用户名: 密码: 验证码:
Stenotrophomonas maltophilia DHHJ变异菌的羽毛生物炼制机理及其产物综合利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羽毛富含角蛋白,是天然的蛋白质资源。作为家禽养殖业的副产物,我国每年产生大量羽毛。因为利用率低,降解缓慢,大部分羽毛作为废弃物存在,造成环境污染。因此研究开发有效的处理方法降解羽毛角蛋白,使羽毛废弃物成为廉价易得的原料,用于蛋白质生产、绿色材料研制等领域,既可保护环境又实现废物的资源化利用,具有显著的社会效益和经济效益。本论文采用课题组筛选的嗜麦芽寡养单孢菌Stenotrophomonas maltophilia DHHJ诱变菌降解羽毛角蛋白,分别对发酵条件、酶学性质、分批发酵动力学和羽毛降解机理进行研究,为该菌降解羽毛角蛋白提供了相应的科学依据;研究降解产物的应用,实现全部产物包括发酵液和羽毛残渣的再利用,给下游产品开发提供了技术支撑。论文得到以下研究结论:
     1、原始菌株(S.maltophilia DHHJ在紫外光下照射90秒,筛选得到性能良好,遗传性稳定的变异菌株L2。采用单因素实验方法考察各因素对S.maltophilia DHHJ L2降解羽毛的影响,得到:在羽毛含量2%~4%,初始pH值7.0~8.0,培养温度35℃~45℃条件下,菌株L2的生长情况良好,羽毛降解能力和产酶能力较高;外加2%的葡萄糖、0.2%的干酪素可促进菌株对羽毛的降解;螯合剂EDTA完全抑制细菌生长,使酶失活;Na+可促进产酶;4g/L Tween80对细菌生长、产酶、羽毛降解有一定促进作用。
     2、采用响应面法优化发酵条件,结果表明:对细菌生长和产酶的影响最大的因素是初始pH,其次是培养温度、时间和羽毛含量,再次是葡萄糖含量,最后是干酪素含量。最佳发酵条件为:培养时间103h,培养温度39℃,初始pH值7.6,葡萄糖含量2%,干酪素含量0.2%,羽毛含量2.6%,该条件下所得酶活力是未优化条件下的1.8倍,同时菌体浓度也明显提高。
     3、对角蛋白酶的理化性质及反应动力学研究表明:变异菌株L2所产角蛋白酶对可溶蛋白的降解能力优于不可溶的角蛋白,对p-角蛋白的降解能力优于α-角蛋白;该酶最适pH值和温度是7.8和50℃,并在pH7.0~8.0,温度20℃-50℃下能保持稳定;金属离子Ca2+可促进角蛋白酶的活性,Zn2+不同程度的抑制酶活,重金属离子Hg2+、Pb2+、Cd2+明显抑制酶活;丝氨酸蛋白酶抑制剂PMSF,巯基抑制剂Iodoacetamide,金属蛋白酶抑制剂EDTA均会使酶失去活性,说明该酶是一种丝氨酸蛋白酶,在酶的活性部位存在着对酶活起重要作用的金属离子,同时酶分子中还可能有-SH存在;表面活性剂对酶活没有明显影响。由L-B作图法求得该酶最大反应速度Vmax为2.15U/(mg.h),米氏常数Km为29.65mg。
     4、分批发酵动力学研究结果表明:菌株降解羽毛的能力和产酶能力受菌体生长速率的影响远大于菌体浓度的影响,使发酵体系中的菌株处于指数生长期对羽毛降解和产酶有利。
     5、羽毛降解机理的研究结果表明:高压蒸煮预处理破坏了羽毛表面的某些物质,改变了羽毛的微观结构,使羽毛更易被微生物降解;SEM检测表明细菌依附在羽枝上生长,产生的机械破坏作用有利于羽毛降解;细菌胞内液中含有二硫键还原酶类似物,可使羽毛角蛋白硫解变性,胞外液中的蛋白质水解酶可使变性蛋白水解为多肽和氨基酸;随着发酵的进行,发酵液中氨基酸的种类和总量明显增加,说明羽毛角蛋白降解确有发生。
     6、探讨了羽毛发酵产物——发酵液和羽毛残渣的利用,实验结果表明:发酵液在护发、修复、定型三方面有较好的效果,具有作为护发品添加剂的潜在应用价值;羽毛残渣对酸性、中性、碱性三种类型的染料表现出不同程度的吸附能力,对酸性、中性染料吸附效果良好,可作为优良的吸附材料用于染料废水的处理。
Feather, one of the natural protein resources, is composed of almost pure keratin. As by-products of the poultry farming, a large amount of feathers is released every year in our country. Most of feathers are waste due to low utilization and slow degradation, which pollutes the environment. So it is very necessary to find effective methods to degrade feather and to make feather waste to be the cheap resource used for production of protein, development of green material, and so on. The work is helpful to protect the environment and achieve waste recycling, and has the remarkable social and economic benefits. In this paper, Stenotrophomonas maltophilia DHHJ, which was screened and saved by our research group, was mutagenized by UV light and the mutant strain L2was gotten. This research contents included the bacterial culture conditions, the properties of keratinase, the kinetics of enzyme-catalyzed reaction, the kinetics models of batch fermentation process, the mechanism of feather degradation, and the application of degradation products. Drawing the following conclusions:
     1. Original strain (S. maltophilia DHHJ) was irradiated under UV light for90seconds, then the mutant strain L2with good performance and genetic stability was achieved. The effects of feather content, initial pH, culture temperature, carbon and nitrogen source, metal ion, chelating agent and surfactant on feathers biodegradation were respectively studied. The results showed that the growth of L2, feather degradation and enzyme production were good on the conditions of feather content2%~4%, initial pH7.0-8.0, culture temperature35℃~45℃. Adding2%glucose or0.2%casein in the medium was good for feather degradation. EDTA could completely inhibit bacterial growth and make the enzyme deactivation. Metal ions Na+promoted the enzyme production. The effects of surfactant on bacterial growth and enzyme production were related to concentration and dose. The4g/L Tween80had positive effects on bacterial growth, enzyme production and feather degradation.
