用户名: 密码: 验证码:
锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_4与LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的制备与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要对尖晶石型高压正极材料LiNi_(0.5)Mn_(1.5)O_4的制备与改性以及层状正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的制备进行了系统研究,并初步探究了LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)和LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/Li_4Ti_5O_(12)全电池的电化学性能。
     以NiCO_3·2Ni(OH)_2·4H_2O为镍源,采用球磨固相法在最佳工艺条件(800℃,20h)下得到了电化学性能较好的LiNi_(0.5)Mn_(1.5)O_4正极材料,其在1C倍率下的放电比容量为105.6mAh·g~(-1),循环100圈后的容量保持率为89.7%。
     通过优化的溶胶-凝胶法探究了低温退火处理对LiNi_(0.5)Mn_(1.5)O_4正极材料的结构和电化学性能的影响。结果显示,低温退火处理降低了材料中Mn~(3+)的含量,提高了产物的纯度和电化学性能,使其在1C倍率下的放电比容量达到125.0mAh·g~(-1),循环100圈后的容量保持率高达97.6%。
     成功制备了Cu~(2+)掺杂的LiNi_(0.45)Cu_(0.05)Mn_(1.5)O_4正极材料,发现Cu~(2+)掺杂能有效抑制电极极化,改善材料的高倍率和高温循环性能:在20C倍率下循环150圈后的放电比容量达到首次(114.2mAh·g~(-1))的95.7%,高温(55℃)且5C放电倍率下的容量仍有127.3mAh·g~(-1),循环100圈后容量仅衰减2.0%。
     首次报道了多元离子掺杂的LiNi0.475Al0.01Cr0.04Mn1.475O_3.95F0.05正极材料,其在0.2C,1C,5C,10C,15C和20C倍率下的放电比容量分别可以达到136.6,134.0,129.0,119.9,104.5和86.4mAh·g~(-1),在高温(55℃)且1C和10C倍率下循环100圈后容量仅衰减0.3%和4.4%。多元离子掺杂提高了材料的电化学反应活性及循环可逆性,使其具有更加优异的大电流充放电性能。
     首次提出了采用廉价且无毒的尿素辅助溶胶-凝胶法制备LiNi_(0.5)Mn_(1.5)O_4正极材料,所制备的材料在1C,3C和5C倍率下的放电比容量最高可达到132.1,123.3和113.0mAh·g~(-1)。另外,在探究LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)全电池的电化学性能时发现,采用正极过量匹配的全电池在0.5C倍率下循环200圈后仍可达到98.7mAh·g-1,库伦效率均在99%左右,具有良好的循环寿命和循环可逆性。
     以LiOH·H_2O和Ni_(1/3)Co_(1/3)Mn_(1/3)(OH)_2为原料,采用高温固相法制备了性能较好的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,其与Li_4Ti_5O_(12)负极材料相匹配组装的全电池(LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/Li_4Ti_5O_(12))在0.2C,1C,5C和10C倍率下的首次放电比容量分别可达到147.3,139.2,119.6和86.0mAh·g~(-1),且在5C倍率下循环1000圈后的容量保持率仍有83.7%,具有优异的大电流充放电性能和循环寿命。
The preparation and modification of spinel high-voltage cathode materialLiNi_(0.5)Mn_(1.5)O_4and layered cathode material LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2weresystematacially studied in this paper. The electrochemical properties ofLiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)and LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/Li_4Ti_5O_(12)full cells were alsodiscussed preliminarily.
     With NiCO_3·2Ni(OH)_2·4H_2O as Ni source, LiNi_(0.5)Mn_(1.5)O_4cathode materialsynthesized by ball-milling solid state method under the optimal process conditions(800℃,20h), could reach a discharge capacity of105.6mAh·g~(-1)at the rate of1Cwith the capacity retention of89.7%after100cycles.
     The effect of low-temperature annealing treatment on the structure andelectrochemical performance of spinel LiNi_(0.5)Mn_(1.5)O_4cathode material was studiedby the optimized sol-gel method. The results showed that the content of Mn~(3+)in theproduct was decreased and highly purity product was obtained after annealingtreatment. The annealed material with good electrochemical performance could reacha discharge capacity of125.0mAh·g~(-1)at the rate of1C with the capacity retention of97.6%after100cycles.
     The Cu~(2+)doped LiNi_(0.45)Cu_(0.05)Mn_(1.5)O_4cathode material had been preparedsuccessfully. It was found that doping with Cu~(2+)could reduce the electrodepolarization and ameliorate the cycle performance of the spinel at high rate and hightemperature. The LiNi_(0.45)Cu_(0.05)Mn_(1.5)O_4cathode material could reserve95.7%of theinitial discharge capacity (114.2mAh·g~(-1)) after150cycles at the discharge rate of20C, and could deliver127.3mAh·g~(-1)at high temperature (55℃) and5C with acapacity fading rate of2.0%after100cycles.
     Multiple ion doped LiNi0.475Al0.01Cr0.04Mn1.475O_3.95F0.05cathode material wasfirstly reported, which could achieve136.6,134.0,129.0,119.9,104.5and86.4mAh·g~(-1)at0.2C,1C,5C,10C,15C and20C, respectively. In addition, whencycled at55℃for100cycles, the capacity fading rates were only0.3%and4.4%at1C and10C, respectively. After multiple ion doping, the electrochemical reaction activity and cycle reversibility of the material had been improved, promoting theenhancement of its charge-discharge performance at high current.
     A cheap and nontoxic urea-based sol-gel method for the synthesis ofLiNi_(0.5)Mn_(1.5)O_4cathode material was proposed for the first time. The obtainedmaterial could achive132.1,123.3and113.0mAh·g~(-1)at1C,3C and5C,respectively. In addition, in the research of the electrochemical performance ofLiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)full cell, the cell designed by some excess positive capacityshowed preferable cycle life and reversibility, which could achive98.7mAh·g~(-1)after200cycles at0.5C and the coulombic efficiencies were around99%.
     Layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2cathode material was synthesized by hightermperature solid state method with LiOH·H_2O and Ni_(1/3)Co_(1/3)Mn_(1/3)(OH)_2as rawmaterials. The full cell (LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2/Li_4Ti_5O_(12)) matched with Li_4Ti_5O_(12)anodematerial could reach the discharge capacity of147.3,139.2,119.6and86.0mAh·g~(-1)at0.2C,1C,5C and10C, respectively. Besides, it also could reserve83.7%after1000cycles at the rate of5C, revealing excellent charge-discharge performance andcycle life at high current.
引文
[1] Nishi. Y. Lithium ion secondary batteries: past10years and the future. Journal ofPower Sources,2001,100(1-2):101-106.
    [2]郭炳坤,徐徽,王先友,肖立新.锂离子电池[M].湖南长沙:中南大学出版社,2002:2.
    [3]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化学工业出版社,2007:8-9.
    [4] Scrosati B, Garche J. Lithium batteries: status, prospects and future. Journal ofPower Sources,2010,195(9):2419-2430.
    [5] Mizushima K, Jones P C, Wiseman P J, et al. LixCoO2(0x-1): a newcathode material for batteries of high energy density. Materials Research Bulletin,1980,15(6):783-789.
