用户名: 密码: 验证码:
Lactobacillus plantarum胆盐水解酶的分泌表达和底物结合性能改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胆盐水解酶(Bile salt hydrolase, EC3.5.1.24, BSH)能将结合胆盐水解成游离胆盐和甘氨酸/牛磺酸,这就促使体内由胆固醇从头合成结合胆盐以弥补损失,从而降低了体内的血清胆固醇水平。因此,通过口服产BSH的活细胞、纯酶以及相关制品治疗血清胆固醇过多症(hypercholesterolemia)将具有很大的应用前景。而且BSH成为目前国内外研究的热点之一。然而,关于BSH的降胆固醇机制、底物结合机制以及安全性等还存在争议。本文筛选了一株具有较高胆盐水解酶活性和良好的体外降胆固醇能力的乳酸菌,并利用双精氨酸信号肽将该菌的bsh基因在大肠杆菌(Escherichia coli)中进行了分泌表达,接着对重组酶进行了性质分析和底物特异性改造,最后对其进行了食品级表达。主要研究结果如下:
     1)通过定性和定量的方法筛选到一株具有较高BSH活性和良好的体外脱除胆固醇能力的乳酸菌,并经过鉴定将其命名为植物乳杆菌BBE7。然后将该菌的bsh基因在E. coli的胞内进行了克隆和表达。通过分析发现该酶是一个由324个氨基酸组成的蛋白质,而且与其它来源的BSH相似度较高,属于N末端亲核水解酶家族。酶活测定的结果显示,重组菌胞内的BSH活性为1.85U mg-1,比野生菌中BSH的比酶活提高了13倍。
     2)成功利用双精氨酸信号肽将BSH分泌到E. coli的胞外。通过SDS-PAGE分析和酶活测定发现,与Sec途径的PelB信号肽相比,三种双精氨酸途径(Tat)的信号肽都能使BSH在重组菌的胞内和胞外进行表达,尽管大部分BSH都在胞内形成了包涵体,只有少数蛋白被分泌到胞外。由于信号肽DMSA的GRAVY值、稳定性和脂溶指数都高于其它两个信号肽,它对BSH的分泌效率最高。此外,4种宿主对BSH的表达效果差异很大,这是因为双精氨酸信号肽在同种(species)的不同菌株里的作用效果不同,所以可以找到信号肽和宿主的最佳组合使其有效分泌BSH。通过正交试验设计对重组菌的胞外BSH活性进行了优化,使其提高了68.1%。
     3)依次经过硫酸铵沉淀、透析、Ni~(2+)柱和凝胶柱对重组菌发酵上清液中的BSH进行了分离纯化,得到了电泳纯的BSH,纯化倍数为39.34倍,总得率约为12.55%。并通过N端测序证实了胞外的BSH是通过Tat转运系统分泌出去的而不是由细胞渗漏造成的。重组BSH的最适反应pH为5.6-6.4,在pH7.0-8.0的范围内能保留96%的酶活;最适反应温度为37℃,40℃孵育60min能保留83.5%的酶活,而60℃孵育10min后几乎完全失活;10mM的EDTA和DTT分别可以使酶活增加45.1%和86.8%,氧化巯基的试剂Cu~(2+)和高碘酸钠能强烈抑制BSH的活性,PMSF和其它金属离子对BSH都有不同程度的抑制作用;对甘氨结合胆盐的水解作用远远高于对牛磺结合胆盐的水解作用;其Vmax,Km,kcat和kcat/Km的值分别为142.8μmol (min mg)-1,2.07mM,88.127s-1和42.57L (s mmol)-1。
     4)氨基酸序列比对表明,当BSH的65位氨基酸为极性氨基酸时,BSH偏向于水解甘氨结合胆盐;而当其为非极性氨基酸时,BSH偏向于水解牛磺结合胆盐。通过同源结构模拟和叠加也发现,BSH的Tyr65位于底物脱氧胆酸(DCA)的异戊酸侧链附近。而且这个异戊酸侧链离C12位的羟基取代基很近,在这里增加极性的氨基酸会改变酶对相应底物的亲和力。并通过定点突变证实了65位氨基酸的极性的重要性,当它为C和N等极性氨基酸时,BSH就失活了;而当它为A、F和I等非极性氨基酸时,BSH就以活性酶的形式存在。而且突变体Y65A,Y65F和Y65I对牛磺结合胆盐的水解能力提高了(最高倍数达4倍多)。此外,底物的氨基酸部分、类固醇核的C7和C12位的羟基取代基都对酶对相应底物的水解能力有影响。
     5)使用质粒pNZ8149的筛选标记lacF和质粒pNZ8112的信号肽Usp45等食品级表达元件,实现了BSH在L. lactis NZ3900中的胞内和胞外的食品级表达。根据L. lactis的密码子偏好性,对bsh基因进行了密码子优化,从而使BSH在重组菌胞内和胞外的比酶活分别比原来提高了12倍和9.5%。使用带有两个负电荷的前导肽LEISSTCDA优化了信号肽的c端和成熟蛋白之间的电荷平衡,从而使bsh2编码的BSH的胞外比酶活提高了8.8%。同时使用密码子优化和前导肽LEISSTCDA使胞外BSH的比酶活提高了11.3%。此外,证明了该前导肽的两个负电荷是其发挥促进蛋白分泌的作用所必需的。
Bile salt hydrolase (EC3.5.1.24, BSH) catalyzes the hydrolysis of conjugated bilesalts into free bile salts and glycine/turine. This will increase the de novo synthesis ofconjugated bile salts from cholesterol, thus reducing the serum cholesterol level in vivo.Therefore, oral administration of BSH-producing cells,pure enzyme and related productsfor curing hypercholesterolemia has good prospect for applications. Furthermore, BSHbecomes one of the focused researches at home and abroad now. However, there are stillsome controversies about the mechanism of hypocholesterolemic effect by BSH, thesubstrate-binding mechanism and safety of BSH. In this study, a lactic acid bacteriumwith high BSH activity and good cholesterol-lowering effect in vitro was screened.Besides, its bsh gene was extracellularly expressed by twin-arginine signal peptides in E.coli, and the recombinant BSH was then characterized and modified to change thesubstrate specificity. Finally, we achieved the food-grade expression of BSH. The mainresults were as follows:
     1) A lactic acid bacterium, with high BSH activity and excellent hypocholesterolemic effectin vitro, was screened by qualitative and quantitative methods. This strain was furtheridentified and named as Lactobacillus plantarum BBE7. The bsh gene of this bacteriumwas then cloned and expressed inside the cells of E. coli. As analyzed, BSH, a proteinencoded by324amino acids, showed high similarities to other BSHs and belonged toN-terminal nucleophilic (Ntn) hydrolase family. According to the results of BSH assay, theintracellular BSH activity of recombinant bacterium was1.85U mg-1, which was13timeshigher than that of wide-type strain.