     2. Response surface method was used for optimizing culture conditions. Through the analysis of experimental data, the initial pH was what affected bacterial growth and enzyme production the most among different factors. The next factors were temperature, time and content of feathers. The third one was the content of glucose and the last one was the content of casein. The study showed that the optimal culture conditions were incubation time103h, incubation temperature39℃, initial pH7.6, glucose content2%, casein content0.2%, and feather content2.6%. The enzyme activity under the optimized conditions was1.8times as much as that under the non-optimized conditions. Meanwhile, cell concentration in the fermentation system also increased significantly.
     3. The study showed that keratinase produced by the mutant L2could degrade a variety of protein substrates. The soluble protein was more easily degraded than insoluble protein, and β-keratin was more likely to be hydrolyzed than a-keratin. The optimal pH and temperature was7.8and50℃for this keratinase, and it was stable at pH6.5-8.0, temperature30~60℃. Ca2+could promote the enzyme activity, Zn2+inhibited enzyme activity at different levels, and heavy metal ions (Hg2+, Pb2+and Cd2+) significantly inhibited enzyme activity. PMSF, Iodoacetamide, and EDTA could deactivate enzyme, which indicated that the enzyme could be a kind of serine protease, the metal ion played an important role on keeping the enzyme activity, and-SH could exists in enzyme molecule. Surfactants had no significant effects on enzyme activity. The kinetics of enzyme-catalyzed reaction was studied, and the related parameters were obtained. Vmax was0.0774U/mg·min and Km was32.5161mg/mL.
     4. The batch fermentation kinetics models of feather degradation were studied. The kinetics models of bacterial growth and product formation were established based on the5L fermentation experiments. On the basis of shake flask tests, the dynamics of feather consumption was preliminary discussed. It was proved that the growth rate of bacteria had a greater effect on abilities of enzyme production and degrading feather than the bacterial concentration. So strains should be kept in the exponential growth phase during the fermentation process, which was good for feather degradation and enzyme production.
     5. Mechanism of feather degradation was studied. In the pretreatment process of feathers, the high pressure steam could damage surface of feathers and change the microstructure of feathers, which contributed to feathers degradation. SEM revealed that bacterial cells grew closely adhered to barbules of feathers, which caused the mechanical damage to feathers. Biochemical studies indicated that intracellular fluid contained disulfide reductase-like enzyme which could break the disulfide bonds and the extracellular fluid contained protein hydrolysis enzyme which could convert protein into polypeptide and amino acids. The amount and type of amino acid in the fermented liquid increased significantly along with the fermentation, which demonstrated that feather keratin degradation did occur.
     6. Application of fermentation products of feathers were discussed. The fermentation liquor could be used as additive of hair care products because it had good effects on hair care and finalize the design. Feathers residue had good adsorption to the acid and neutral dyes, so it could be used as an excellent adsorption material for dye wastewater treatment.
引文
[1]王强.鸟类羽毛的起源[J].生物进化,2008,(1):41-44.
    [2]杨崇岭,关丽涛,赵耀明.新型绿色纺织材料——羽毛纤维[J].上海纺织科技,2009,37(6):4-6.
    [3]吴安成,宋修彩.羽绒(毛)结构和性能研究[J].中国纺织大学学报,1990,16(2):94-99.
    [4]Teresa K.K., Justyna B.. Biodegradation of keratin waste:theory and practical aspects[J]. Waste Manage.,2011,31(8):1689-1701.
    [5]张莎莎.家蚕丝胶蛋白、羽毛角蛋白降解细菌的分离与角蛋白酶发酵培养基优化[D].山东,山东农业大学,2010.
    [6]Filipello Marchisio V.. Biology of dermatophytes and other keratinophilic fungi[M].2000, Revista Iberoamericana de Micologia, Bilbao,86-92.
    [7]Jones L.N.. Hair structure anatomy and comparative anatomy[J]. Clin. Dermatol., 2001,19(2):95-103.
    [8]王镜岩,朱圣庚,徐长法.生物化学[M].2002,第3版,高等教育出版社,北京,212-220.
    [9]Hill P., Brantley H., Dyke M.V.. Some properties of keratin biomaterials: kerateines[J]. Biomaterials,2010,31(4):585-593.
    [10]Fraser R.B.D., Mac Rae T.P., Rogers G.E.. Keratins-their composition, structure and biosynthesis[M].1972, Charles C. Thomas, Illinois,283.
    [11]Lee D.L., Baden H.P.. Chemistry and composition of the keratins. J. Dermatol., 1975,14(3):161-171.
    [12]Cameron G.J., Wess T.J., Bonser R.H.C.. Young's modulus varies with differential orientation of keratin in feathers[J]. J. Struct. Biol.,2003,143(2): 118-123.
    [13]Akhatar W., Edwards H.G.M.. Fourier-transform Raman spectroscopy of mammalian and avian keratotic biopolymers[J]. Spectocim. Acta A,1997,53A(1): 81-90.
    [14]Schroeder W.A., Kay L.M., Lewis B., Munger N.. The amino acid composition of certain morphologically distinct parts of white Turkey feathers, and of goose feather barbs and goose down[J]. J. Am. Chem. Soc.,1955,77(14):3901-3908.