    [6] Ozawa K. Lithium-ion rechargeable batteries with LiCoO2and carbon electrodes:the LiCoO2/C system. Solid State Ionics,1994,69(3-4):212-221.
    [7] Thomas M G S R, Bruce P G, Goodenough J B. Lithium mobility in the layeredoxide Li1xCoO2. Solid State Ionics,1985,17(1):13-19.
    [8] Belov D, Yang M-H. Investigation of the kinetic mechanism in overchargeprocess for Li-ion battery. Solid State Ionics,2008,179(27-32):1816-1821.
    [9] Jang S-W, Lee H-Y, Lee S-J, et al. Synthesis and electrochemicalcharacterization of LixCoO2for lithium-ion batteries. Materials Research Bulletin,2003,38(1):1-9.
    [10]Amatucci G G, Tarascon J M, Klein L C. Cobalt dissolution in LiCoO2-basednon-aqueous rechargeable batteries. Solid State Ionics,1996,83(1-2):167-173.
    [11]Jeong E, Hong C, Tak Y, et al. Investigation of interfacial resistance betweenLiCoO2cathode and LiPON electrolyte in the thin film battery. Journal of PowerSources,2006,159(1):223-226.
    [12]Amatucci G G, Tarascon J M, Klein L C. CoO2, The end member of the LixCoO2solid solution. Journal of The Electrochemical Society,1996,143(3):1114-1123.
    [13]Holzapfel M, Schreiner R, Ott A. Lithium-ion conductors of the systemLiCo1xFexO2: a first electrochemical investigation. Electrochimica Acta,2001,46(7):1063-1070.
    [14]Mladenov M, Stoyanova R, Zhecheva E, et al. Effect of Mg doping andMgO-surface modification on the cycling stability of LiCoO2electrodes.Electrochemistry Communications,2001,3(8):410-416.
    [15]Ohta N, Takada K, Sakaguchi I, et al. LiNbO3-coated LiCoO2as cathode materialfor all solid-state lithium secondary batteries. Electrochemistry Communications,2007,9(7):1486-1490.
    [16]Oh S, Lee J K, Byun D, et al. Effect of Al2O3coating on electrochemicalperformance of LiCoO2as cathode materials for secondary lithium batteries. Journalof Power Sources,2004,132(1-2):249-255.
    [17]Yi T-F, Shu J, Wang Y, et al. Effect of treated temperature on structure andperformance of LiCoO2coated by Li4Ti5O12. Surface and Coatings Technology,2011,205(13-14):3885-3889.
    [18]Sun Y K, Cho S W, Myung S T, et al. Effect of AlF3coating amount on highvoltage cycling performance of LiCoO2. Electrochimica Acta,2007,53(2):1013-1019.
    [19]Huang S, Wen Z, Yang X, et al. Improvement of the high-rate dischargeproperties of LiCoO2with the Ag additives. Journal of Power Sources,2005,148:72-77.
    [20]Nohma T, Kurokawa H, Uehara M, et al. Electrochemical characteristics ofLiNiO2and LiCoO2as a positive material for lithium secondary batteries. Journal ofPower Sources,1995,54(2):522-524.
    [21]Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4for lithium batterycathodes. Journal of The Electrochemical Society,2001,148(3): A224-A229.
    [22]Nobili F, Croce F, Scrosati B, et al. Electronic and electrochemical properties ofLixNi1-yCoyO2cathodes studied by impedance spectroscopy. Chemistry of Materials,2001,13(5):1642-1646.
    [23]Li X, Cheng F, Guo B, et al. Template-synthesized LiCoO2, LiMn2O4andLiNi0.8Co0.2O2nanotubes as the cathode materials of lithium ion batteries. The Journalof Physical Chemistry B,2005,109(29):14017-14024.
    [24]Zhu X, Zhan H, Liu H, et al. Synthesis and characterization ofLiNi0.95-xCoxAl0.05O2for lithium-ion batteries. Rare Metals,2006,25(4):303-308.
    [25]Kubo K, Fujiwara M, Yamada S, et al. Synthesis and electrochemical propertiesfor LiNiO2substituted by other elements. Journal of Power Sources,1997,68(2):553-557.
    [26]Yamada S, Fujiwara M, Kanda M. Synthesis and properties of LiNiO2as cathodematerial for secondary batteries. Journal of Power Sources,1995,54(2):209-213.
    [27]Davidson I J, Mcmillan R S, Murray J J, et al. Lithium-ion cell based onorthorhombic LiMnO2. Journal of Power Sources,1995,54(2):232-235.
    [28]Lee Y S, Sun Y K, Adachi K, et al. Synthesis and electrochemicalcharacterization of orthorhombic LiMnO2material. Electrochimica Acta,2003,48(8):1031-1039.
    [29]Armstrong A R, Robertson A D, Bruce P G. Structural transformation on cyclinglayered Li(Mn1yCoy)O2cathode materials. Electrochimica Acta,1999,45(1-2):285-294.
    [30]Ammundsen B, Desilvestro J, Groutso T, et al. Formation and structuralproperties of layered LiMnO2cathode materials. Journal of The ElectrochemicalSociety,2000,147(11):4078-4082.
    [31]Armstrong A R, Dupre N, Paterson A J, et al. Combined neutron diffraction,NMR and electrochemical investigation of the layered-to-spinel transformation inLiMnO2. Chemistry of Materials,2004,16(16):3106-3118.
    [32]Hwang S-J, Park H-S, Choy J-H, et al. Effects of chromium substitution on thechemical bonding nature and electrochemical performance of layered lithiummanganese oxide. The Journal of Physical Chemistry B,2000,104(32):7612-7618.
    [33]Park H-S, Hwang S-J, Choy J-H. Relationship between chemical bondingcharacter and electrochemical performance in nickel-substituted lithium manganeseoxides. The Journal of Physical Chemistry B,2001,105(21):4860-4866.
    [34]Shaju K M, Subba Rao G V, Chowdari B V R. Performance of layeredLi(Ni1/3Co1/3Mn1/3)O2as cathode for Li-ion batteries. Electrochimica Acta,2002,48(2):145-151.
    [35]Hwang B J, Tsai Y W, Chen C H, et al. Influence of Mn content on themorphology and electrochemical performance of LiNi1-x-yCoxMnyO2cathodematerials. Journal of Materials Chemistry,2003,13(8):1962-1968.
    [36]Zhu J P, Xu Q B, Yang H W, et al. Recent development of LiNi1/3Co1/3Mn1/3O2ascathode material of lithium ion battery. Journal of Nanoscience and Nanotechnology,2011,11(12):10357-10368.
    [37]Kim H-S, Kim Y, Kim S-I, et al. Enhanced electrochemical properties ofLiNi1/3Co1/3Mn1/3O2cathode material by coating with LiAlO2nanoparticles. Journalof Power Sources,2006,161(1):623-627.
    [38]Kim Y, Kim H S, Martin S W. Synthesis and electrochemical characteristics ofAl2O3-coated LiNi1/3Co1/3Mn1/3O2cathode materials for lithium ion batteries.Electrochimica Acta,2006,52(3):1316-1322.
