物的合成及性质研究[J].稀土,2004,25(6):87-90.
    [111]闫晓红. PVC辅助热稳定剂β-二酮的合成及应用[J].现代塑料加工应用,2000,12(3):37-38.
    [112]赵波. β-二酮衍生配体及其配合物的合成、表征和性质研究[D].陕西,西北大学,2008.
    [113]彭霞. β-二酮的合成及其铜萃取性能研究[D].湖南,中南大学,2011.
    [114]尹显洪,冯宇,白丽娟,马少妹,石展望,黄忠京,刁开盛.新型双β-二酮稀土配合物的荧光性质.发光学报,2006,27(1):105-112.
    [115] de Sá, G. F., Alves Jr, S., da Silva, B. J. P., da Silva Jr, E. F. A novel fluorinated Eu(III)β-diketone complex as thin film for optical device applications[J]. Optical Materials,1998,11(1):23-28.
    [116]向能军,李狄豪,王芸芸,龚孟濂,梁万里,石建新.新的β-二酮及其Eu(Ⅲ)三元配合物的合成与发光研究[J].中国稀土学报,2004,22(06):871-874.
    [117]石恩娴,杨红,沈莉,杜玉扣,李富友,黄春辉. Inhibit化学逻辑门:基于Al3+和Fe3+的β-二酮荧光开关的研究[J].化学学报,2005,63(10):952-954.
    [118] Algucil, F. J., Cobo, A. Solvent extraction equilibrium of nickel with LIX54[J].Hydrometallurgy,1998,48(3):291-299
    [119] Algucil, F. J., Alonso, M. Recovery of copper from ammonical/ammonium sulfate mediumby LIX54[J]. J. Chem. Technol. Biot.,1999,74(12):1171-1175.
    [120] Algucil, F. J., Cobo, A. Extraction of zinc from ammonical/ammonium sulphate solutions byLIX45[J]. J. Chem. Technol. Biot.,1998,71(2):162-166.
    [121] Shukla, R., Rao, G. N. Solvent extraction of metals withpotassium-dihydro-bispyrazolyl-borate[J]. Talanta,2002,57(4):633-639
    [122]易筱筠,古国榜,贾宝琼. Lix54-100从氨性蚀铜废液中萃取回收铜[J].化学研究与应用,2002,14(6):755-757.
    [123]刘国德,酒红芳,张立新,慕学超,张朝艳,樊涛,苏青林,孙益新.新型双β-二酮配体的合成[J].合成化学,2010,18(5):642-643.
    [124] Adati, R. D., Lima, S. A. M., Davolos, M. R., Jafelicci Jr, M. A new β-diketone complexwith high color purity[J]. J. Alloys Compd.,2006,418(1-2):222-225
    [125] Molina, C., Dahmouche, K., Messaddeq, Y., Ribeiro, S. J. L., Silva, M. A. P., de ZeaBermudez, V., Carlos, L. D. Enhanced emission from Eu(III) β-diketone complex combined withether-type oxygen atoms of di-ureasil organic-inorganic hybrids[J]. J. Lumin.,2003,104:93-101.
    [126] Oliver, J. H., Camerel, F., Selb,J., Retailleau, P., Ziessel, R. Terpyridine-functionalizedimidazolium ionic liquids[J]. Chem. Commun.,2009,(9):1133-1135.
    [127] Shah, A. K., Bahar, A., Tanveer, A. Synthesis and antihepatotoxic activity of some newchalcones containg1,4-dioxane ring system[J]. Pak. J. Pharm. Sci.,2006,19(4):290-294.
    [128] Liang, X., Qi, J., Lu, Y. A simplified synthesis of1,3-bis-(2-carboxychromone-7-oxy)-2-hydroxypropane disodium salt (78012)[J]. Acta. Pharm. Sin.,1982,17(2):143-145.