     2) BSH was successfully secreted outside the cells of E. coli by twin-arginine signalpeptides. As analyzed by SDS-PAGE and BSH assay, these three signal peptides oftwin-arginine translocation pathway allowed both the intracellular and extracellularexpression of BSH in recombinant bacteria compared to signal peptide PelB from Secpathway, although most of the BSH expressed was inclusion bodies inside the cells andonly a few was liberated into the medium. Because signal peptide DMSA had higherGRAVY score, stability and aliphatic index than other two signal peptides, its secretionefficiency was the highest. In addition, the effects of the four hosts on the expression ofBSH differed, which could be attributed to the fact that the utilization of twin-argininesignal peptides varies greatly among different strains of the same species. Thus the bestcombination of signal peptide and host that allows effective secretion of BSH could befound. The extracellular BSH activity of recombinant bacterium was optimized byorthogonal experimental design and increased by68.1%.
     3) BSH was purified from the supernatant of recombinant bacterium by ammonium sulfate precipitation, dialysis, Ni~(2+)colomn and gel colomn. The purification fold and yiled were39.34and12.55%, respectively. N terminal sequencing demonstrated that the extracellularBSH was secreted by Tat pathway but not caused by cell leakage. The optimal pH andtemperature of the purified BSH were5.6-6.4and37°C, respectively. Purified BSH wasstable in pH7.0-8.0, with a more than96%residual activity. After this enzyme wasincubated at40°C for60min, it remained about83.5%residual activity; but a nearlycomplete loss of activity was observed after incubation for10min at60°C. The acitivty ofBSH was increased by45.1%and86.8%by10mM EDTA and DTT, respectively. Butagents that oxidize thiol (Cu~(2+)and sodium periodate) strongly inhibited the activity ofBSH. PMSF and other metal ions inhibited BSH activity at different levels. Besides, BSHwas more efficient at hydrolyzing glyco-conjugated bile salts than tauro-conjugated bilesalts. The Vmax, Km, kcatand kcat/Kmof the puribvfied BSH were142.8μmol (min mg)-1,2.07mM,88.127s-1and42.57L (s mmol)-1, respectively.
     4) As indicated by amino acid sequence alignment, when the amino acid at position65ofBSH was a nonpolar residue, BSH showed preference for tauro-conjugated bile salts, butwhen it was a polar residue, BSH displayed a preferential hydrolysis of glyco-conjugatedbile salts. Homology modeling and superimposition showed that Tyr65located near theisovaleric side chain of deoxycholic acid (DCA) which was near the hydroxyl substituents,and more hydrophilic amino acids added here can alter the affinities toward thecorresponding substrates. The importance of the polarity of residue at position65washighlighted by site-directed mutagenesis and when it was C or N, BSH lost activity; butwhen it was A, F or I, BSH was an active enzyme. Tauro-conjugated bile salts hydrolysiswas all increased by mutants Y65A, Y65F and Y65I (up to4fold). Besides, amino acidmoieties and hydroxyl substituents at C7and C12of steroid moiety had effects on thehydrolysis of corresponding substrates by BSH.
     5) BSH was successfully expressed both intracellularly and extracellularly in L. lactisNZ3900, using food-grade selection marker lacF of vector pNZ8149and food-gradesignal peptide Usp45of plasmid pNZ8112. The bsh gene was optimized according to thecodon bias of L. lactis, which increased the intracellular and extracellular BSH activity ofrecombinant bacteria by12fold and9.5%, respectively. Propeptide LEISSTCDA with twonegative charges was used to optimize the charge balance between the c-region of signalpeptide and mature moiety, thus the extracellular activity of BSH encoded by bsh2genewas increased by8.8%. And the extracellular BSH activity was increased by11.3%by thecombination of codon optimization and the acidic propeptide LEISSTCDA. Besides, thetwo negatively charged residues were proved to be necessary for the secretion-enhancingeffect of LEISSTCDA.
引文
[1] Gurr M. Milk products: contribution to nutrition and health [J]. J Soc Dairy Technol,1992,45(3):61-67.
    [2]吴肖,刘通讯.乳与胆固醇[J].中国乳品工业,2000,28(5):34-37.
    [3] Sridevi N, Vishwe P, Prabhune A. Hypocholesteremic effect of bile salt hydrolase fromLactobacillus buchneri ATCC4005[J]. Food Res Int,2009,42(4):516-520.
    [4] Kumar R, Grover S, Batish V K. Hypocholesterolaemic effect of dietary inclusion of two putativeprobiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats [J].Br J Nutr,2011,105(4):561-573.
    [5] Lloyd-Jones D, Adams R J, Brown T M, et al. Heart disease and stroke statistics2010update Areport from the American Heart Association [J]. Circulation,2010,121(7): e46-e215.
    [6] Bliznakov E. Lipid-lowering drugs (statins), cholesterol, and coenzyme Q10. The Baycol case–amodern Pandora’s box [J]. Biomed Pharmacother,2002,56(1):56-59.
    [7] Schuster H. Improving lipid management–to titrate, combine or switch [J]. Int J Clin Pract,2004,58(7):689-694.
    [8] Begley M, Hill C, Gahan C G. Bile salt hydrolase activity in probiotics [J]. Appl EnvironMicrobiol,2006,72(3):1729-1738.