    [15]孙中武,葛学亮,邹红菲,万青,毕冰.鹤、鹳羽毛角蛋白氨基酸分析与应用[J].林业科学,2008,144(13):102-106.
    [16]Gessesse A., Hatti-Kaul R., Gashe B.A., Mattiasson B.. Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather[J]. Enzyme Microbial.Technol.,
    2003,32(5):519-524. [17] Sangali S., Brandelli A.. Isolation and characterization of a novel feather-degrading bacterial strain[J]. Appl. Biochem. Biotechnol.,2000,87(1):17-24.
    [18]赵耀明,杨崇岭,蔡婷,刘立进.羽毛纤维的结构、性能及应用[J].针织工业,2007,(2):20-23.
    [19]关丽涛,杨崇岭,赵耀明.羽毛纤维的耐化学试剂性能[J].纺织学报,2008,29(4):27-31.
    [20]董云哲,周作伸.羽毛羽绒加工工艺[J].农业与技术,2008,128(11):126-131.
    [21]Evazynajad A., Kar A., Veluswamy S., McBride H., George B.R.. Production and characterization of yarns and fabrics utilizing Turkey feather fibers [A]. MRS Proceedings.2002,702:516-517.
    [22]蒋培清,徐卫林.羽绒/涤纶混合絮料的性能研究[J].毛纺科技,1998,26(1):39-41.
    [23]欧阳志鹏,苏志峰,赵耀明.羽毛角蛋白/聚乙烯醇共混纤维的制备与性能[J].合成纤维,2009,6:29-32.
    [24]欧阳志鹏,苏志锋,赵耀明.凝固条件对羽毛角蛋白/PVA初生纤维结构与性能的影响[J].合成材料老化与应用,2009,38(2):1-4.
    [25]El-Nagar K., Saleh S.M., Ramadan A.R.. Utilization of feather waste to improve the properties of the Egyptian cotton fabrics[J]. Journal of Textile and Apparel, Technology and Management,2006,5(2):1-12.
    [26]丁娟,王雪燕,王桢.环保型生物蛋白改性助剂改性羊毛的染色性能[J].毛纺科技,2009,37(11):1-5.
    [27]冯仑仑,王雪燕.鸡毛蛋白助剂改性大豆蛋白复合纤维的染色性能[J].毛纺科技,2008,36(11):13-16.
    [28]刘伟时,刘维锦.羽毛/棉混纺织物的染色性能研究[J].化纤与纺织技术,2007,(2):20-23.
    [29]Grazziotin A., Pimentel F.A., de Jong E.V., Brandelli A.. Nutritional improvement of feather protein by treatment with microbial keratinase[J]. Anim. Feed Sci. Tech.,2006,126(1-2):135-144.
    [30]姚清华,颜孙安,宋永康,罗土炎.饲用羽毛肽粉氨基酸营养价值研究[J].营养学报,2012,34(3):245-249.
    [31]李晓燕,喻洋,肖英平,金妙仁,洪奇华,陈安国,杨彩梅.酶解羽毛粉的体外蛋白质消化率及其在生长猪日粮中的应用效果[J].中国畜牧杂志,2012,48(15):33-36.
    [32]Gupta R., Ramnani P.. Microbial keratinases and their prospective applications: an overview[J]. Appl. Microbiol. Biotechnol.,2006,70(1):21-33.
    [33]许立和.以鸡羽毛为原料制取氮氨基酸微肥[J].化工科技市场,2002,(2):24-25.
    [34]Vesela M., Friedrich J.. Amino acid and soluble protein cocktail from waste keratin hydrolysed by a fungal keratinase of Paecilomyces marquandii[J]. Biotechnol. Bioproc. Eng.,2009,14(1):84-90.
    [35]Kim J.M., Choi Y.M., Suh H.J.. Preparation of feather digests as fertilizer with Bacillus pumilis KHS-1[J]. J. Microbiol. Biotechnol.,2005,15(3):472-476.
    [36]张平.热塑性禽类羽毛薄膜的力学性能研究[J].湖北农业科学,2011,50(1):169-171.
    [37]Barone J.R., Schmidt W.F., Gregoire N.T.. Extrusion of feather keratin[J]. J. Appl. Polym. Sci.,2006,100(2):1432-1442.
    [38]Ullah A., Vasanthan T., Bressler D., Elias A.L., Wu J.P.. Bioplastics from feather quill[J]. Biomacromolecules,2011,12 (10):3826-3832.
    [39]Martelli S.M., Moore G.R.P., Laurindo J.B.. Mechanical properties, water vapor permeability and water affinity of feather keratin films plasticized with sorbitol[J]. J.Polym. Environ.,2006,14(3):215-222.
    [40]Martelli S.M., Laurindo J.B.. Chicken feather keratin films plasticized with polyethylene glycol[J]. Int. J. Polym. Mater.,2012,61(1):17-29.
    [41]Song N.B., Jo W.S., Song H.Y., Chung K.S., Won M., Song K.B.. Effects of plasticizers and nano-clay content on the physical properties of chicken feather protein composite films[J]. Food Hydrocolloid.,2013,31(2):340-345.
    [42]Ullah A., Wu J.P.. Feather fiber-based thermoplastics:effects of different plasticizers on material properties[J]. Macromol. Mater. Eng.,2013,298(2):153-162.
    [43]Moore G.R., Martelli S.M., Gandolfo C., Sobral, P.J.A., Laurindo, J.B.. Influence of the glycerol concentration on some physical properties of feather keratin films [J]. Food Hydrocolloid.,2006,20(7):975-982.
    [44]Reddy N., Hu C.Y., Yan K.L., Yang Y.Q.. Thermoplastic films from cyanoethylated chicken feathers.2011,31(8):1706-1710.