    [39]Fujii Y, Miura H, Suzuki N, et al. Structural and electrochemical properties ofLiNi1/3Co1/3Mn1/3O2: calcination temperature dependence. Journal of Power Sources,2007,171(2):894-903.
    [40]Tian H, Ye N, Liu D, et al. Effects of synthesis conditions on the structural andelectrochemical properties of layered LiNi1/3Co1/3Mn1/3O2cathode material viaoxalate co-precipitation method. Rare Metals,2008,27(6):575-579.
    [41]Zhang W, Liu H, Hu C, et al. Preparation of layered oxide Li(Co1/3Ni1/3Mn1/3)O2via the sol-gel process. Rare Metals,2008,27(2):158-164.
    [42]Ren H, Wang Y, Li D, et al. Synthesis of LiNi1/3Co1/3Mn1/3O2as a cathodematerial for lithium battery by the rheological phase method. Journal of PowerSources,2008,178(1):439-444.
    [43]Liu Z-M, Hu G-R, Peng Z-D, et al. Synthesis and characterization of layeredLi(Ni1/3Mn1/3Co1/3)O2cathode materials by spray-drying method. Transactions ofNonferrous Metals Society of China,2007,17(2):291-295.
    [44]He P, Wang H, Qi L, et al. Electrochemical characteristics of layeredLiNi1/3Co1/3Mn1/3O2and with different synthesis conditions. Journal of Power Sources,2006,160(1):627-632.
    [45]Sathiya M, Prakash A S, Ramesha K, et al. Rapid synthetic routes to prepareLiNi1/3Mn1/3Co1/3O2as a high voltage, high-capacity Li-ion battery cathode material.Materials Research Bulletin,2009,44(10):1990-1994.
    [46]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines aspositive-electrode materials for rechargeable lithium batteries. Journal of TheElectrochemical Society,1997,144(4):1188-1194.
    [47]Allen J L, Jow T R, Wolfenstine J. Kinetic study of the electrochemical FePO4toLiFePO4phase transition. Chemistry of Materials,2007,19(8):2108-2111.
    [48]Allen J L, Jow T R, Wolfenstine J. Correction to kinetic study of theelectrochemical FePO4to LiFePO4phase transition. Chemistry of Materials,2012,24(7):1400-1400.
    [49]Huang X, Yan S, Zhao H, et al. Electrochemical performance of LiFePO4nanorods obtained from hydrothermal process. Materials Characterization,2010,61(7):720-725.
    [50]Lim S, Yoon C S, Cho J. Synthesis of nanowire and hollow LiFePO4cathodes forhigh-performance lithium batteries. Chemistry of Materials,2008,20(14):4560-4564.
    [51]Zhang Y, Feng H, Wu X, et al. One-step microwave synthesis andcharacterization of carbon-modified nanocrystalline LiFePO4. Electrochimica Acta,2009,54(11):3206-3210.
    [52]Li Y-D, Zhao S-X, Nan C-W, et al. Electrochemical performance of SiO2-coatedLiFePO4cathode materials for lithium ion battery. Journal of Alloys and Compounds,2011,509(3):957-960.
    [53]Morales J, Trócoli R, Rodríguez-Castellón E, et al. Effect of C and Au additivesproduced by simple coaters on the surface and the electrochemical properties ofnanosized LiFePO4. Journal of Electroanalytical Chemistry,2009,631(1-2):29-35.
    [54]Roberts M R, Vitins G, Owen J R. High-throughput studies of Li1xMgx/2FePO4and LiFe1yMgyPO4and the effect of carbon coating. Journal of Power Sources,2008,179(2):754-762.
    [55]Wang Z, Sun S, Xia D, et al. Investigation of electronic conductivity andoccupancy sites of Mo doped into LiFePO4by ab Initio calculation and X-rayabsorption spectroscopy. The Journal of Physical Chemistry C,2008,112(44):17450-17455.
    [56]Zhang L-L, Liang G, Ignatov A, et al. Effect of vanadium incorporation onelectrochemical performance of LiFePO4for lithium-Ion batteries. The Journal ofPhysical Chemistry C,2011,115(27):13520-13527.
    [57]Masquelier C, Wurm C, Rodriguez-Carvajal J, et al. A powder neutron diffractioninvestigation of the two rhombohedral NASICON analogues: γ-Na3Fe2(PO4)3andLi3Fe2(PO4)3. Chemistry of Materials,2000,12(2):525-532.
    [58]Patoux S, Wurm C, Morcrette M, et al. A comparative structural andelectrochemical study of monoclinic Li3Fe2(PO4)3and Li3V2(PO4)3. Journal of PowerSources,2003,119-121:278-284.
    [59]Sa Di M Y, Barker J, Huang H, et al. Performance characteristics of lithiumvanadium phosphate as a cathode material for lithium-ion batteries. Journal of PowerSources,2003,119-121:266-272.
    [60]Yin S C, Grondey H, Strobel P, et al. Electrochemical property: structurerelationships in monoclinic Li3-yV2(PO4)3. Journal of the American Chemical Society,2003,125(34):10402-10411.
    [61]Zhang L-L, Li Y, Peng G, et al. High-performance Li3V2(PO4)3/C cathodematerials prepared via a sol-gel route with double carbon sources. Journal of Alloysand Compounds,2012,513:414-419.
    [62]Zhai J, Zhao M, Wang D, et al. Effect of MgO nanolayer coated onLi3V2(PO4)3/C cathode material for lithium-ion battery. Journal of Alloys andCompounds,2010,502(2):401-406.
    [63]Zhang L, Wang X L, Xiang J Y, et al. Synthesis and electrochemicalperformances of Li3V2(PO4)3/(Ag+C) composite cathode. Journal of Power Sources,2010,195(15):5057-5061.
    [64]Yao J, Wei S, Zhang P, et al. Synthesis and properties of Li3V2-xCex(PO4)3/Ccathode materials for Li-ion batteries. Journal of Alloys and Compounds,2012,532:49-54.
    [65]Cho A R, Son J N, Aravindan V, et al. Carbon supported, Al doped-Li3V2(PO4)3as a high rate cathode material for lithium-ion batteries. Journal of MaterialsChemistry,2012,22(14):6556-6560.
    [66]Yang S Y, Zhang S, Fu B L, et al. Effects of Cr doping on the electrochemicalperformance of Li3V2(PO4)3cathode material for lithium ion batteries. Journal ofSolid State Electrochemistry,2011,15(11-12):2633-2638.
    [67]Deng C, Zhang S, Yang S Y, et al. Effects of Ti and Mg codoping on theelectrochemical performance of Li3V2(PO4)3cathode material for lithium ion batteries.Journal of Physical Chemistry C,2011,115(30):15048-15056.
    [68]Amine K, Yasuda H, Yamachi M. Olivine LiCoPO4as4.8V electrode materialfor lithium batteries. Electrochemical and Solid-State Letters,2000,3(4):178-179.
    [69]Markevich E, Sharabi R, Gottlieb H, et al. Reasons for capacity fading ofLiCoPO4cathodes in LiPF6containing electrolyte solutions. ElectrochemistryCommunications,2012,15(1):22-25.