    [9] Jiang J, Hang X, Zhang M, et al. Diversity of bile salt hydrolase activities in different Lactobacillitoward human bile salts [J]. Ann Microbiol,2010,60(1):81-88.
    [10] Patel A K, Singhania R R, Pandey A, et al. Probiotic bile salt hydrolase: current developments andperspectives [J]. Appl Biochem Biotechnol,2009,162:166-180.
    [11] Mcauliffe O, Cano R J, Klaenhammer T R. Genetic analysis of two bile salt hydrolase activities inLactobacillus acidophilus NCFM [J]. Appl Environ Microbiol,2005,71(8):4925-4929.
    [12] Ridlon J M, Kang D J, Hylemon P B. Bile salt biotransformations by human intestinal bacteria [J].J Lipid Res,2006,47(2):241-259.
    [13] Carey M C, Duane W, Enterohepatic circulation, in The liver: biology and pathobiology. New York:Raven Press, Ltd.,1994. pp.719-767.
    [14] Kim G B, Lee B H. Biochemical and molecular insights into bile salt hydrolase in thegastrointestinal microflora-a review [J]. Asian-Austral J Anim Sci,2005,18(10):1505-1512.
    [15] Chae J, Valeriano V, Kim G B, et al. Molecular cloning, characterization and comparison of bilesalt hydrolases from Lactobacillus johnsonii PF01[J]. J Appl Microbiol,2013,114(1):121-133.
    [16] Prabha V, Ohri M. Review: bacterial transformations of bile acids [J]. World J Microb Biot,2006,22(2):191-196.
    [17] Kim G B, Yi S H, Lee B H. Purification and characterization of three different types of bile salthydrolases from Bifidobacterium strains [J]. J Dairy Sci,2004,87(2):258-266.
    [18]牛治霞,刘恩梅,李晓东,等.益生菌中胆盐水解酶(BSHs)研究进展[J].中国乳品工业,2007,35(9):35-40.
    [19] Shuhaimi M, Ali A M, Saleh N M, et al. Cloning and sequence analysis of bile salt hydrolase (bsh)gene from Bifidobacterium longum [J]. Biotechnol Lett,2001,23(21):1775-1780.
    [20] Kim G B, Miyamoto C M, Meighen E A, et al. Cloning and characterization of the bile salthydrolase genes (bsh) from Bifidobacterium bifidum strains [J]. Appl Environ Microbiol,2004,70(9):5603-5612.
    [21] Piotr J. Molecular characterization of bile salt hydrolase from Bifidobacterium animalis subsp.lactis Bi30[J]. J Microbiol Biotechnol,2011,21(8):838-845.
    [22] Elkins C A, Moser S A, Savage D C. Genes encoding bile salt hydrolases and conjugated bile salttransporters in Lactobacillus johnsonii100-100and other Lactobacillus species [J]. Microbiology,2001,147(12):3403.
    [23] Christiaens H, Leer R J, Pouwels P H, et al. Cloning and expression of a conjugated bile acidhydrolase gene from Lactobacillus plantarum by using a direct plate assay [J]. Appl EnvironMicrobiol,1992,58(12):3792-3798.
    [24] Fang F, Li Y, Bumann M, et al. Allelic variation of bile salt hydrolase genes in Lactobacillussalivarius does not determine bile resistance levels [J]. J Biotechnol,2009,191(18):5743-5757.
    [25] Taranto M P, Sesma F, Font De Valdez G. Localization and primary characterization of bile salthydrolase from Lactobacillus reuteri [J]. Biotechnol Lett,1999,21(11):935-938.
    [26]刘慧,杜薇,张红星.乳酸乳球菌乳酸亚种高产胆盐水解酶发酵条件的优化研究[J].食品科学,2006,27(11):322-326.
    [27] Sridevi N, Srivastava S, Khan B M, et al. Characterization of the smallest dimeric bile salthydrolase from a thermophile Brevibacillus sp [J]. Extremophiles,2009,13(2):363-370.
    [28] Stellwag E J, Hylemon P B. Purification and characterization of bile salt hydrolase fromBacteroides fragilis subsp. fragilis [J]. Biochim Biophys Acta,1976,452(1):165-176.
    [29] Kawamoto K, Horibe I, Uchida K. Purification and characterization of a new hydrolase forconjugated bile acids, chenodeoxycholyltaurine hydrolase, from Bacteroides vulgatus [J]. JBiochem,1989,106(6):1049-1053.
    [30] Knarreborg A, Engberg R M, Jensen S K, et al. Quantitative determination of bile salt hydrolaseactivity in bacteria isolated from the small intestine of chickens [J]. Appl Environ Microbiol,2002,68(12):6425-6428.
    [31] Wijaya A, Hermann A, Abriouel H, et al. Cloning of the bile salt hydrolase (bsh) gene fromEnterococcus faecium FAIR-E345and chromosomal location of bsh genes in food Enterococci [J].J Food Protect,2004,67(12):2772-2778.
    [32]刘慧,董瑞婷,潘昌莉,等.克鲁维酵母菌产胆盐水解酶发酵条件的优化研究[J].中国酿造,2010,(7):44-46.
    [33]刘慧,何欢,张雪娇,等.蔵灵菇源克鲁维酵母M3菌株胆盐水解酶的特性研究[J].中国农学通报,2009,25(24):102-107.
    [34] Coleman J P, Hudson L L. Cloning and characterization of a conjugated bile acid hydrolase genefrom Clostridium perfringens [J]. Appl Environ Microbiol,1995,61(7):2514-2520.
    [35] Rossocha M, Schultz-Heienbrok R, Von Moeller H, et al. Conjugated bile acid hydrolase is atetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its taurylproduct [J]. Biochemistry,2005,44(15):5739-5748.
    [36] Gopal-Srivastava R, Hylemon P B. Purification and characterization of bile salt hydrolase fromClostridium perfringens [J]. J Lipid Res,1988,29(8):1079-1085.
    [37] Delpino M V, Marchesini M I, Estein S M, et al. A bile salt hydrolase of Brucella abortuscontributes to the establishment of a successful infection through the oral route in mice [J]. InfectImmun,2007,75(1):299-305.