    [45]Reddy N., Chen L.H., Yang, Y.Q.. Biothermoplastics from hydrolyzed and citric acid crosslinked chicken feathers[J]. Mater. Sci. Eng. C,2013,33(3):1203-1208.
    [46]Barone J.R., Arikan O.. Composting and biodegradation of thermally processed feather keratin polymer [J]. Polym. Degrad. Stabil.,2007,92(5):859-867.
    [47]Martinez-Hernandez A.L., Velasco-Santos C., De-Icaza M., Castano V.M.. Dynamical-mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers[J]. Compos. Part B-Eng.,2007,38(3): 405-410.
    [48]Mishra S.C., Nayak N.B., Satapathy A.. Investigation on bio-waste reinforced epoxy composites[J]. J. Reinf. Plast. Comp.,2010,29(19):3016-3020.
    [49]尹国强,崔英德,陈循军.羽毛蛋白接枝丙烯酸钠高吸水性树脂的合成与性能研究[J].化工进展,2008,27(7):1100-1105.
    [50]Saucedo-Rivalcoba V., Martinez-Hernandez A.L., Martinez-Barrera G., Velasco-Santos C., Castano V.M.. (Chicken feathers keratin)/polyurethane membranes[J]. Appl. Phys. A-Mater.,2011,104(1):219-228.
    [51]Senoz E., Wool R.P.. Microporous carbon-nitrogen fibers from keratin fibers by pyrolysis[J]. J. Appl. Polym. Sci.,2010,118(3):1752-1765.
    [52]De la Rosa G., Reynel-Avila H. E., Bonilla-Petriciolet A., Cano-Rodriguez I., Velasco-Santos C., Martinez-Hernandez A. L.. Recycling poultry feathers for Pb removal from wastewater:kinetic and equilibrium studies[J]. Int. J. Chem. Biol. Eng., 2008,1(4):185-193
    [53]Sun P., Liu Z.T., Liu Z.W., Chemically modified chicken feather as sorbent for removing toxic chromium(VI) ions[J]. Ind. Eng. Chem. Res.,2009,48(14): 6882-6889.
    [54]陈碧,陈菊,王雪燕.角蛋白助剂对重铬酸根离子的吸附性能研究[J].应用化工,2010,39(7):1055-1057.
    [55]徐绚绚,王雪燕.改性鸡毛角蛋白脱色剂对印染废水絮凝脱色性能的研究[J].印染助剂,2010,27(12):11-13.
    [56]Mittal A.. Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers[J]. J. Hazard. Mater.,2006,133(1-3):196-202.
    [57]Mittal A., Thakur V., Gajbe V.. Adsorptive removal of toxic azo dye Amido Black 10B by hen feather[J]. Environ. Sci. Pollut. R.,2013,20(1):260-269.
    [58]Gupta R., Beg Q.K., Lorenz P.. Bacterial alkaline proteases:molecular approaches and industrial applications [J]. Appl. Microbiol. Biotechnol.,2002,59(1): 15-32.
    [59]Gassessse A., Kaul R.H., Gashe B.A., Mattiasson B.. Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather[J]. Enzyme Microb. Technol., 2003,32(5):519-524.
    [60]Thanikaivelan P., Rao J.R., Nair B.U., Ramasami T.. Progress and recent trends in biotechnological methods for leather processing[J]. Trends Biotechnol.,2004,22(4): 181-188.
    [61]Macedo A.J., da Silva W.O.B., Gava R., Driemeier D., Henriques J.A.P., Termignoni C.. Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities [J]. Appl. Environ. Microbiol.,2005,71(1):594-596.
    [62]Chao Y.P., Xie F.H., Yang J., Lu J.H., Qian S.J.. Screening for a new Streptomyces strain capable of efficient keratin degradation[J]. J. Environ Sci.,2007, 19(9):1125-1128.
    [63]陈循军,尹国强,崔英德.羽毛角蛋白综合开发利用新进展[J].化工进展,2008,27(9):1390-1393.
    [64]朱选,金征宇.羽毛角蛋白挤压机制的研究[J].中国粮油学报,1998,13(4):16-19.
    [65]贾如琰,何玉凤,王荣民,李芳蓉,王艳.角蛋白的分子构成、提取及应用[J].化学通报,2008,4:265-271.
    [66]Liu H., Zhang J., Liu W.F., Bao N., Cheng C., Zhang C.L.. Preparation and characterization of activated charcoals from a new source:Feather[J]. Mater. Lett., 2012,87:17-19.
    [67]Wang Q., Cao Q., Wang X.Y., Jing B., Kuang H., Zhou L.. A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors[J]. J. Power Sources,2013,225(1):101-107.
    [68]Ozdemir G., Sezgin O.E.. Keratin-rhamnolipids and keratin-sodium dodecyl sulfate interactions at the air/water interface[J]. Colloid Surf. B,2006,52(1):1-7.
    [69]练向阳,李亚滨.鸡毛角蛋白的纺丝溶液的制备方法[J].山东纺织科技,2009,1:53-56.
    [70]Xie H.B., Li S.H., Zhang S.B.. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers[J]. Green Chem.,2005,7(8):606-608.
    [71]Hameed N., Guo Q.P.. Blend films of natural wool and cellulose prepared from an ionic liquid[J]. Cellulose,2010; 17(4):803-813.
    [72]Idris A., Vijayaraghavan R., Rana U.A., Fredericks D., Patti A.F., MacFarlane D.R.. Dissolution of feather keratin in ionic liquids[J]. Green Chem.,2013,15(2): 525-534
    [73]Phillips D.M., Drummy L.F., Conrady D.G., Fox D.M., Naik R.R., Stone M.O., Trulove P.C., De Long H.C., Mantz R.A.. Dissolution and regeneration of bombyx mori silk fibroin using ionic liquids[J]. J. Am. Chem. Soc.,2004,126(44): 14350-14351.