    [70]Li H H, Jin J, Wei J P, et al. Fast synthesis of core-shell LiCoPO4/Cnanocomposite via microwave heating and its electrochemical Li intercalationperformances. Electrochemistry Communications,2009,11(1):95-98.
    [71]Kishore M V V M S, Varadaraju U V. Influence of isovalent ion substitution onthe electrochemical performance of LiCoPO4. Materials Research Bulletin,2005,40(10):1705-1712.
    [72]Wang F, Yang J, Nuli Y, et al. Highly promoted electrochemical performance of5V LiCoPO4cathode material by addition of vanadium. Journal of Power Sources,2010,195(19):6884-6887.
    [73]Kumar P R, Venkateswarlu M, Misra M, et al. Synthesis, characterization andelectrical properties of carbon coated LiCoPO4nanoparticles. Journal of Nanoscienceand Nanotechnology,2011,11(4):3314-3322.
    [74]Sharabi R, Markevich E, Borgel V, et al. Significantly improved cyclingperformance of LiCoPO4cathodes. Electrochemistry Communications,2011,13(8):800-802.
    [75]Shang S L, Wang Y, Mei Z G, et al. Lattice dynamics, thermodynamics andbonding strength of lithium-ion battery materials LiMPO4(M=Mn, Fe, Co, and Ni):a comparative first-principles study. Journal of Materials Chemistry,2012,22(3):1142-1149.
    [76]Thackeray M M, David W I F, Bruce P G, et al. Lithium insertion into manganesespinels. Materials Research Bulletin,1983,18(4):461-472.
    [77]吴宇平,万春荣,姜长印等.锂离子二次电池[M].北京;化学工业出版社.2002:1-55.
    [78]Xia Y, Yoshio M. An investigation of lithium ion insertion into spinel structureLi-Mn-O compounds. Journal of The Electrochemical Society,1996,143(3):825-833.
    [79]Yang X Q, Sun X, Lee S J, et al. In situ synchrotron X-Ray diffraction studies ofthe phase transitions in LixMn2O4cathode materials. Electrochemical and Solid-StateLetters,1999,2(4):157-160.
    [80]Lee K S, Bang H J, Myung S T, et al. Synthesis and electrochemical properties ofspherical spinel Li1.05M0.05Mn1.9O4(M=Mg and Al) as a cathode material forlithium-ion batteries by co-precipitation method. Journal of Power Sources,2007,174(2):726-729.
    [81]Arumugam D, Kalaignan G P, Manisankar P. Development of structural stabilityand the electrochemical performances of 'La' substituted spinel LiMn2O4cathodematerials for rechargeable lithium-ion batteries. Solid State Ionics,2008,179(15-16):580-586.
    [82]Yi T, Zhou A, Zhu Y, et al. Synthesis and physicochemical properties ofLiLa0.01Mn1.99O3.99F0.01cathode materials for lithium ion batteries. Rare Metals,2008,27(5):496-501.
    [83]Kim D, Park S, Chae O B, et al. Re-deposition of manganese species on spinelLiMn2O4electrode after Mn dissolution. Journal of The Electrochemical Society,2012,159(3): A193-A197.
    [84]Li X, Yang R, Cheng B, et al. Enhanced electrochemical properties ofnano-Li3PO4coated on the LiMn2O4cathode material for lithium ion battery at55℃.Materials Letters,2012,66(1):168-171.
    [85]Park S-C, Kim Y-M, Han S-C, et al. The elevated temperature performance ofLiMn2O4coated with LiNi1xCoxO2(x=0.2and1). Journal of Power Sources,2002,107(1):42-47.
    [86]Jia X, Yan C, Chen Z, et al. Direct growth of flexible LiMn2O4/CNT lithium-ioncathodes. Chem Commun (Camb),2011,47(34):9669-9671.
    [87]Kim W-K, Han D-W, Ryu W-H, et al. Al2O3coating on LiMn2O4by electrostaticattraction forces and its effects on the high temperature cyclic performance.Electrochimica Acta,2012,71:17-21.
    [88]Tang W, Liu L, Zhu Y, et al. An aqueous rechargeable lithium battery ofexcellent rate capability based on a nanocomposite of MoO3coated with PPy andLiMn2O4. Energy&Environmental Science,2012,5(5):6909-6913.
    [89]Hirayama M, Ido H, Kim K, et al. Dynamic structural changes atLiMn2O4/electrolyte interface during lithium battery reaction. Journal of the AmericanChemical Society,2010,132(43):15268-15276.
    [90]Patoux S, Daniel L, Bourbon C, et al. High voltage spinel oxides for Li-ionbatteries: from the material research to the application. Journal of Power Sources,2009,189(1):344-352.
    [91]Yoon Y K, Park C W, Ahn H Y, et al. Synthesis and characterization of spineltype high-power cathode materials LiMxMn2-xO4(M=Ni, Co, Cr). Journal of Physicsand Chemistry of Solids,2007,68(5-6):780-784.
    [92]Zhang L, Yabu T, Taniguchi I. Synthesis of spherical nanostructuredLiMxMn2-xO4(M=Ni2+, Co3+, and Ti4+;0≤x≤0.2) via a single-step ultrasonicspray pyrolysis method and their high rate charge-discharge performances. MaterialsResearch Bulletin,2009,44(3):707-713.
    [93]Dokko K, Anzue N, Makino Y, et al. Fabrication of thin film electrodes ofLiMxMn2-xO4(M=Ni, Co) for5volt lithium batteries. Electrochemistry,2003,71(12):1061-1063.
    [94]Dokko K, Anzue N, Mohamedi M, et al. Raman spectro-electrochemistry ofLiCoxMn2-xO4thin film electrodes for5V lithium batteries. ElectrochemistryCommunications,2004,6(4):384-388.
    [95]Suryakala K, Marikkannu K R, Kalaignan G P, et al. Synthesis andcharacterization of LiCoxMn2-xO4powder by a novel CAM microwave-assistedsol-gel method for Li ion battery. Journal of Solid State Electrochemistry,2007,11(12):1671-1677.
    [96]Song G M, Wang Y J, Zhou Y. Synthesis and electrochemical performance ofLiCrxMn2-xO4powders by mechanical activation and rotary heating. Journal of PowerSources,2004,128(2):270-277.
    [97]Yao Y C, Dai Y N, Yang B, et al. Synthesis and performance of LiCrxMn2-xO4cathode materials for Li-ion battery. Journal of Inorganic Materials,2005,20(5):1127-1131.
    [98]Thirunakaran R, Sivashanmugama A, Gopukumar S, et al. Phthalic acid assistednano-sized spinel LiMn2O4and LiCrxMn2-xO4(x=0.00-0.40) via sol-gel synthesisand its electrochemical behaviour for use in Li-ion-batteries. Materials ResearchBulletin,2008,43(8-9):2119-2129.
    [99]Gu X, Li X, Xu L, et al. Synthesis of spinel LiNixMn2-xO4(x=0,0.1,0.16) andtheir high rate charge-discharge performances. International Journal ofElectrochemical Science,2012,7(3):2504-2512.