    [129] Bolós, J., Gubert, S., Anqlada, L., Planas, J. M., Burgarolas, C., Castelló, J. M., sacristán, A.,Ortiz, J. A.7-[3-(1-piperidinyl)propoxy]chromenones as potential atypical antipsychotics[J]. J.Med. Chem.,1996,39(15):2962-2970.
    [130] Gedye, R., Smith, F., Westaway, K., Ali, H. Baldisera, L., Laberge, L., Roussel, J. The useof microwave ovens for rapid organic synthesis[J]. Tetrahedron Lett.,1986,27(3):279-282.
    [131] de la Hoz, A., Díaz-Ortiz, á., Moreno, A. Microwave in organic synthesis. Thermal andnon-thermal microwave effects[J]. Chem. Soc. Rev.,2005,34:164-178.
    [132] Strauss, C. R., Trainor, R. W. Developments in microwave-assisted organic chemistry[J].Aust. J. Chem.,1995,48:1665-1692.
    [133] Strauss, C. R. A strategic,“green” approach to organic chemistry with microwave-assistanceand predictive yield optimisation as core, enabling technologies. Aust. J. Chem.,2009,62:3-15.
    [134] Martín-Gil, J., Martín-Gil, F. J., José-Yacamán, M., Carapia-Morales, L., Falcón-Bárcenas,T. Microwave-assisted synthesis of hydrated sodium uranyl oxonium silicate. Polish. J. Chem.,2005,79:1399-1403.
    [135] Mingos, D. M. P., Baghurst, D. R. Tilden lecture: applications of microwave dielectricheating effects to the synthetic problems in chemistry[J]. Chem. Soc. Rev.,1991,20:1-47
    [136] Sahu, R. K., Rao, M. L., Manoharan, S. S. Synthesis of magnetoresistive La0.7Ba0.3MnO3using inorganic precursors[J]. J. Mater. Sci.,2001,36(17):4099-4102
    [137] Whittaker, A. G., Mingos, D. M. P. Microwave-assisted solid-state reaction involving metalpowders[J]. J. Chem. Soc. Dalton Trans.1995,12:2073-2079.
    [138] Stuerga, D., Gonon, K., Lallemant, M. Microwave heating as a new way to induceselectivity between competitive reactions[J]. Tetrahedron1993,49(28):6229-6234.
    [139] Bhunia, S., Bose, D. N. Microwave synthesis, single crystal growth and characterization ofZnTe[J]. J. Cryst. Growth.,1998,186(4):535-542
    [140] Cheng, J., Qiu, J., Zhou, J. Ye, N. Densification kinetics of alumina during microwavesintering, in microwave processing of materials III[J]. Mater. Res. Soc. Symp. Proc.,1992,269:323-328.
    [141] Liu, C. Y., Wang, T., Zha, G. Q., Gu, Z., Jie, W. Q. ZnCl2-assisted synthesis of ZnSepolycrystal[J]. J. Mater. Sic. Technol.,2012,28(4):0373-0375.
    [142]祝振奇,周建,刘桂珍,任志国.微波加热合成针状ZnO晶体结构与形貌研究[J].武汉科技大学学报(自然科学版),2008,31(2):180-182.
    [143] Landry, C. C., Barron, A. R. Synthesis of polycrystalline chalcopyrite semiconductors bymicrowave irradiation[J]. Science,1993,260:1653-1655.
    [144] Fanslow, G. E., Hall, C. C. Microwave enhancement of chemical and physical reactions[J].Mater. Res. Soc. Symp. Proc.,1991,189:43-49.
    [145] Sun, W. C., Guy, P. M., Jahngen, J. H., Rossomando, E. F., Jahngen,E. G. E.Microwave-iniduced hydrolysis of phospho anhydride bonds in nucleotide triphosphates[J]. J. Org.Chem.1988,53(18):4414-4416.
    [146] Booske, J.H., Cooper, R.F., Dobson, I. Mechanisms for nonthermal effects on ionic mobilityduring microwave processing of crystalline solids[J]. J. Mat. Res.,1992,7(2):495-501.