    [74]Wang Y.X., Cao X.J.. Extracting keratin from chicken feathers by using a hydrophobic ionic liquid[J]. Process Biochem.,2012,47(5):896-899.
    [75]赵玲,汤尧旭,赵瑞方,毛炜坤,陈胜,华坚.羽毛在离子液体中的溶解及再生研究[J].毛纺科技,2010,38(8):1-5.
    [76]Jain P.C., Agrawal S.C.. A note on the keratin decomposing capability of some fungi[J]. Transact. Mycolog. Soci. Japan,1980,21(4):513-517.
    [77]Cao L., Tan H., Liu Y., Xue X., Zhou S.. Characterization of a new keratinolytic trichoderma atroviride strain F6 that completely degrades native chicken feather[J]. Lett. Appl Microbiol,2008,46(3):389-394.
    [78]Moreira-Gasparin F.G., Souza C.G.M., Costa A.M., Alexandrino A.M., Bracht C.K., Boer C.G., Peralta R.M.. Purification and characterization of an efficient poultry feather degrading-protease from myrothecium verrucaria[J]. Biodegradation,2009, 20(5):727-736.
    [79]Marcondes N.R., Taira C.L., Vandresen D.C., Svidzinski T.I.E., Kadowaki M.K., Peralta R.M.. New feather-degrading filamentous fungi[J]. Microb Ecol.,2008,56(1): 13-17.
    [80]Kachuei R., Emami M., Naeimi B., Diba K.. Isolation of keratinophilic fungi from soil in Isfahan province, Iran[J]. J. Mycol. Med.,2012,22(1):8-13.
    [81]Blyskal B.. Fungi utilizing keratinous substrates [J]. Internat. Biodeter. Biodegr., 2009,63 (6):631-653.
    [82]Noval J.J., Nickerson W.J.. Decomposition of native keratin by Streptomyces fradiae[J]. J. Bacteriol.,1959,77(3):251-263.
    [83]丁正民,刘达先,马永辉.一株分解鸡毛角蛋白的放线菌[J].微生物学报,1993,33(3):227-232.
    [84]Gushterova A., Vasileva-Tonkova E., Dimova E., Nedkov P., Haertle T. Keratinase production by newly isolated Antarctic actinomycete strains[J]. World J. Microbiol. Biotechnol.,2005,21(6-7):831-834.
    [85]Syed G.D., Lee J.C., Li W.J., Kim C.J., Agasar D.. Production, characterization and application of keratinase from Streptomyces gulbargensis[J]. Bioresour. Technol., 2009,100(5):1868-1871.
    [86]Szabo L., Benedek A., Szabo M.L., Barabas G.. Feather degradation with a thermotolerant Streptomyces graminofaciens strain[J]. World J. Microbiol. Biotechnol.,2000,16(3):252-255.
    [87]Williams C.M., Richter C.S., Mackenzie J.M.J.. Isolation, identification, and characterization of a feather-degrading bacterium[J]. Appl. Environ. Microbiol.,1990, 56(6):1509-1515.
    [88]Cao Z.J., Lu D., Luo L.S., Deng Y.X., Bian Y.G., Zhang X.Q., Zhou M.H.. Composition analysis and application of degradation products of whole feathers through a large scale of fermentation[J]. Environ. Sci. Pollut. Res. Int.,2011,19(7): 2690-2696.
    [89]Zhang B., Jiang D.D., Zhou W.W., Hao H.K., Niu T.G.. Isolation and characterization of a new Bacillus sp.50-3 with highly alkaline keratinase activity from Calotes versicolor faeces[J]. World J. Microbiol. Biotechnol.,2009,25(4): 583-590.
    [90]Cai C.G., Lou B.G., Zheng X.D.. Keratinase production and keratin degradation by a mutant strain of Bacillus subtilis[J]. J. Zhejiang Univ. Sci. B,2008,9(1):60-67.
    [91]Kumar A.G., Swarnalatha S., Gayathri S., Nagesh N., Sekaran G.. Characterization of an alkaline active-thiol forming extracellular serine keratinase by the newly isolated Bacillus pumilus[J]. J. Appl. Microbiol.,2008,104(2):411-419.
    [92]Ghosh A., Chakrabarti K., Chattopadhyay D.. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereus DCUW[J]. J. Ind. Microbiol. Biotech.,2008,35(8):825-834.
    [93]Ramnani P., Singh R., Gupta R.. Keratinolytic potential of Bacillus licheniformis RG1:structural and biochemical mechanism of feather degradation[J]. Can. J. Microbiol.,2005,51(3):191-196.
    [94]Pillai P., Mandge S., Archana G.. Statistical optimization of production and tannery applications of a keratinolytic serine protease from Bacillus subtilis P13[J]. Process Biochem.,2011,46(5):1110-1117.
    [95]Lo W.H., Too J.R., Wu J.Y.. Production of keratinolytic enzyme by an indigenous feather-degrading strain Bacillus cereus Wu2[J]. J. Biosci. Bioeng.,2012, 114(6):640-647.
    [96]Fakhfakh-Zouaria N., Haddara A., Hmideta N., Frikhab F., Nasri M.. Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties [J]. Process Biochem.,2010,45(5):617-626.
    [97]Nam G.W., Lee D.W., Lee H.S., Lee N.J., Kim B.C., Choe E.A., Hwang J.K., Suhartono M.T., Pyun Y.R.. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe[J]. Arch. Microbiol.,2002,178(6):538-547.