    [38] Dean M, Cervellati C, Casanova E, et al. Characterization of cholylglycine hydrolase from abile-adapted strain of Xanthomonas maltophilia and its application for quantitative hydrolysis ofconjugated bile salts [J]. Appl Environ Microbiol,2002,68(6):3126-3128.
    [39] Dussurget O, Cabanes D, Dehoux P, et al. Listeria monocytogenes bile salt hydrolase is aPrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis [J]. MolMicrobiol,2002,45(4):1095-1106.
    [40] Sue D, Boor K J, Wiedmann M. σB-dependent expression patterns of compatible solute transportergenes opuCA and lmo1421and the conjugated bile salt hydrolase gene bsh in Listeriamonocytogenes [J]. Microbiology,2003,149(11):3247.
    [41] Tanaka H, Hashiba H, Kok J, et al. Bile salt hydrolase of Bifidobacterium longum-biochemical andgenetic characterization [J]. Appl Environ Microbiol,2000,66(6):2502-2512.
    [42] Grill J, Schneider F, Crociani J, et al. Purification and characterization of conjugated bile salthydrolase from Bifidobacterium longum BB536[J]. Appl Environ Microbiol,1995,61(7):2577-2582.
    [43] Moser S A, Savage D C. Bile salt hydrolase activity and resistance to toxicity of conjugated bilesalts are unrelated properties in Lactobacilli [J]. Appl Environ Microbiol,2001,67(8):3476-3480.
    [44] Grill J P, Cayuela C, Antoine J M, et al. Isolation and characterization of a Lactobacillusamylovorus mutant depleted in conjugated bile salt hydrolase activity: relation between activityand bile salt resistance [J]. J Appl Microbiol,2000,89(4):553-563.
    [45] Smet I, Hoorde L V, Woestyne M, et al. Significance of bile salt hydrolytic activities ofLactobacilli [J]. J Appl Bacteriol,1995,79(3):292-301.
    [46] Tannock G W, Dashkevicz M P, Feighner S D. Lactobacilli and bile salt hydrolase in the murineintestinal tract [J]. Appl Environ Microbiol,1989,55(7):1848-1851.
    [47] Huijghebaert S M, Hofmann A F. Influence of the amino acid moiety on deconjugation of bile acidamidates by cholylglycine hydrolase or human fecal cultures [J]. J Lipid Res,1986,27(7):742.
    [48] Taranto M P, Sesma F, Pesce De Ruiz Holgado A, et al. Bile salts hydrolase plays a key role oncholesterol removal by Lactobacillus reuteri [J]. Biotechnol Lett,1997,19(9):845-847.
    [49] Taranto M, Fernandez Murga M, Lorca G, et al. Bile salts and cholesterol induce changes in thelipid cell membrane of Lactobacillus reuteri [J]. J Appl Microbiol,2003,95(1):86-91.
    [50] Liong M T, Shah N P. Bile salt deconjugation ability, bile salt hydrolase activity and cholesterolco-precipitation ability of Lactobacilli strains [J]. Int Dairy J,2005,15(4):391-398.
    [51] Naruszewicz M, Johansson M-L, Zapolska-Downar D, et al. Effect of Lactobacillus plantarum299v on cardiovascular disease risk factors in smokers [J]. Am J Clin Nutr,2002,76(6):1249-1255.
    [52] Pereira D I, Gibson G R. Effects of consumption of probiotics and prebiotics on serum lipid levelsin humans [J]. Crit Rev Biochem Mol,2002,37(4):259-281.
    [53] De Smet I, De Boever P, Verstraete W. Cholesterol lowering in pigs through enhanced bacterialbile salt hydrolase activity [J]. Br J Nutr,1998,79(2):185-194.
    [54] Park Y H, Kim J G, Shin Y W, et al. Effects of Lactobacillus acidophilus43121and a mixture ofLactobacillus casei and Bifidobacterium longum on the serum cholesterol level and fecal sterolexcretion in hypercholesterolemia-induced pigs [J]. Biosci Biotech Bioch,2008,72(2):595-600.
    [55] Strompfová V, Marciňáková M, Simonová M, et al. Application of potential probioticLactobacillus fermentum AD1strain in healthy dogs [J]. Anaerobe,2006,12(2):75-79.
    [56] Jeun J, Kim S, Cho S-Y, et al. Hypocholesterolemic effects of Lactobacillus plantarum KCTC3928by increased bile acid excretion in C57BL/6mice [J]. Nutrition,2010,26(3):321-330.
    [57] Feighner S D, Dashkevicz M P. Effect of dietary carbohydrates on bacterial cholyltaurinehydrolase in poultry intestinal homogenates [J]. Appl Environ Microbiol,1988,54(2):337.
    [58] Bernstein H, Bernstein C, Payne C, et al. Bile acids as carcinogens in human gastrointestinalcancers [J]. Mutat Res-Rev Mutat,2005,589(1):47-65.
    [59] Veysey M, Thomas L, Mallet A, et al. Prolonged large bowel transit increases serum deoxycholicacid: a risk factor for octreotide induced gallstones [J]. Gut,1999,44(5):675-681.
    [60] Kimoto H, Ohmomo S, Okamoto T. Cholesterol removal from media by Lactococci [J]. J DairySci,2002,85(12):3182-3188.
    [61] Walker D K, Gilliland S E. Relationships among bile tolerance, bile salt deconjugation, andassimilation of cholesterol by Lactobacillus acidophilus [J]. J Dairy Sci,1993,76(4):956.
    [62] Gopal A, Shah N, Roginski H. Bile tolerance, taurocholate deconjugation and cholesterol removalby Lactobacillus acidophilus and Bifidobacterium spp [J]. Milchwissenschaft,1996,51(11):619-623.
    [63] Li G, Hang X, Tan J, et al. A BSH volumetric activity dependent method for determination ofcoprecipitated cholesterol and the assimilation/coprecipitation proportion of cholesterol removalby Lactobacillus plantarum [J]. Ann Microbiol,2009,59(3):469-475.