    [147] Rothman, S. J. Critical assessment of microwave-enhanced diffusion, in microwaveprocessing of materials IV[J]. Mater. Res. Soc. Symp. Proc.,1994,347:9-18.
    [148] Whittaker, A. G., Mingos, D. M. P. The application of microwave heating to chemicalsynthess[J]. J. Microwave Power and Electromagn, Energy,1994,29(4):195-200.
    [149] Whittaker, A. G., Mingos, D. M. P. Synthetic reactions using metal powders undermicrowave irradiation[J]. J. Chem. Soc., Dalton Trans.,2002,21:3967-3970.
    [150] Giguere, R. J. Ultrasound, high pressure and microwave heating in organic synthesis[M].An invited chapter in Organic Synthesis: Theory and application, edited by Tomas Hudlicky, JAIPress, Inc., Greenwich, Connecticut1989,103-172.
    [151] Jullien, S. C., Delmotte, M., Loupy, A., Jullien, H. Microwave and high frequencies,International Conference, Nice(France)8-10October,1991,654.
    [152] Pagnota, M., Pooley, C. L. F., Gurland, B., Choi, M. Microwave activation of themutarotation of alpha-D-glucose: an example of an intrinsic microwave effect[J]. J. Phys. Org.Chem.,1993,6:407-411
    [153] Galema, S. A. Microwave Chemistry[J]. Chem. Soc. Rev.,1997,26(3):233-238.
    [154]段碧林,曾令可,刘艳春,刘平安,税安泽.微波辅助加热技术在无机材料中的应用[J].陶瓷学报,2006,27(1):120-125.
    [155]刘韩星,欧阳世翕.无机材料微波固相合成方法与原理[M].北京:科学出版社,2006.
    [156]朱启安,孙旭峰,张聪,陈万平,王树峰.室温研磨-微波加热合成钛酸钡纳米粒子[J].功能材料,2007,38(6):1009-1011.
    [157]苏玉长,张鹏飞,肖立华,陈宏艳.微波固相合成纳米LaB6的组织结构及其透光特性[J].中南大学学报(自然科学版),2011,42(10):3015-3019.
    [158]刘劲松,曹洁明,李子全,柯行飞.微波固相合成氧化锌纳米棒[J].化学学报,2007,65(15):1476-1480.
    [159]霍地,张劲松,杨洪才,曹小明,杨永进,刘强.在微波辐射下Li1+xMn2-xO4尖晶石的固相合成[J].材料研究学报,2003,17(3):293-299.
    [160]纪振鹏,周书才,艾文杰,杜志华,赵晓隆. Mg2Si金属部化合物微波固相合成研究[J].粉末冶金技术,2011,29(3):206-213.
    [161]戴武斌,曾令可,刘艳春,王慧,刘平安.微波在材料合成中的应用[J].工业炉,2009,31(1):16-18.
    [162] Petit, A., Loupy, A., Maillard, P., Momenteau, M. Microwave irradiation in dry media–aNew and easy method for synthesis of tetrapyrrolic compounds[J]. Synth. Commun.,1992,22(8):1137-1142.
    [163] Kishan, M. R., Rani, V. R., Murty, M., Devi, P. S., Kulkarni, S. J., Raghavan, K. V.Synthesis of calixpyrroles and porphyrins over molecular sieve catalysts. J. Mol. Catal. A. Chem.,2004,223:263-267.
    [164] Socoteanu, R., Boscencu, R., Nacea, V., Oliveira, A. S., Ferreira, L. F. V.Microwave-assisted synthesis of unsymmetrical tetrapyrrolic compounds[J]. Rev. Chim-Buchar,2008,59:969-972.
    [165] Yaseen, M., Ali, M., Najeeb Ullah, M., Munawar, M. A., Khokhar, I. Microwave-assistedsynthesis, metallation, and duff formylation of porphyrins[J]. J. Heterocycl Chem.,2009,46(2):251-255.
    [166] Collman, J. P., Decreau, R. A. Microwave-assisted synthesis of corroles[J]. TetrahedronLett.,2003,44(6):1207-1210.