    [98]Kublanov I.V., Tsiroulnikov K.B., Kaliberda E.N., Rumsh L.D., Haertle T., Bonch-Osmolovskaya E.A.. Keratinase of an anaerobic thermophilic bacterium Thermoanaerobacter sp. strain 1004-09 isolated from a hot spring in the Baikal rift zone[J]. Microbiology,2009,78(1):67-75.
    [99]Kublanov I.V., Perevalova A.A., Slobodkina G.B., Lebedinsky A.V., Bidzhieva S.K., Kolganova T.V., Kaliberda E.N., Rumsh L.D., Haertle T., Bonch-Osmolovskaya E.A.. Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia) [J]. Appl. Environ. Microbiol.,2009, 75(1):286-291.
    [100]Brandelli A., Daroit D.J., Riffel A.. Biochemical features of microbial keratinases and their production and applications [J]. Appl. Microbiol. Biotechnol., 2010,85(6):1735-1750.
    [101]韦革宏,王卫卫.微生物学[M].2008,科学出版社,北京,290-294.
    [102]宋超先.微生物与发酵基础教程[M].2007,天津大学出版社,天津.
    [103]周群英,高廷耀.环境工程微生物学[M].2000,第2版.高等教育出版社,北京,122-132.
    [104]De Toni C.H., Richter M.F., Chagas J.R., Henriques J.A.P., Termignoni C. Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophilia strain[J]. Can. J. Microbiol.,2002, 48(4):342-348.
    [105]Yamamura S., Morita Y., Hasan Q., Rao S.R., Murakami Y., Yokoyama K., Tamiya E.. Characterization of a new keratin-degrading bacterium isolated from deer fur[J]. J. Biosci. Bioeng.,2002,93(6):595-600.
    [106]Yamamura S., Morita Y., Hasan Q., Yokoyama K., Tamiya E.. Keratin degradation:a cooperative action of two enzymes from Stenotrophomonas sp. [J]. Biochem. Biophys. Res. Commun.,2002,294(5):1138-1143.
    [107]Jeong J.H., Lee O.M., Jeon Y.D., Kim J.D., Lee N.R., Lee C.Y., Son H.J. production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity [J]. Process Biochem.,2010,45(10):1738-1745.
    [108]Cao Z.J., Zhang Q., Wei D.K., Chen L., Wang J., Zhang X.Q., Zhou M.Hua.. Characterization of a novel Stenotrophomonas isolate with high keratinase activity and puriWcation of the enzyme[J]. J. Ind. Microbiol. Biotechnol.2009,36(2):181-188.
    [1]Reddy N. G., Ramakrishna D. P. N., Rajagopal S. V.. Mutation induced enhanced production of bioactive metabolites by a mutant strain of marine Streptomyces rochei (Isolate No.10) [J]. Asian J. Chem.,2011,23(9):4205-4208.
    [2]Lin C.J., Yang L.R., Xu G., Wu J.P.. Enhancement of haloacetate dehalogenase production by strain mutation and condition optimization[J]. Biotechnol. Bioproc. Eng.,2011,16(5):923-929.
    [3]Darvishi F., Destain J., Nahvi I., Thonart P., Zarkesh-Esfahani H.. High-level production of extracellular lipase by Yarrowia lipolytica mutants from methyl oleate[J]. New Biotechnol.,2011,28(6):756-760.
    [4]Meng C., Shi X., Lin H., Chen J.F., Guo Y.H.. UV induced mutations in Acidianus brierleyi growing in a continuous stirred tank reactor generated a strain with improved bioleaching capabilities[J]. Enzyme Microb. Technol.,2007,40(5): 1136-1140.
    [5]臧荣鑫,杨具田.生物化学实验教程[M].2010,兰州大学出版社,兰州,178.
    [6]Gradisar H., Kern S., Friedrich J.. Keratinase of doratomyce microsporus[J]. Appl. Microbiol. Biotechnol.,2000,53(2):196-200.
    [7]杨建雄.分子生物学[M].2009,化学工业出版社,北京,115-116.
    [8]Finogenova T.V., Puntus I.F., Karnzolova S.V., Lunina Y.N., Monastyrskaya S.E., Morgunov I.G., Boronin A.M.. Mutant Yarrowia lipolytica strains producing citric acid from glucose[J]. Appl. Biochem. Microbiol.,2008,44(2):197-202.
    [9]Gervais P., Molin P.. The role of water in solid-state fermentation[J]. Biochem. Eng.J.,2003,13(2-3):85-101.
    [10]Kunt I.D.. Hydration of macromolecules Ⅲ. hydration of polypeptides [J]. J. Am. Chem. Soc.,1971,93(2):514-516.
    [11]Quinn P.Y.. A lipid phase separation model for low-temperature damage to biological membranes[J]. Cryobiology,1985,22(2):128-146.
    [12]Mazur P., Rall W.F., Rigopoulos N.. Relative contributions of the fraction of unfrozen water and of salt concentration of the survival of slowly frozen human erythrocytes[J]. Biophys. J.,1981,36(3):653-675.
    [13]Grigelmo-Miguel N., Martin-Belloso O.. Characterization of dietary fiber from orange juice extraction[J]. Food Res. Int.,1999,31(5):355-361.
    [14]Jeong J.H., Park K.H., Oh D.J., Hwang D.Y., Kim H.S., Lee Ch.Y., Son H.J.. Keratinolytic enzyme-mediated biodegradation of recalcitrant feather by a newly isolated Xanthomonas sp. P5[J]. Polym. Degrad. Stab.,2010,95(10):1969-1977.
    [15]Kumar E.V., Srijana M., Chaitanya K., Reddy Y.H.K., Reddy G.. Biodegradation of poultry feathers by a novel bacterial isolate Bacillus altitudinis GVC11[J]. Indian J. Biotechnol.,2011,10(4):502-507.