    [64] Smet I D, Hoorde L V, Saeyer N D, et al. In vitro study of bile salt hydrolase (BSH) activity ofBSH isogenic Lactobacillus plantarum80strains and estimation of cholesterol lowering throughenhanced BSH activity [J]. Microb Ecol Health Dis,1994,7(6):315-329.
    [65] Ahn Y T, Kim G B, Lim K S, et al. Deconjugation of bile salts by Lactobacillus acidophilusisolates [J]. Intern Dairy J,2003,13(4):303-311.
    [66] Mann G V, Spoerry A. Studies of a surfactant and cholesteremia in the Maasai [J]. Am J Clin Nutr,1974,27(5):464-469.
    [67] Ooi L-G, Liong M-T. Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivoand in vitro findings [J]. Int J Mol Sci,2010,11(6):2499-2522.
    [68] Kumar M, Nagpal R, Kumar R, et al. Cholesterol-lowering probiotics as potential biotherapeuticsfor metabolic diseases [J]. Exp Diabetes Res,2012,2012:
    [69] Liong M T, In-Vivo and In-Vitro Cholesterol Removal by Lactobacilli and Bifidobacteria [D]:
    [Doctoral Dissertation]. Victoria: Victoria University,2006. p.345.
    [70] Zhang L, Zhang X, Liu C, et al. Manufacture of Cheddar cheese using probiotic Lactobacillusplantarum K25and its cholesterol-lowering effects in a mice model [J]. World J Microb Biot,2013,29(1):127-135.
    [71] Martoni C, Bhathena J, Urbanska A M, et al. Microencapsulated bile salt hydrolase producingLactobacillus reuteri for oral targeted delivery in the gastrointestinal tract [J]. Appl MicrobiolBiotechnol,2008,81(2):225-233.
    [72] Jones M L, Chen H, Ouyang W, et al. Microencapsulated genetically engineered Lactobacillusplantarum80(pCBH1) for bile acid deconjugation and its implication in lowering cholesterol [J]. JBiomed Biotechnol,2004,2004(1):61-69.
    [73] Hatakka K, Mutanen M, Holma R, et al. Lactobacillus rhamnosus LC705together withPropionibacterium freudenreichii ssp shermanii JS administered in capsules is ineffective inlowering serum lipids [J]. J Am Coll Nutr,2008,27(4):441-447.
    [74] Simons L A, Amansec S G, Conway P. Effect of Lactobacillus fermentum on serum lipids insubjects with elevated serum cholesterol [J]. Nutr Metab Cardiovasc Dis,2006,16(8):531-535.
    [75] Tanaka H, Doesburg K, Iwasaki T, et al. Screening of lactic acid bacteria for bile salt hydrolaseactivity [J]. J Dairy Sci,1999,82(12):2530-2535.
    [76] Dashkevicz M P, Feighner S D. Development of a differential medium for bile salthydrolase-active Lactobacillus spp [J]. Appl Environ Microbiol,1989,55(1):11-16.
    [77] Corzo G, Gilliland S E. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus [J].J Dairy Sci,1999,82(3):472-480.
    [78] Ha C G, Cho J K, Chai Y G, et al. Purification and characterization of bile salt hydrolase fromLactobacillus plantarum CK102[J]. J Microbiol Biotechnol,2006,16(7):1047-1052.
    [79] Ren J, Sun K, Wu Z, et al. All4bile salt hydrolase proteins are responsible for the hydrolysisactivity in Lactobacillus plantarum ST-III [J]. J Food Sci,2011,76(9): M622-628.
    [80] Lambert J M, Bongers R S, De Vos W M, et al. Functional analysis of four bile salt hydrolase andpenicillin acylase family members in Lactobacillus plantarum WCFS1[J]. Appl EnvironMicrobiol,2008,74(15):4719-4726.
    [81] Kim G B, Brochet M, Lee B H. Cloning and characterization of a bile salt hydrolase (bsh) fromBifidobacterium adolescentis [J]. Biotechnol Lett,2005,27(12):817-822.
    [82] Kumar R S, Brannigan J A, Pundle A, et al. Expression, purification, crystallization andpreliminary X-ray diffraction analysis of conjugated bile salt hydrolase from Bifidobacteriumlongum [J]. Acta Crystallogr D Biol Crystallogr,2004,60(Pt9):1665-1667.
    [83] Oh H K, Lee J Y, Lim S J, et al. Molecular cloning and characterization of a bile salt hydrolasefrom Lactobacillus acidophilus PF01[J]. J Microbiol Biotechnol,2008,18(3):449-456.
    [84]李蓉,植物乳杆菌中胆盐水解酶基因乳酸乳球菌NZ9000表达系统的建立[D]:[硕士学位论文].大庆:黑龙江八一农垦大学,2012.
    [85]李云梅,尚伟,郭晶,等.长双歧杆菌NCC2705中胆盐水解酶基因的克隆表达及其特性的研究[J].军事医学,2012,36(8):586-594.
    [86]黄茜,黄璐,潘道东,等.植物乳杆菌Lactobacillu plantarum Y1菌株胆盐水解酶基因(bsh)的克隆及重组表达[J].南京师大学报:自然科学版,2010,33(3):91-96.
    [87]战媛媛,王长远,于长青.植物乳杆菌中胆盐水解酶基因的原核表达及纯化[J].中国生物制品学杂志,2009,22(9):876-879.
    [88]黄茜,黄璐,潘道东,等.重组融合蛋白MBP-BSH在大肠杆菌中的表达及其纯化,功能鉴定[J].食品科学,2012,33(7):198-203.
    [89]于长青,战媛媛,王长远.胆盐水解酶基因在毕赤酵母中的表达[J].中国生物制品学杂志,2010,23(9):949-952.
    [90] Lundeen S G, Savage D C. Characterization and purification of bile salt hydrolase fromLactobacillus sp. strain100-100[J]. J Bacteriol,1990,172(8):4171-4177.
    [91] Bi J, Fang F, Lu S, et al. New insight into the catalytic properties of bile salt hydrolase [J]. J MolCatal B-Enzym,2013,96(0):46-51.
    [92] Wang Z, Zeng X, Mo Y, et al. Identification and characterization of a bile salt hydrolase fromLactobacillus salivarius for development of novel alternatives to antibiotic growth promoters [J].Appl Environ Microbiol,2012,78(24):8795-8802.