    [100] Bhaskar A, Bramnik N N, Senyshyn A, et al. Synthesis, characterization andcomparison of electrochemical properties of LiM0.5Mn1.5O4(M=Fe, Co, Ni) atdifferent temperatures. Journal of The Electrochemical Society,2010,157(6):A689-A695.
    [101] Kim B H, Choi Y K, Choa Y H. Synthesis of LiFexMn2-xO4cathode materialsby emulsion method and their electrochemical properties. Solid State Ionics,2003,158(3-4):281-285.
    [102] Shigemura H, Sakaebe H, Kageyama H, et al. Structure and electrochemicalproperties of LiFexMn2-xO4(0≤x≤0.5) spinel as5V electrode material forlithium batteries. Journal of The Electrochemical Society,2001,148(7): A730-A736.
    [103] Taniguchi I, Bakenov Z. Spray pyrolysis synthesis of nanostructuredLiFexMn2-xO4cathode materials for lithium-ion batteries. Powder Technology,2005,159(2):55-62.
    [104] Ein-Eli Y, Lu S H, Rzeznik M A. LiCuxMn2-xO4spinels (0.1≤x≤0.5): Anew class of cathode materials for Li batteries-II. In situ measurements. Journal ofThe Electrochemical Society,1998,145(10):3383-3386.
    [105] Lloris J M, Leon B, Vicente C P, et al. Composition and electrochemicalproperties of LiCuxMn2-xO4and LiCu0.5-yAlyMn1.5O4. Journal of Solid StateElectrochemistry,2004,8(8):521-525.
    [106] Sulochana A, Thirunakaran R, Sivashanmugam A, et al. Sol-gel synthesis of5V LiCuxMn2-xO4as a cathode material for lithium rechargeable batteries. Journal ofThe Electrochemical Society,2008,155(3): A206-A210.
    [107] Wei Y, Kim K-B, Chen G. Evolution of the local structure andelectrochemical properties of spinel LiNixMn2xO4(0≤x≤0.5). ElectrochimicaActa,2006,51(16):3365-3373.
    [108] Kim J H, Myung S T, Yoon C S, et al. Comparative study of LiNi0.5Mn1.5O4-and LiNi0.5Mn1.5O4cathodes having two crystallographic structures: Fd3m and P4332.Chemistry of Materials,2004,16(5):906-914.
    [109] Zhang X, Cheng F, Zhang K, et al. Facile polymer-assisted synthesis ofLiNi0.5Mn1.5O4with a hierarchical micro-nano structure and high rate capability. RSCAdvances,2012,2(13):5669-5675.
    [110] Kunduraci M, Amatucci G G. Synthesis and characterization ofnanostructured4.7V LixMn1.5Ni0.5O4spinels for high-power lithium-ion batteries.Journal of The Electrochemical Society,2006,153(7): A1345-A1352.
    [111] Kunduraci M, Al-Sharab J F, Amatucci G G. High-power nanostructuredLiMn2-xNixO4high-voltage lithium-ion battery electrode materials: electrochemicalimpact of electronic conductivity and morphology. Chemistry of Materials,2006,18(15):3585-3592.
    [112] Fang H-S, Wang Z-X, Li X-H, et al. Exploration of high capacityLiNi0.5Mn1.5O4synthesized by solid-state reaction. Journal of Power Sources,2006,153(1):174-176.
    [113] Feng X Y, Shen C, Fang X, et al. Synthesis of LiNi0.5Mn1.5O4by solid-statereaction with improved electrochemical performance. Journal of Alloys andCompounds,2011,509(8):3623-3626.
    [114] Idemoto Y, Narai H, Koura N. Crystal structure and cathode performancedependence on oxygen content of LiMn1.5Ni0.5O4as a cathode material for secondarylithium batteries. Journal of Power Sources,2003,119-121:125-129.
    [115] Fang H, Li L, Li G. A low-temperature reaction route to high rate and highcapacity LiNi0.5Mn1.5O4. Journal of Power Sources,2007,167(1):223-227.
    [116] Lin C-Y, Duh J-G, Hsu C-H, et al. LiNi0.5Mn1.5O4cathode material bylow-temperature solid-state method with excellent cycleability in lithium ion battery.Materials Letters,2010,64(21):2328-2330.
    [117] Fu L J, Liu H, Li C, et al. Electrode materials for lithium secondary batteriesprepared by sol-gel methods. Progress in Materials Science,2005,50(7):881-928.
    [118] Yang T, Sun K, Lei Z, et al. The influence of Li sources on physical andelectrochemical properties of LiNi0.5Mn1.5O4cathode materials for lithium-ionbatteries. Journal of Solid State Electrochemistry,2011,15(2):391-397.
    [119] Hwang B J, Wu Y W, Venkateswarlu M, et al. Influence of synthesisconditions on electrochemical properties of high-voltage Li1.02Ni0.5Mn1.5O4spinelcathode material. Journal of Power Sources,2009,193(2):828-833.
    [120] Yang T, Sun K, Lei Z, et al. The influence of holding time on theperformance of LiNi0.5Mn1.5O4cathode for lithium ion battery. Journal of Alloys andCompounds,2010,502(1):215-219.
    [121] Duncan H, Abu-Lebdeh Y, Davidson I J. Study of the cathode-electrolyteinterface of LiMn1.5Ni0.5O4synthesized by a sol-gel method for Li-ion batteries.Journal of The Electrochemical Society,2010,157(4): A528-A535.
    [122] Jo M, Lee Y-K, Kim K M, et al. Nanoparticle-nanorod core-ShellLiNi0.5Mn1.5O4spinel cathodes with high energy density for Li-ion batteries. Journalof The Electrochemical Society,2010,157(7): A841-A845.
    [123] Chi L H, Dinh N N, Brutti S, et al. Synthesis, characterization andelectrochemical properties of4.8V LiNi0.5Mn1.5O4cathode material in lithium-ionbatteries. Electrochimica Acta,2010,55(18):5110-5116.
    [124] Liu G Q, Wen L, Liu G Y, et al. Rate capability of spinel LiCr0.1Ni0.4Mn1.5O4.Journal of Alloys and Compounds,2010,501(2):233-235.
    [125] Shaju K M, Bruce P G. Nano-LiNi0.5Mn1.5O4spinel: a high power electrodefor Li-ion batteries. Dalton Transactions,2008,(40):5471-5475.
    [126] Fan Y, Wang J, Ye X, et al. Physical properties and electrochemicalperformance of LiNi0.5Mn1.5O4cathode material prepared by a coprecipitation method.Materials Chemistry and Physics,2007,103(1):19-23.
    [127] Gao J, Li J, Jiang C, et al. Controlled preparation and characterization ofspherical LiNi0.5Mn1.5O4cathode material for lithium-ion batteries. Journal of TheElectrochemical Society,2010,157(7): A899-A902.
    [128] Chang Z, Dai D, Tang H, et al. Effects of precursor treatment with reductantor oxidant on the structure and electrochemical properties of LiNi0.5Mn1.5O4.Electrochimica Acta,2010,55(19):5506-5510.