    [167] Chauhan, S. M. S., Srinivas, K. A., Srivastava, P. K., Sahoo, B. Solvent-free synthesis ofphthalocyanines[J]. J. Porphyrins Phthalocyanines,2003,7(8):548-550.
    [168]贾殿赠,杨立新,夏熙,忻新泉.微波技术在固相配位化学反应中的应用研究(Ⅰ)----Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)配合物在微波条件下的固相合成[J].高等学校化学学报,1997,18(9):1432-1435.
    [169] Shaabani, A. Synthesis of metallophthalocyanines under solvent-free conditions usingmicrowave irradiation[J]. J. Chem. Res. Synop.,1998,10:672-673.
    [170] Villemin, D., Hammadi, M., Hachemi, M., Bar, N. Applications of microwave in organicsynthesis: an improved one-step synthesis of metallophthalocyanines and a new modifiedmicrowave oven for dry reactions[J]. Molecules,2001,6:831-844.
    [171] Safari, N., Jamaat, P. R., Pirouzmand, M., Shaabani, A. Synthesis ofmetallophthalocyanines using microwave irradiation under solvent free and reflux conditions[J].J.Porphyr. Phthalocyan.,2004,8(10):1209-1213.
    [172] Shaabani, A., Safari, N., Bazgir, A., Bahadoran, F., Sharifi, N., Jamaat, P. R. Synthesis ofthe tetrasulfo-and tetranitrophthalocyanine complexes under solvent-free and reflux conditionsusing microwave irradiation[J]. Synth. Commun.,2003,33(10):1717-1725.
    [173] Maree, S. E. Microwave assisted axial ligand substitution of titanium phthalocyanines[J]. J.Porphyr. Phthalocyan.,2005,9(12):880-883.
    [174] Burczyk, A., Loupy, A., Bogdal, D., Petit, A. Improvement in the synthesis ofmetallophthalocyanines using microwave irradiation. Tetrahedron,2005,61(1):179-188.
    [175] Tolbin, A. Y., Pushkarev, V. E., Shulishov, E. V., Ivanov, A. V., Tomilova, L. G., Zefi rov,N. S. Synthesis and spectroscopic properties of new unsymmetrically substitutedphthalocyanines[J]. Mendeleev Commun.,2005,15(1):24-26.
    [176] Bahadoran, F., Dialameh, S. Microwave assisted synthesis of substitutedmetallophthalocyanines and their catalytic activity in epoxidation reaction[J]. J. Porphyr.Phthalocyan.,2005,9(3):163-169.
    [177]蒋治良,刘旭红.六次甲基四胺络铜的微波固相合成及应用[J].广西师范大学学报,1998,16(2):49-53.
    [178]钟国清.甘氨酸钙螯合物的微波固相合成与表征[J].合成化学,2004,12(6):591-594.
    [179]钟国清,曾仁权.微波辐射固相法合成缩二脲铜配合物[J].无机化学学报,2002,18(8):849-853.
    [180]张艳,钟国清,熊鑫,蒋琪英.微波固相法合成邻苯二甲酸、铜配合物[J].精细化工,2011,28(11):1059-1062.
    [181]蒋才武,陈超球,梁利芳,蒋治良.微波辐射条件下Cu(Ⅱ)、Co(Ⅱ)、Ni(Ⅱ)、Zn(Ⅱ)与甘氨酸配合物的固相合成、表征及应用.广西师范学报(自然科学版),2000,17(1):32-37.
    [182]李亮,施用晖,乐国伟.微波固相合成蛋氨酸亚铁的工艺研究[J].中国粮油学报,2004,19(3):74-77.
    [183]卢昊,王春维,张怡,王兆钧.微波固相合成谷氨酸锌的工艺研究[J].中国粮油学报,2010,25(2):121-125.
    [184]张娜,周民杰,阎建辉.微波固相合成赖氨酸螯合锰的研究[J].湖南理工学院学报(自然科学版),2011,24(2):59-61.