    [16]Mabrouk M. E. M.. Feather degradation by a new keratinolytic Streptomyces sp. MS-2[J]. World J. Microbiol. Biotechnol.,2008,24(10):2331-2338.
    [17]Anbu P., Gopinath S.C.B., Hilda A., Lakshmipriya T., Annadurai G.. Optimization of extracellular keratinase production by poultry farm isolate Scopulariopsis brevicaulis[J]. Bioresour. Technol.,2007,98(6):1298-1303.
    [18]Friedrich A.B., Antranikian G.. Keratin degradation by Fervidobacterium pennavarans, a novel thermophilic anaerobic species of the order thermotogales[J]. Appl. Environ. Microbiol.,1996,62(8):2875-2882.
    [19]Jeong J.H., Lee O.M., Jeon Y.D., Kim J.D., Lee N.R., Lee C.Y., Son H.J.. Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity [J]. Process Biochem.,2010,45(10):1738-1745.
    [20]Yamamura S., Morita Y., Hasan Q., Rao S.R., Murakami Y., Yokoyama K., Tamiya E.. Characterization of a new keratin-degrading bacterium isolated from deer fur[J]. J. Biosci. Bioeng.,2002,93(6):595-600.
    [21]陈洪伟,叶淑红,王际辉,王国新,王晗,徐龙权,姜淼.混菌固态发酵麸皮制备蛋白饲料的研究[J].中国酿造.2011,(6):74-77.
    [22]孙斐,陈靠山,张鹏英.固态发酵麸皮和玉米芯生产拟康氏木霉孢子的研[J].中国农学通报.2010,26(6):236-239.
    [23]da Gioppo N.M., Moreira-Gasparin F.G., Costa A.M., Alexandrino A.M., de Souza C.G., Peralta R.M.. Infuence of the carbon and nitrogen sources on keratinase production by Myrothecium verrucaria in submerged and solid state cultures [J]. J. Ind. Microbiol. Biotechnol.,2009,36(5):705-711.
    [24]Kainoor P.S., Naik G.R.. Production and characterization of feather degrading keratinase from Bacillus sp. JB99[J]. Indian J. Biotechnol.,2010,9(4):384-390.
    [25]Jeong J.H., Jeon Y.D., Lee O.M., Kim J.D., Lee N.R., Park G.T., Son H.J.. Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil[J]. Biodegradation,2010,21(6):1029-1040.
    [26]Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V.. Molecular and biotechnological aspects of microbial proteases [J]. Microbiol. Mol. Biol. Rev.,1998, 62(3):597-635.
    [27]Fakhfakh-Zouari N., Haddar A., Hmidet N., Frikha F., Nasri M.. Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties[J]. Process Biochem.,2010,45(5):617-626.
    [28]Vidyasagar M., Prakash S.B., Sreeramulu K... Optimization of culture conditions for the production of haloalkaliphilic thermostable protease from an extremely halophilic archaeon Halogeometricum sp. TSS101[J]. Lett. Appl. Microbiol.,2006, 43(4):385-391.
    [29]Tatineni R., Doddapaneni K.K., Potumarthi R.C., Vellanki R.N., Kandathil M.T., Kolli N., Mangamoori L.N.. Purification and characterization of an alkaline keratinase from Streptomyces sp.[J]. Bioresou Technol.,2008,99(6):1596-1602.
    [1]Daroit D.J., Correa A.P.F., Brandelli A.. Production of keratinolytic proteases through bioconversion of feather meal by the Amazonian bacterium Bacillus sp. P45[J]. Int. Biodeterior. Biodegrad.,2011,65(1):45-51.
    [2]Kuo J.M., Yang J.I., Chen W.M., Pan M.H., Tsai M.L., Lai Y.J., Hwang A., Pan B.S., Lin C.Y.. Purification and characterization of a thermostable keratinase from Meiothermus sp. 140[J]. Int. Biodeterior. Biodegrad.,2012,70:111-116.
    [3]Syed D.G., Lee J.C., Li W.J., Kim C.J., Agasar D.. Production, characterization and application of keratinase from Streptomyces gulbargensis[J]. Bioresour. Technol., 2009,100(5):1868-1871.
    [4]Mitsuiki S., Ichikawa M., Oka T., Sakai M., Moriyama Y., Sameshima Y., Goto M., Furukawa K.. Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1[J]. Enzyme Microb. Technol.,2004,34(5): 482-489.
    [5]Bach E., Daroit D.J., Corre^a A.P.F., Brandelli A.. Production and properties of keratinolytic proteases from three novel Gram-negative feather-degrading bacteria isolated from Brazilian soils[J]. Biodegradation,2011,22(6):1191-1201.
    [6]Fakhfakh-Zouari N., Haddar A., Hmidet N., Frikha F., Nasri M.. Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties[J]. Process Biochem.,2010,45(5):617-626.
    [7]Mitsuiki S., Sakai M., Moriyama Y., Goto M., Furukawa K.. Purification and some properties of keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1[J]. Biosci. Biotechnol. Biochem.,2002,66(1):164-167.
    [8]Friedrich A.B., Antranikian G.. Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermatogales[J]. Appl. Environ. Microbiol.,1996,62(8):2875-2882.
    [9]Nam G.W., Lee D.W., Lee H.S., Lee N.J., Kim B.C., Choe E.A., Hwang J.K., Suhartono M.T., Pyun Y.R.. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinaseproducing thermophilic anaerobe[J]. Arch. Microbiol.,2002,178(6):538-547.
    [10]De Toni C.H., Richter M.F., Chagas J.R., Henriques J.A.P., Termignoni C.. Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophilia strain[J]. Can. J. Microbiol.,2002, 48(4):342-348.