    [129] Yi T-F, Zhu Y-R, Zhu R-S. Density functional theory study of lithiumintercalation for5V LiNi0.5Mn1.5O4cathode materials. Solid State Ionics,2008,179(38):2132-2136.
    [130] Fang X, Ding N, Feng X Y, et al. Study of LiNi0.5Mn1.5O4synthesized via achloride-ammonia co-precipitation method: Electrochemical performance, diffusioncoefficient and capacity loss mechanism. Electrochimica Acta,2009,54(28):7471-7475.
    [131] Liu D, Han J, Goodenough J B. Structure, morphology, and cathodeperformance of Li1x[Ni0.5Mn1.5]O4prepared by coprecipitation with oxalic acid.Journal of Power Sources,2010,195(9):2918-2923.
    [132] Zhang X, Liu J, Yu H, et al. Enhanced electrochemical performances ofLiNi0.5Mn1.5O4spinel via ethylene glycol-assisted synthesis. Electrochimica Acta,2010,55(7):2414-2417.
    [133] Sun Y, Yang Y, Zhao X, et al. Synthesis and electrochemical characterizationof LiNi0.5Mn1.5O4by one-step precipitation method with ammonium carbonate asprecipitating agent. Electrochimica Acta,2011,56(17):5934-5939.
    [134] Yu L, Cao Y, Yang H, et al. Synthesis and electrochemical properties ofhigh-voltage LiNi0.5Mn1.5O4electrode material for Li-ion batteries by thepolymer-pyrolysis method. Journal of Solid State Electrochemistry,2006,10(5):283-287.
    [135] Xiao L, Zhao Y, Yang Y, et al. Electrochemical properties ofnano-crystalline LiNi0.5Mn1.5O4synthesized by polymer-pyrolysis method. Journal ofSolid State Electrochemistry,2008,12(6):687-691.
    [136] Reddy M V, Cheng H Y, Tham J H, et al. Preparation of Li(Ni0.5Mn1.5)O4bypolymer precursor method and its electrochemical properties. Electrochimica Acta,2012,62:269-275.
    [137] Mao J, Dai K, Zhai Y. Electrochemical studies of spinel LiNi0.5Mn1.5O4cathodes with different particle morphologies. Electrochimica Acta,2012,63:381-390.
    [138] Aklalouch M, Amarilla J M, Rojas R M, et al. Sub-micrometricLiCr0.2Ni0.4Mn1.4O4spinel as5V-cathode material exhibiting huge rate capability at25and55°C. Electrochemistry Communications,2010,12(4):548-552.
    [139] Zhang L, Lv X, Wen Y, et al. Carbon combustion synthesis ofLiNi0.5Mn1.5O4and its use as a cathode material for lithium ion batteries. Journal ofAlloys and Compounds,2009,480(2):802-805.
    [140] Amarilla J M, Rojas R M, Rojo J M. Understanding the sucrose-assistedcombustion method: effects of the atmosphere and fuel amount on the synthesis andelectrochemical performances of LiNi0.5Mn1.5O4spinel. Journal of Power Sources,2011,196(14):5951-5959.
    [141] Yang K, Su J, Zhang L, et al. Urea combustion synthesis of LiNi0.5Mn1.5O4as a cathode material for lithium ion batteries. Particuology, online.
    [142] Kim J H, Myung S T, Sun Y K. Molten salt synthesis of LiNi0.5Mn1.5O4spinel for5V class cathode material of Li-ion secondary battery. Electrochimica Acta,2004,49(2):219-227.
    [143] Zhang M, Wang J, Xia Y, et al. Microwave synthesis of spherical spinelLiNi0.5Mn1.5O4as cathode material for lithium-ion batteries. Journal of Alloys andCompounds,2012,518:68-73.
    [144] Sun Y, Yang Y, Zhan H, et al. Synthesis of high power type LiMn1.5Ni0.5O4by optimizing its preparation conditions. Journal of Power Sources,2010,195(13):4322-4326.
    [145] Yi T-F, Hu X-G. Preparation and characterization of sub-microLiNi0.5xMn1.5+xO4for5V cathode materials synthesized by an ultrasonic-assistedco-precipitation method. Journal of Power Sources,2007,167(1):185-191.
    [146] Lafont U, Anastasopol A, Garcia-Tamayo E, et al. Electrostatic spraypyrolysis of LiNi0.5Mn1.5O4films for3D Li-ion microbatteries. Thin Solid Films,2012,520(9):3464-3471.
    [147] Raja M W, Mahanty S, Basu R N. Multi-faceted highly crystalline LiMn2O4and LiNi0.5Mn1.5O4cathodes synthesized by a novel carbon exo-templating method.Solid State Ionics,2009,180(23-25):1261-1266.
    [148] Ju S H, Kang Y C, Sun Y-K, et al. Synthesis and electrochemical propertiesof nanorod-shaped LiMn1.5Ni0.5O4cathode materials for lithium-ion batteries.Materials Chemistry and Physics,2012,132(1):223-227.
    [149] Lee H-W, Muralidharan P, Mari C M, et al. Facile synthesis andelectrochemical performance of ordered LiNi0.5Mn1.5O4nanorods as a high powerpositive electrode for rechargeable Li-ion batteries. Journal of Power Sources,2011,196(24):10712-10716.
    [150] Cao A, Manthiram A. Shape-controlled synthesis of high tap density cathodeoxides for lithium ion batteries. Physical Chemistry Chemical Physics,2012,14(19):6724-6728.
    [151] Liu D, Lu Y, Goodenough J B. Rate properties and elevated-temperatureperformances of LiNi0.5-xCr2xMn1.5-xO4(0≤2x≤0.8) as5V cathode materialsfor lithium-ion batteries. Journal of The Electrochemical Society,2010,157(11):A1269-A1273.
    [152] Liu J, Manthiram A. Understanding the improved electrochemicalperformances of Fe-substituted5V spinel cathode LiMn1.5Ni0.5O4. The Journal ofPhysical Chemistry C,2009,113(33):15073-15079.
    [153] Zhong G B, Wang Y Y, Zhang Z C, et al. Effects of Al substitution for Niand Mn on the electrochemical properties of LiNi0.5Mn1.5O4. Electrochimica Acta,2011,56(18):6554-6561.
    [154] Lafont U, Locati C, Borghols W J H, et al. Nanosized high voltage cathodematerial LiMg0.05Ni0.45Mn1.5O4: structural, electrochemical and in situ investigation.Journal of Power Sources,2009,189(1):179-184.
    [155] Lee Y J, Park S-H, Eng C, et al. Cation ordering and electrochemicalproperties of the cathode materials LiZnxMn2-xO4,0    [156] Ito A, Li D, Lee Y, et al. Influence of Co substitution for Ni and Mn on thestructural and electrochemical characteristics of LiNi0.5Mn1.5O4. Journal of PowerSources,2008,185(2):1429-1433.
    [157] Yang M-C, Xu B, Cheng J-H, et al. Electronic, structural and electrochemicalproperties of LiNixCuyMn2-x-yO4(0    [158] Wang H, Xia H, Lai M O, et al. Enhancements of rate capability and cyclicperformance of spinel LiNi0.5Mn1.5O4by trace Ru-doping. ElectrochemistryCommunications,2009,11(7):1539-1542.