    [93] Lundeen S G, Savage D C. Multiple forms of bile salt hydrolase from Lactobacillus sp. strain100-100[J]. J Bacteriol,1992,174(22):7217-7220.
    [94] Kumar R S, Brannigan J A, Prabhune A A, et al. Structural and functional analysis of a conjugatedbile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship withpenicillin V acylase [J]. J Biol Chem,2006,281(43):32516-32525.
    [95] Sridevi N, Prabhune A A. Brevibacillus sp: a novel thermophilic source for the production of bilesalt hydrolase [J]. Appl Biochem Biotechnol,2009,157(2):254-262.
    [96] Nair P, Gordon M, Reback J. The enzymatic cleavage of the carbon-nitrogen bond in3,7,12-trihydroxy-5β-cholan-24-oylglycine [J]. J Biol Chem,1967,242(1):7-11.
    [97] Batta A K, Salen G, Shefer S. Substrate specificity of cholylglycine hydrolase for the hydrolysis ofbile acid conjugates [J]. J Biol Chem,1984,259(24):15035-15039.
    [98] Parvez S, Malik K, Ah Kang S, et al. Probiotics and their fermented food products are beneficialfor health [J]. J Appl Microbiol,2006,100(6):1171-1185.
    [99] Rudel L, Morris M. Determination of cholesterol using o-phthalaldehyde [J]. J Lipid Res,1973,14(3):364-366.
    [100] Pereira D I A, Gibson G R. Cholesterol assimilation by lactic acid bacteria and bifidobacteriaisolated from the human gut [J]. Appl Environ Microbiol,2002,68(9):4689.
    [101] Suresh C G, Pundle A V, Sivaraman H, et al. Penicillin V acylase crystal structure reveals newNtn-hydrolase family members [J]. Nature Struct Biol,1999,6(5):414-416.
    [102] Kumar R, Grover S, Mohanty A K, et al. Molecular cloning and sequence analysis of bile salthydrolase gene (bsh) from Lactobacillus plantarum MBUL90strain of human origin [J]. FoodBiotechnol,2010,24(3):215-226.
    [103] De Keyzer J, Van Der Does C, Driessen A. The bacterial translocase: a dynamic protein channelcomplex [J]. Cell Mol Life Sci,2003,60(10):2034-2052.
    [104] Fisher A C, Kim J Y, Perez‐Rodriguez R, et al. Exploration of twin-arginine translocation forexpression and purification of correctly folded proteins in Escherichia coli [J]. Microb Biotechnol,2008,1(5):403-415.
    [105] Meissner D, Vollstedt A, Van Dijl J M, et al. Comparative analysis of twin-arginine(Tat)-dependent protein secretion of a heterologous model protein (GFP) in three differentGram-positive bacteria [J]. Appl Environ Microbiol,2007,76(3):633-642.
    [106] Sargent F, Berks B C, Palmer T. Pathfinders and trailblazers: a prokaryotic targeting system fortransport of folded proteins [J]. FEMS Microbiol Lett,2006,254(2):198-207.
    [107] Tullman-Ercek D, Delisa M P, Kawarasaki Y, et al. Export pathway selectivity of Escherichia colitwin arginine translocation signal peptides [J]. J Biol Chem,2007,282(11):8309-8316.
    [108] Lee P A, Tullman-Ercek D, Georgiou G. The bacterial twin-arginine translocation pathway [J].Annu Rev Microbiol,2006,60:373-395.
    [109] Oates J, Barrett C M L, Barnett J P, et al. The Escherichia coli twin-arginine translocationapparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexesand minor TatAB complex [J]. J Mol Biol,2005,346(1):295-305.
    [110] Gohlke U, Pullan L, Mcdevitt C A, et al. The TatA component of the twin-arginine proteintransport system forms channel complexes of variable diameter [J]. Proc Natl Acad Sci USA,2005,102(30):10482-10486.
    [111] Zhu F-M, Ji S-Y, Zhang W-W, et al. Development and application of a novel signal peptide probevector with PGA as reporter in Bacillus subtilis WB700: twenty-four tat pathway signal peptidesfrom Bacillus subtilis were monitored [J]. Mol Biotechnol,2008,39(3):225-230.
    [112] Berks B C, Palmer T, Sargent F. Protein targeting by the bacterial twin-arginine translocation (Tat)pathway [J]. Curr Opin Microbiol,2005,8(2):174-181.
    [113] Robinson C, Bolhuis A. Tat-dependent protein targeting in prokaryotes and chloroplasts [J].Biochim Biophys Acta,2004,1694(1):135-147.
    [114] Le Loir Y, Gruss A, Ehrlich S, et al. A nine-residue synthetic propeptide enhances secretionefficiency of heterologous proteins in Lactococcus lactis [J]. J Bacteriol,1998,180(7):1895-1903.
    [115] Jana S, Deb J. Strategies for efficient production of heterologous proteins in Escherichia coli [J].Appl Microbiol Biotechnol,2005,67(3):289-298.
    [116] Hung M-N, Xia Z, Hu N-T, et al. Molecular and biochemical analysis of two β-Galactosidasesfrom Bifidobacterium infantis HL96[J]. Appl Environ Microbiol,2001,67(9):4256-4263.
    [117] Mergulhao F, Summers D, Monteiro G. Recombinant protein secretion in Escherichia coli [J].Biotechnol Adv,2005,23(3):177-202.
    [118] Baradaran A, Sieo C C, Foo H L, et al. Cloning and in silico characterization of two signalpeptides from Pediococcus pentosaceus and their function for the secretion of heterologous proteinin Lactococcus lactis [J]. Biotechnol Lett,2013,35(2):233-238.
    [119] Choo K H, Ranganathan S. Flanking signal and mature peptide residues influence signal peptidecleavage [J]. BMC Bioinformatics,2008,9(Suppl12): S15.
    [120] Chanal A, Santini C-L, Wu L-F. Specific inhibition of the translocation of a subset of Escherichiacoli TAT substrates by the TorA signal peptide [J]. J Mol Biol,2003,327(3):563-570.