    [185] Williams, J. R., Johnson, D. C. Synthesis of the new metastable skutterudite compoundNiSb(3) from modulated elemental reactants[J]. Inorg. Chem.,2002,41(16):4127-4130.
    [186] Bosnich, B. Cooperative bimetallic redox reactivity[J]. Inorg. Chem.,1999,38(11):2554-2562.
    [187] Ingham, A., Rodopoulos, M., Coulter, K., Rodopoulos, T., Subramanian, S., Mcauley, A.Synthesis, characterization and reactivity of some macrobicyclic and macrotricyclichetero-clathrochelate complexes[J]. Coord. Chem. Rev.,2002,233:255-271.
    [188] Chen, Q. Y., Luo, Q. H., Hu, X. L., Shen, M. C., Chen. J. T. Heterodinuclear cryptates
    [EuML(dmf)](ClO4)2(M=Ca, Cd, Ni, Zn): Tuning the luminescence of europium(Ⅲ) through theselsction of the second metal ion[J]. Chem. Eur. J.,2002,8:3984-3990.
    [189]游效曾,孟庆金,韩万书主编.配位化学进展.北京:高等教育出版社,2000.
    [190] Aoyagi, M., Biradha, K., Fujita, M. Quantitative formation of coordination nanotubestemplated by rodlike guests[J]. J. Am. Chem. Soc.,1999,121:7457-7458.
    [191] Vilar, R. Anion-templated synthesis[J]. Angew. Chem. Int. Ed.,2003,42(13):1460-1477.
    [192] Xie, Y., Qian, Y. T., Wang, W. Z., Zhang, S. Y., Zhang, Y. H. A benzene-thermal syntheticroute to nanocrystalline GaN[J]. Science,1996,272:1926-1927.
    [193] Neeraj, S., Natarajan, S., Rao, C. N. R. A zinc phosphate-oxalate with tubular phosphatelayers pillared by the oxalate units[J]. J. Chem. Soc., Dalton Trans.,2001,3:289-291.
    [194] Fan, J., Sun, W. Y., Okamura, T. A., Tang, W. X., Ueyama, N. Novel metal-organicframeworks with specific topology from new tripodal ligands:1,3,5-tris(1-imidazolyl)benzene and1,3-bis(1-imidazolyl)-5-(imidazol-1-ylmethyl)benzene[J]. Inorg. Chem.,2003,42(10):3168-3175.
    [195] Fan, J., Shu, M. H., Okamura, T. A., Li, Y. Z., Sun, W. Y., Tang, W. X., Ueyama, N.Solvent effect on the structure and topology of metal-organic frameworks with the rigid tripodalstar ligand1,3,5-tris(1-imidazolyl)benzene and lead(II) nitrate[J]. New J. Chem.,2003,27(9):1307-1309.
    [196] Harrison, W. T. A. Templated inorganic networks: recent developments[J]. Curr. Opin.Solid State Mater. Sci.,2002,6(5):407-413.
    [197] Zhang, C., Jin, G. C., Chen, J. X., Xin, X. Q., Qian, K. P. The characteristic IR spectra ofheterothiometallic cluster compounds[J]. Coord. Chem. Rev.,2001,213(1):51-77.
    [198]张驰,金国成,忻新泉.原子簇化台物固相合成及其三阶非线性光学性质的研究[J].无机化学学报,2000,16(2):229-240.
    [199] Luo, L. B., Chen, H. L., Tang, W. X., Zhang, Z. Y., Mak, T. C. W. Formation andstructure of inclusion complexes involving α-cyclodextrin and alkyl(aqua)cobaloxime[J]. J. Chem.Soc., Dalton Trans.,1996,23:4425-4430.
    [200] Hagen, K. S., Holm. R. H. Synthesis and stereochemistry of metal(II) thiolates of the types
    [M(SR)4]2-,[M2(SR)6]2-, and [M4(SR)10]2-(M=Fe(II), Co(II))[J]. Inorg. Chem.,1984,23(4):418-427.