    [159] Liu G Q, Yuan W S, Liu G Y, et al. The electrochemical properties ofLiNi0.5Mn1.2Ti0.3O4compound. Journal of Alloys and Compounds,2009,484(1-2):567-569.
    [160] Zhong G B, Wang Y Y, Yu Y Q, et al. Electrochemical investigations of theLiNi0.45M0.10Mn1.45O4(M=Fe, Co, Cr)5V cathode materials for lithium ion batteries.Journal of Power Sources,2012,205:385-393.
    [161] Zhong G B, Wang Y Y, Zhao X J, et al. Structural, electrochemical andthermal stability investigations on LiNi0.5xAl2xMn1.5xO4(0≤2x≤1.0) as5Vcathode materials. Journal of Power Sources,2012,216:368-375.
    [162] Aklalouch M, Amarilla J M, Saadoune I, et al. LiCr0.2Ni0.4Mn1.4O4spinelsexhibiting huge rate capability at25and55°C: analysis of the effect of the particlesize. Journal of Power Sources,2011,196(23):10222-10227.
    [163] Wang H, Tan T A, Yang P, et al. High-rate performances of the Ru-dopedspinel LiNi0.5Mn1.5O4: Effects of doping and particle Size. The Journal of PhysicalChemistry C,2011,115(13):6102-6110.
    [164] Yi T-F, Xie Y, Zhu Y-R, et al. High rate micron-sized niobium-dopedLiMn1.5Ni0.5O4as ultra high power positive-electrode material for lithium-ionbatteries. Journal of Power Sources,2012,211:59-65.
    [165] Prabakar S J R, Han S C, Singh S P, et al. W-doped LiWxNi0.5Mn1.5xO4cathodes for the improvement of high rate performances in Li ion batteries. Journal ofPower Sources,2012,209:57-64.
    [166] Du G, Nuli Y, Yang J, et al. Fluorine-doped LiNi0.5Mn1.5O4for5V cathodematerials of lithium-ion battery. Materials Research Bulletin,2008,43(12):3607-3613.
    [167] Yang T, Zhang N, Lang Y, et al. Enhanced rate performance ofcarbon-coated LiNi0.5Mn1.5O4cathode material for lithium ion batteries.Electrochimica Acta,2011,56(11):4058-4064.
    [168] Zhang N, Yang T, Lang Y, et al. A facile method to prepare hybridLiNi0.5Mn1.5O4/C with enhanced rate performance. Journal of Alloys and Compounds,2011,509(9):3783-3786.
    [169] Arrebola J, Caballero A, Hernan L, et al. Effects of coating with gold on theperformance of nanosized LiNi0.5Mn1.5O4for lithium batteries. Journal of TheElectrochemical Society,2007,154(3): A178-A184.
    [170] Arrebola J, Caballero A, Hernan L, et al. Adverse effect of Ag treatment onthe electrochemical performance of the5V nanometric spinel LiNi0.5Mn1.5O4inlithium cells. Electrochemical and Solid-State Letters,2005,8(6): A303-A307.
    [171] Arrebola J C, Caballero A, Hernán L, et al. Re-examining the effect of ZnOon nanosized5V LiNi0.5Mn1.5O4spinel: an effective procedure for enhancing its ratecapability at room and high temperatures. Journal of Power Sources,2010,195(13):4278-4284.
    [172] Singhal R, Tomar M S, Burgos J G, et al. Electrochemical performance ofZnO-coated LiMn1.5Ni0.5O4cathode material. Journal of Power Sources,2008,183(1):334-338.
    [173] Sclar H, Haik O, Menachem T, et al. The effect of ZnO and MgO coatings bya sono-chemical method, on the stability of LiMn1.5Ni0.5O4as a cathode material for5V Li-ion batteries. Journal of The Electrochemical Society,2012,159(3):A228-A237.
    [174] Liu J, Manthiram A. Kinetics study of the5V spinel cathode LiMn1.5Ni0.5O4before and after surface modifications. Journal of The Electrochemical Society,2009,156(11): A833-A838.
    [175] Fan Y, Wang J, Tang Z, et al. Effects of the nanostructured SiO2coating onthe performance of LiNi0.5Mn1.5O4cathode materials for high-voltage Li-ion batteries.Electrochimica Acta,2007,52(11):3870-3875.
    [176] Wu H M, Belharouak I, Abouimrane A, et al. Surface modification ofLiNi0.5Mn1.5O4by ZrP2O7and ZrO2for lithium-ion batteries. Journal of PowerSources,2010,195(9):2909-2913.
    [177] Kobayashi Y, Miyashiro H, Takei K, et al.5V class all-solid-state compositelithium battery with Li3PO4coated LiNi0.5Mn1.5O4. Journal of The ElectrochemicalSociety,2003,150(12): A1577-A1582.
    [178] Shi J Y, Yi C-W, Kim K. Improved electrochemical performance ofAlPO4-coated LiMn1.5Ni0.5O4electrode for lithium-ion batteries. Journal of PowerSources,2010,195(19):6860-6866.
    [179] Li J, Zhang Y, Li J, et al. AlF3coating of LiNi0.5Mn1.5O4forhigh-performance Li-ion batteries. Ionics,2011,17(8):671-675.
    [180] Kang H-B, Myung S-T, Amine K, et al. Improved electrochemical propertiesof BiOF-coated5V spinel Li[Ni0.5Mn1.5]O4for rechargeable lithium batteries. Journalof Power Sources,2010,195(7):2023-2028.
    [181] Yi T-F, Shu J, Zhu Y-R, et al. Structure and electrochemical performance ofLi4Ti5O12-coated LiMn1.4Ni0.4Cr0.2O4spinel as5V materials. ElectrochemistryCommunications,2009,11(1):91-94.
    [182] Liu D, Trottier J, Charest P, et al. Effect of nano LiFePO4coating onLiMn1.5Ni0.5O45V cathode for lithium ion batteries. Journal of Power Sources,2012,204:127-132.
    [183] Lazarraga M G, Pascual L, Gadjov H, et al. Nanosize LiNiyMn2-yO4(0    [184] Park S H, Oh S W, Myung S T, et al. Effects of synthesis condition onLiNi1/2Mn3/2O4cathode material for prepared by ultrasonic spray pyrolysis method.Solid State Ionics,2005,176(5-6):481-486.
    [185]黄剑锋.溶胶-凝胶原理与技术[M].北京;化学工业出版社.2005:13-14.
    [186] Wang L, Li H, Huang X, et al. A comparative study of Fd-3m and P4332“LiNi0.5Mn1.5O4”. Solid State Ionics,2011,193(1):32-38.
    [187] Ein-Eli Y, Vaughey J T, Thackeray M M, et al. LiNixCu0.5-xMn1.5O4spinelelectrodes, superior high-potential cathode materials for Li batteries: I.Electrochemical and structural studies. Journal of The Electrochemical Society,1999,146(3):908-913.