    [121] Delisa M P, Tullman D, Georgiou G. Folding quality control in the export of proteins by thebacterial twin-arginine translocation pathway [J]. Proc Natl Acad Sci USA,2003,100(10):6115-6120.
    [122] Blaudeck N, Sprenger G A, Freudl R, et al. Specificity of signal peptide recognition inTat-dependent bacterial protein translocation [J]. J Bacteriol,2001,183(2):604-610.
    [123] Knappskog S, Ravneberg H, Gjerdrum C, et al. The level of synthesis and secretion of Gaussiaprinceps luciferase in transfected CHO cells is heavily dependent on the choice of signal peptide[J]. J Biotechnol,2007,128(4):705-715.
    [124] Rusch S L, Mascolo C L, Kebir M O, et al. Juxtaposition of signal-peptide charge and core regionhydrophobicity is critical for functional signal peptides [J]. Arch Microbiol,2002,178(4):306-310.
    [125] Zhang L, Leng Q, Mixson A J. Alteration in the IL‐2signal peptide affects secretion of proteinsin vitro and in vivo [J]. J Gene Med,2005,7(3):354-365.
    [126] Jonasson P, Liljeqvist S, Nygren P A, et al. Genetic design for facilitated production and recoveryof recombinant proteins in Escherichia coli [J]. Biotechnol Appl Bioc,2002,35(2):91-105.
    [127] Kumar R S, Suresh C G, Brannigan J A, et al. Bile salt hydrolase, the member of Ntn-hydrolasefamily: differential modes of structural and functional transitions during denaturation [J]. IUBMBLife,2007,59(2):118-125.
    [128] Kanwar S S, Kaushal R K, Jawed A, et al. Methods for inhibition of residual lipase activity incolorimetric assay: A comparative study [J]. Indian J Biochem Bio,2005,42(4):233.
    [129] Liu H, Naismith J H. An efficient one-step site-directed deletion, insertion, single and multiple-siteplasmid mutagenesis protocol [J]. BMC Biotechnol,2008,8(1):91.
    [130] Lambert J M, Siezen R J, De Vos W M, et al. Improved annotation of conjugated bile acidhydrolase superfamily members in Gram-positive bacteria [J]. Microbiology,2008,154(8):2492-2500.
    [131] Oinonen C, Rouvinen J. Structural comparison of Ntn-hydrolases [J]. Protein Sci,2000,9(12):2329-2337.
    [132] Kobe B, Kampmann T, Forwood J K, et al. Substrate specificity of protein kinases andcomputational prediction of substrates [J]. Biochim Biophys Acta,2005,1754(1):200-209.
    [133] Lichtarge O, Bourne H R, Cohen F E. An evolutionary trace method defines binding surfacescommon to protein families [J]. J Mol Biol,1996,257(2):342-358.
    [134] Yip K Y, Utz L, Sitwell S, et al. Identification of specificity determining residues in peptiderecognition domains using an information theoretic approach applied to large-scale binding maps[J]. BMC biology,2011,9(1):53.
    [135] Tonikian R, Zhang Y, Sazinsky S L, et al. A specificity map for the PDZ domain family [J]. PlosBiol,2008,6(9): e239.
    [136] Tonikian R, Xin X, Toret C P, et al. Bayesian modeling of the yeast SH3domain interactomepredicts spatiotemporal dynamics of endocytosis proteins [J]. Plos Biol,2009,7(10): e1000218.
    [137] Mok J, Kim P M, Lam H Y, et al. Deciphering protein kinase specificity through large-scaleanalysis of yeast phosphorylation site motifs [J]. Sci Signal,2010,3(109): ra12.
    [138] Le Loir Y, Azevedo V, Oliveira S C, et al. Protein secretion in Lactococcus lactis: an efficient wayto increase the overall heterologous protein production [J]. Microbial Cell Fact,2005,4(1):2.
    [139] Sriraman K, Jayaraman G. Enhancement of recombinant streptokinase production in Lactococcuslactis by suppression of acid tolerance response [J]. Appl Microbiol Biotechnol,2006,72(6):1202-1209.
    [140] De Vos W M. Gene expression systems for lactic acid bacteria [J]. Curr Opin Microbiol,1999,2(3):289-295.
    [141] Wegmann U, O'connell-Motherway M, Zomer A, et al. Complete genome sequence of theprototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363[J]. J Bacteriol,2007,189(8):3256-3270.
    [142] Novotny R, Scheberl A, Giry‐Laterriere M, et al. Gene cloning, functional expression andsecretion of the S-layer protein SgsE from Geobacillus stearothermophilus NRS2004/3a inLactococcus lactis [J]. FEMS Microbiol Lett,2005,242(1):27-35.
    [143] Ye W, Huo G, Chen J, et al. Heterologous expression of the Bacillus subtilis (natto) alaninedehydrogenase in Escherichia coli and Lactococcus lactis [J]. Microbiol Res,2010,165(4):268-275.
    [144] Frelet-Barrand A, Boutigny S, Moyet L, et al. Lactococcus lactis, an alternative system forfunctional expression of peripheral and intrinsic Arabidopsis membrane proteins [J]. PLoS One,2010,5(1): e8746.
    [145] Hickey R M, Ross R P, Hill C. Controlled autolysis and enzyme release in a recombinantlactococcal strain expressing the metalloendopeptidase enterolysin A [J]. Appl Environ Microbiol,2004,70(3):1744-1748.
    [146] Kaswurm V, Nguyen T-T, Maischberger T, et al. Evaluation of the food grade expression systemsNICE and pSIP for the production of2,5-diketo-D-gluconic acid reductase from Corynebacteriumglutamicum [J]. AMB Express,2013,3(1):1-11.
    [147] Fuglsang A. Lactic acid bacteria as prime candidates for codon optimization [J]. Biochem BiophysRes Commun,2003,312(2):285-291.
    [148] Mierau I, Kleerebezem M.10years of the nisin-controlled gene expression system (NICE) inLactococcus lactis [J]. Appl Microbiol Biotechnol,2005,68(6):705-717.