    [201] Fei, B. L., Sun, W. Y., Yu, K. B., Tang, W. X. Construction of coordination networks of1,6-bis(4'-pyridyl)-2,5-diazahexane with silver(I) and copper(I). Structural diversity throughchange in metal ions and counter ions[J]. J. Chem. Soc., Dalton Trans.,2000,5:805-811.
    [202] Zhang, L., Mei, Y. H., Zhang, Y., Li, S. A., Sun, X. J., Zhu, L. G. Regioselective cleavageof myoglobin with copper(Ⅱ)compounds at neutral pH[J]. Inorg. Chem.,2003,42(2):492-498.
    [203] Sun, W. Y., Fei, B. L., Okamura, T. A., Tang, W. X., Ueyama, N. Construction andcharacterization of organic-inorganic hybridized molecules with Infinite2D grid network and1Dzigzag chain structures[J]. Eur. J. Inorg. Chem.,2001,1855-1861.
    [204] Biradha, K., Hongo, Y., Fujita, M. Crystal-to-crystal sliding of2D coordination layerstriggered by guest exchange[J]. Angew. Chem. Int. Ed.,2002,41(18):3395-3398.
    [205]肖芙蓉,王吉德,王运华,高英. Schiff碱钴配合物的固相合成及其氧合性能[J].合成化学,2008,16(5):537-541.
    [206]曹艳霞,王吉德,岳凡,迟姚玲.二胺-Co(Ⅱ)氧合配合物的固相合成、表征及其性能的研究[J].化学通报,2001,64(12):789-792.
    [207]郎建平,朱慧珍,忻新泉,陈民勤.固相配位化学反应研究——[C5H5N(C16H33)]4
    [Cu4Br8]的固相合成和晶体结构[J].高等学校化学学报,1992,13(1):18-21.
    [208]贾殿赠,忻新泉.固相配位化学反应研究LⅣ.一步法低热固相合成Co(Ⅱ)、Ni(Ⅱ)、Cu(Ⅱ)Schiff碱配合物[J].应用化学,1992,9(6):1-5.
    [209] Mingos, D. M. P. Microwave synthesis of inorganic materials[J]. Adv. Mater.,1993,5(11):857-859.
    [210] Rao, K. J., Vaidhyanathan, B., Ganguli, M., Ramakrishnan, P. A., Synthesis of inorganicsolids using microwaves[J]. Chem. Mater.,1999,11(4):882-895.
    [211] Rothman, S. J. Critical assessment of microwave enhanced diffusion[J]. Mater Res. Soc.Symp. Proc.,1994,347:9-18.
    [212] Cheng, J., Fang, Y., Agrawal, D. K., Roy, R.“Microwave synthesis of lead-barium titanate,”in microwave processing of materials IV[J]. Mater Res. Soc. Symp. Proc.,1994,347:513-518.
    [213] Ramesh, P. D., Vaidhyanathan, B., Ganguli, M., Rao, K. J. Synthesis of β-SiC powder byuse of microwave radiation [J]. J. Mater. Res.,1994,9(12):3025-3027.
    [214] Vaidhyanathan, B., Ganguli, M., Rao, K. J. Fast solid state synthesis of metal vanadates andchalcogenides using microwave irradiation[J]. J. Mater. Res. Bull.,1995,30(9):1173-1177
    [215] Hanrish Bhat, M., Chakravarthy, B. P., Ramakrishnan, P. A., Levasseur, A., Rao, K. L.Microwave synthesis of electrode materials for lihium batteries[J]. Bull. Mater. Sci.,2000,23(6):461-466.
    [216] Bhunia, S., Bose, D. N. Microwave synthesis, single crystal growth and characterization ofZnTe [J]. J. Cryat. Growth.,1998,186(4):535-542.
    [217] Landry, C. C., Barron, A. R. Synthesis of polycrystalline chalcopyrite semiconductors bymicrowave irradiation[J]. Science,1993,260:1653-1655.