    [188] Fey G T-K, Lu C-Z, Kumar T P. Preparation and electrochemical propertiesof high-voltage cathode materials, LiMyNi0.5yMn1.5O4(M=Fe, Cu, Al, Mg; y=0.0-0.4). Journal of Power Sources,2003,115(2):332-345.
    [189] Ren M M, Zhou Z, Gao X P, et al. Core-shell Li3V2(PO4)3/C composites ascathode materials for lithium-ion batteries. The Journal of Physical Chemistry C,2008,112(14):5689-5693.
    [190] Alcantara R, Jaraba M, Lavela P, et al. Changes in the local structure ofLiMgyNi0.5-yMn1.5O4electrode materials during lithium extraction. Chemistry ofMaterials,2004,16(8):1573-1579.
    [191] Zhang Y, Ouyang L Z, Chung C Y, et al. Sputtered Al-doped lithiummanganese oxide films for the cathode of lithium ion battery: the post-depositionannealing temperature effect. Journal of Alloys and Compounds,2009,480(2):981-986.
    [192] Katiyar R K, Singhal R, Asmar K, et al. High voltage spinel cathodematerials for high energy density and high rate capability Li ion rechargeable batteries.Journal of Power Sources,2009,194(1):526-530.
    [193] Park S B, Eom W S, Cho W I, et al. Electrochemical properties ofLiNi0.5Mn1.5O4cathode after Cr doping. Journal of Power Sources,2006,159(1):679-684.
    [194] Sigala C, Guyomard D, Verbaere A, et al. Positive electrode materials withhigh operating voltage for lithium batteries: LiCryMn2yO4(0≤y≤1). SolidState Ionics,1995,81(3-4):167-170.
    [195] Bonino F, Panero S, Satolli D, et al. Synthesis and characterization ofLi2MxMn4xO8(M=Co, Fe) as positive active materials for lithium-ion cells. Journalof Power Sources,2001,97-98:389-392.
    [196] Xu X X, Yang J, Wang Y Q, et al. LiNi0.5Mn1.5O3.975F0.05as novel5Vcathode material. Journal of Power Sources,2007,174(2):1113-1116.
    [197] Alcantara R, Jaraba M, Lavela P, et al. Synergistic effects of doublesubstitution in LiNi0.5-yFeyMn1.5O4spinel as5V cathode materials. Journal of TheElectrochemical Society,2005,152(1): A13-A18.
    [198] Oh S-W, Park S-H, Kim J-H, et al. Improvement of electrochemicalproperties of LiNi0.5Mn1.5O4spinel material by fluorine substitution. Journal of PowerSources,2006,157(1):464-470.
    [199] Feng C, Li H, Zhang C, et al. Synthesis and electrochemical properties ofnon-stoichiometric Li-Mn-spinel (Li1.02MxMn1.95O4yFy) for lithium ion batteryapplication. Electrochimica Acta,2012,61:87-93.
    [200] Xiong L, Xu Y, Tao T, et al. Synthesis and electrochemical characterizationof multi-cations doped spinel LiMn2O4used for lithium ion batteries. Journal ofPower Sources,2012,199:214-219.
    [201] Bellitto C, Bauer E M, Righini G, et al. The effect of doping LiMn2O4spinelon its use as a cathode in Li-ion batteries: neutron diffraction and electrochemicalstudies. Journal of Physics and Chemistry of Solids,2004,65(1):29-37.
    [202] Kunduraci M, Amatucci G G. The effect of particle size and morphology onthe rate capability of4.7V LiMn1.5+Ni0.5O4spinel lithium-ion battery cathodes.Electrochimica Acta,2008,53(12):4193-4199.
    [203] Xiao J, Chen X, Sushko P V, et al. High-performance LiNi0.5Mn1.5O4spinelcontrolled by Mn3+concentration and cite disorder. Advanced Materials,2012,24(16):2109-2116.
    [204] Jin Y-C, Lin C-Y, Duh J-G. Improving rate capability of high potentialLiNi0.5Mn1.5O4xcathode materials via increasing oxygen non-stoichiometries.Electrochimica Acta,2012,69:45-50.
    [205] Zhu Y, Wang C. Novel CV for phase transformation electrodes. The Journalof Physical Chemistry C,2010,115(3):823-832.
    [206] Wang G X, Yang L, Chen Y, et al. An investigation of polypyrrole-LiFePO4composite cathode materials for lithium-ion batteries. Electrochimica Acta,2005,50(24):4649-4654.
    [207] Pang L, Zhao M, Zhao X, et al. Preparation and electrochemical performanceof Gd-doped LiFePO4/C composites. Journal of Power Sources,2012,201:253-258.
    [208] Xiao L, Liu X, Zhao X, et al. Preparation of LiNi0.5Mn0.5O2cathode materialsby urea hydrolysis coprecipitation. Solid State Ionics,2011,192(1):335-338.
    [209] Sharma Y, Sharma N, Rao G V S, et al. Li-storage and cyclability of ureacombustion derived ZnFe2O4as anode for Li-ion batteries. Electrochimica Acta,2008,53(5):2380-2385.
    [210] Xiang H F, Zhang X, Jin Q Y, et al. Effect of capacity matchup in theLiNi0.5Mn1.5O4/Li4Ti5O12cells. Journal of Power Sources,2008,183(1):355-360.
    [211] Xiang H F, Jin Q Y, Wang R, et al. Nonflammable electrolyte for3-Vlithium-ion battery with spinel materials LiNi0.5Mn1.5O4and Li4Ti5O12. Journal ofPower Sources,2008,179(1):351-356.
    [212] Penland R B, Mizushima S, Curran C, et al. Infrared absorption spectra ofinorganic coordination complexes. X. Studies of some metal-urea complexes. Journalof the American Chemical Society,1957,79(7):1575-1578.
    [213] Carp O, Patron L, Diamandescu L, et al. Thermal decomposition study of thecoordination compound [Fe(urea)6](NO3)3. Thermochimica Acta,2002,390(1-2):169-177.
    [214] Keuleers R, Janssens J, Desseyn H O. Thermal analysis and vibrationalspectroscopy of Mn(II)-urea-halide complexes: comparative study of the metal-ligandbond strength. Thermochimica Acta,2000,354(1-2):125-133.
    [215] Shin D W, Manthiram A. Surface-segregated, high-voltage spinelLiMn1.5Ni0.42Ga0.08O4cathodes with superior high-temperature cyclability forlithium-ion batteries. Electrochemistry Communications,2011,13(11):1213-1216.
    [216] Ohzuku T, Ueda A, Nagayama M, et al. Comparative study of LiCoO2,LiNi12Co12O2and LiNiO2for4volt secondary lithium cells. Electrochimica Acta,1993,38(9):1159-1167.
    [217] Kim J-M, Chung H-T. The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2charged up to4.7V. Electrochimica Acta,2004,49(6):937-944.
    [218] Lu W, Liu J, Sun Y K, et al. Electrochemical performance ofLi4/3Ti5/3O4/Li1+x(Ni1/3Co1/3Mn1/3)1xO2cell for high power applications. Journal ofPower Sources,2007,167(1):212-216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700