    [149] Hernández I, Molenaar D, Beekwilder J, et al. Expression of plant flavor genes in Lactococcuslactis [J]. Appl Environ Microbiol,2007,73(5):1544-1552.
    [150] Johnston C, Douarre P E, Soulimane T, et al. Codon optimisation to improve expression of aMycobacterium avium ssp. paratuberculosis-specific membrane-associated antigen byLactobacillus salivarius [J]. Pathog Dis,2013,68(1):27-38.
    [151] Kajava A V, Zolov S N, Kalinin A E, et al. The net charge of the first18residues of the maturesequence affects protein translocation across the cytoplasmic membrane of gram-negative bacteria[J]. J Bacteriol,2000,182(8):2163-2169.
    [152] Le Loir Y, Nouaille S, Commissaire J, et al. Signal peptide and propeptide optimization forheterologous protein secretion in Lactococcus lactis [J]. Appl Environ Microbiol,2001,67(9):4119-4127.
    [153] Bermúdez-Humarán L G, Cortes-Perez N G, Loir Y L, et al. Fusion to a carrier protein and asynthetic propeptide enhances E7HPV-16production and secretion in Lactococcus lactis [J].Biotechnol progr,2003,19(3):1101-1104.
    [154] Lindholm A, Palva A. Constitutive production of the receptor-binding domain of the F18fimbriaeon the surface of Lactococcus lactis using synthetic promoters [J]. Biotechnol Lett,2010,32(1):131-136.
    [155] Platteeuw C, Van Alen-Boerrigter I, Van Schalkwijk S, et al. Food-grade cloning and expressionsystem for Lactococcus lactis [J]. Appl Environ Microbiol,1996,62(3):1008-1013.
    [156] Wardani A K, Nagahisa K, Shimizu H, et al. Reduction of lactate production in Lactococcus lactis,a combined strategy: metabolic engineering by introducing foreign alanine dehydrogenase geneand hemin addition [J]. World J Microb Biot,2007,23(7):947-953.
    [157] He S, Gong F. Food-grade selection markers in lactic acid bacteria [J]. TAF Prev Med Bull,2012,11(4):499-510.
    [158] Liu C Q, Su P, Khunajakr N, et al. Development of food-grade cloning and expression vectors forLactococcus lactis [J]. J Appl Microbiol,2005,98(1):127-135.
    [159] Bron P A, Benchimol M G, Lambert J, et al. Use of the alr gene as a food-grade selection markerin lactic acid bacteria [J]. Appl Environ Microbiol,2002,68(11):5663-5670.
    [160] Boucher I, Parrot M, Gaudreau H, et al. Novel food-grade plasmid vector based on melibiosefermentation for the genetic engineering of Lactococcus lactis [J]. Appl Environ Microbiol,2002,68(12):6152-6161.
    [161] Maccormick C A, Griffin H G, Gasson M J. Construction of a food-grade host/vector system forLactococcus lactis based on the lactose operon [J]. FEMS Microbiol Lett,1995,127(1-2):105-109.
    [162] Lin M-Y, Harlander S, Savaiano D. Construction of an integrative food-grade cloning vector forLactobacillus acidophilus [J]. Appl Microbiol Biotechnol,1996,45(4):484-489.
    [163] Van Asseldonk M, De Vos W M, Simons G. Functional analysis of the Lactococcus lactis usp45secretion signal in the secretion of a homologous proteinase and a heterologous-amylase [J]. MolGen Genet,1993,240(3):428-434.
    [164] De Vos W M, Vos P, De Haard H, et al. Cloning and expression of the Lactococcus lactis subsp.Cremoris SK11gene encoding an extracellular serine proteinase [J]. Gene,1989,85(1):169-176.
    [165] Nouaille S, Ribeiro L A, Miyoshi A, et al. Heterologous protein production and delivery systemsfor Lactococcus lactis [J]. Genet Mol Res,2003,2(1):102-111.
    [166] Chung B, Lee D-Y. Computational codon optimization of synthetic gene for protein expression [J].BMC Syst Biol,2012,6(1):134.
    [167] Chen S L, Lee W, Hottes A K, et al. Codon usage between genomes is constrained bygenome-wide mutational processes [J]. Proc Natl Acad Sci USA,2004,101(10):3480-3485.
    [168] Gouy M, Gautier C. Codon usage in bacteria: correlation with gene expressivity [J]. Nucleic AcidsRes,1982,10(22):7055-7074.
    [169] Pouwels P H, Leunissen J A. Divergence in codon usage of Lactobacillus species [J]. NucleicAcids Res,1994,22(6):929-936.
    [170] Gupta S, Bhattacharyya T, Ghosh T C. Synonymous codon usage in Lactococcus lactis: mutationalbias versus translational selection [J]. J Biomol Struct Dyn,2004,21(4):527-535.
    [171] Gu W, Zhou T, Wilke C O. A universal trend of reduced mRNA stability near thetranslation-initiation site in prokaryotes and eukaryotes [J]. PLoS Comput Biol,2010,6(2):e1000664.
    [172] Vervoort E B, Van Ravestein A, Van Peij N N, et al. Optimizing heterologous expression inDictyostelium: importance of5' codon adaptation [J]. Nucleic Acids Res,2000,28(10):2069-2074.
    [173] Li P, Beckwith J, Inouye H. Alteration of the amino terminus of the mature sequence of aperiplasmic protein can severely affect protein export in Escherichia coli [J]. Proc Natl Acad SciUSA,1988,85(20):7685-7689.
    [174] Liu S, Nichols N N, Dien B S, et al. Metabolic engineering of a Lactobacillus plantarum doubleldh knockout strain for enhanced ethanol production [J]. J Ind Microbiol Biotechnol,2006,33(1):1-7.
    [175] Lechardeur D, Cesselin B, Fernandez A, et al. Using heme as an energy boost for lactic acidbacteria [J]. Curr Opin Biotech,2011,22(2):143-149.
    [176] Mierau I, Olieman K, Mond J, et al. Optimization of the Lactococcus lactis nisin-controlled geneexpression system NICE for industrial applications [J]. Microb Cell Fact,2005,4(1):16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700