    [218] Gallis, K. W., Landry, C. C. Rapid calcination of nanostructured silicate composites bymicrowave irradiation[J]. Adv. Mater.,2011,13(1):23-26.
    [219] Clark, D. E., Ahmad, I., Dalton, R. C. Microwave ignition and combustion synthesis ofcomposites[J]. Mater. Sci. Eng.,1991, A144(1-2):91-97.
    [220] Vaidhyanathan, B., Agrawal, D. K., Roy, R. Novel synthesis of nitride powders bymicrowave-assisted combustion[J]. J. Mater. Res.2000,15(4):974-981.
    [221] Razavi, M., Rahimipour, M. R., Ebadzadeh, T., Razavi Tousi, S. S. Syntheses of Fe-TiCnanocompositie from ilmenite concentrate via microwave heating[J]. Bull. Mater. Sci.,2009,32(2):155-160.
    [222] Ebadzdeh, T., Valefi, M. Microwave-assisted sintering of zircon[J]. J. Alloys. Compds.,2008,448(1-2):246-249.
    [223] Whittaker, A. G., Mingos, D. M. P. Microwave-assisted solid-state reactions involvingmetal powders and gases[J]. J. Chem. Soc., Dalton Trans,1993,16:2541-2543.
    [224] Vaidhyanathan, B., Raizada, P., Rao, K. J. Microwave assisted fast solid state synthesis ofniobates and titanates[J]. J. Mater. Sci. Lett.,1997,16(24):2022-2025.
    [225] Komarneni, S., Roy, R., Li, Q. H. Microwave-hydrothermal synthesis of ceramic powders[J].Mater. Res. Bull.,1992,27(12):1393-1405.
    [226] Clark, D. E., Folz, D. C. Folgar, C. and Mahmoud, M. Microwave Solutions for CeramicEngineers, The American Ceramics Society, Inc., Westerville, OH.2005.
    [227] Kosower, E. M., Miyadera, T. Glutathione6probable mechamism of action of diazeneantibiotics[J]. J. Med. Chem.,1972,15(3):307-312.
    [228]梁学军,徐锁平.碘代水杨醛合成的新方法[J].宿州学院学报,2008,23(5):115-116.
    [229] Crich, D., Grant, D. Synthesis of a4,6-disubstituted dibenzofuran β–sheet initiator byreductive radical arylation of benzene[J]. J. Org. Chem.,2005,70(6):2384-2386.
    [230] Gao, A., Wang, M., Wang, D., Zhang, L., Liu, H., Tian, W., Sun, L. Asymmetric oxidationof sulfides catalyzed by vanadium(Ⅳ) complexes of dibromo-and diiodo-functionalized chiralSchiff bases[J]. Chin. J. Catal.,2006,27(8):743-748.
    [231] Shi, L., Ge, H. M., Tan, S. H. Synthesis and antimicrobial activities of Schiff bases derivedfrom5-chloro-salicylaldehyde[J]. Eur. J. Med. Chem.,2007,42(6):558-564.
    [232]樊能廷.有机合成事典[M].北京:北京理工大学出版社,1992.
    [233]柳翠英,赵全芹,李忠,于爱华,王鹏程.5-氯水杨醛亚胺合铜(Ⅱ)配合物的合成及性质[J].化学试剂,1999,21(5):304-305.
    [234]李付安,于丽,刘宝林,陶偌偈.乙二胺双缩5-氯水杨醛Schiff碱铜配合物的合成及晶体结构[J].化学研究,2005,16(6):9-11.
    [235]梁晓天,卢玉华,祁建新,葛大伦.2,4-二羟基苯乙酮合成方法的改进[J].化学试剂,1981,250(5):58.
    [236]汪秋安,廖头根,汤建国,范华芳.7-羟基黄酮和7,8-二羟基黄酮的改良合成与结构修饰[J].湖南大学学报(自然科学版),2004,31(5):1-4.
    [237] Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures, Universityof G ttingen, Germany1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700