    [11]Yamamura S., Morita Y., Hasan Q., Yokoyama K., Tamiya E.. Keratin degradation:a cooperative action of two enzymes from Stenotrophomonas sp. [J]. Biochem. Biophys. Res. Commun.,2002,294(5):1138-1143.
    [12]Werlang P.O., Brandelli A.. Characterization of a novel feather-degrading Bacillus sp. strain[J]. Appl. Biochem. Biotechnol.,2005,120(1):71-79.
    [13]Suntornsuk W., Tongjun J., Onnim P., Oyama H., Ratanakanokchai K., Kusamran T., Oda K.. Purification and characterisation of keratinase from a thermotolerant feather-degrading bacterium[J]. World J. Microbiol. Biotechnol.,2005, 21(6-7):1111-1117.
    [14]Fakhfakh N., Kanoun S., Manni L., Nasri M.. Production and biochemical and molecular characterization of a keratinolytic serine protease from chicken feather-degrading Bacillus licheniformis RPk[J]. Can. J. Microbiol.,2009,55(4): 427-436.
    [15]Riffel A., Brandelli A., Bellato C.M., Souza G.H.M.F., Eberlin M.N., Tavares F.C.A.. Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6[J]. J. Biotechnol.,2007,128(3):693-703.
    [16]Balaji S., Kumar M.S., Karthikeyan R., Kumar R., Kirubanandan S., Sridhar R., Sehgal P.K.. Purification and characterization of an extracellular keratinase from a hornmeal-degrading Bacillus subtilis MTCC (9102)[J]. World J. Microbiol. Biotechnol.,2008,24(11):2741-2745.
    [17]Tatineni R., Doddapaneni K.K., Potumarthi R.C., Vellanki R.N., Kandathil M.T., Kolli N., Mangamoori L.N.. Purification and characterization of an alkaline keratinase from Streptomyces sp.[J]. Bioresour. Technol.,2008,99(6):1596-1602.
    [18]Rozs M., Manczinger L., Vagvolgyi C., Kevei F.. Secretion of a trypsin-like thiol protease by a new keratinolytic strain of Bacillus licheniformis [J]. FEMS Microbiol. Lett.,2001,205(2):221-224.
    [19]沈同,王镜岩.生物化学[M].2002,第2版.高等教出版社,北京,241-247.
    [1]宋超先.微生物与发酵基础教程[M].2007,天津大学出版社,天津,175-179.
    [2]张和春,范卫民,张元兴.天蓝色链霉菌产蓝色素的分批发酵动力学分析[J].过程工程学报,2002,2(3):241-245.
    [3]陈聪,周素梅.固态发酵生产裂褶菌多糖的动力学研究[J].化学与生物工程,2010,27(8):77-79.
    [4]郝俊斌,周玉杰,张建安,王欣昌,戴玲妹,刘德华.纤维素酶固态发酵动力学的研究[J].可再生能源,2009,27(1):27-31.
    [5]蔡成岗,郑晓冬.以羽毛、人发为枯草芽胞杆菌KD-N2液体发酵碳、氮源生产角蛋白酶模型的建立[J].农业生物技术学报,2009,17(2):328-333.
    [1]Teresa K.K., Justyna B.. Biodegradation of keratin waste:theory and practical aspects[J]. Waste Manage.,2011,31(8):1689-1701.
    [2]Ruffin P., Andrieu S., Biserte G., Biguet J.. Sulphitolysis in keratinolysis. Biochemical proof[J]. Sabouraudia,1976,14(2):181-184.
    [3]Kunert J.. Biochemical mechanism of keratin degradation by the actinomycete Streptomyces fradidae and the fungus Microsporum gypseum, a comparision[J]. J. Basic Microbiol.,1989,29(9):597-604.
    [4]Bockle B., Galunsky B., Muller R.. Characterization of keratinolytic serine protease from Streptomyces pactum DSM 40530[J]. Appl. Environ. Microbiol.,1995, 61(10):3705-3710.
    [5]Sangali S., Brandelli A.. Isolation and characterization of a novel feather-degrading bacterial strain[J]. Appl. Biochem. Biotechnol.,2000,87(1):17-24.
    [6]Yamamura S., Morita Y., Hasan Q., Yokoyama K., Tamiya E.. Keratin degradation:a cooperative action of two enzymes from Stenotrophomonas sp. [J]. Biochem. Biophys. Res. Commun.,2002,294(5):1138-1143.
    [7]Mitola G., Escalona F., Salas R., Garcia E., Ledesma A.. Morphological characterization of in-vitro human hair keratinolysis, produced by identified wild strains of Chrysosporium species[J]. Mycopathologia,2002,156(3):163-169.
    [8]Moreira F.G., Souza C.G.M., Costa M.A.F., Reis S., Peralta R.M.. Degradation of keratinous materials by the plant pathogenic fungus Myrothecium verrucaria[J]. Mycopathologia,2007,163(3):153-160.
    [9]Beg Q.K., Gupta R.. Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis[J]. Enzyme Microb. Technol.,2003,32(2):294-304.
    [10]Ellman G.L.. Tissue sulfydyl groups[J]. Arch. Biochem. Biophys.,1959,82(1): 70-77.
    [11]Kunert J., Stransky Z.. Thiosulfate production from cysteine by the keratinolytic prokaryote Streptomyces fradiae[J]. Arch. Microbiol.,1988,150(6):600-601.
    [12]Bhushan B.. Laboratory manual in Chemistry[M].2003, Arya publications, India, New Delhi,84-85.
    [13]Brown D.M., Upcroft J.A., Upcroft P.. A thioredoxin-reductase-class of disulfide reductase in protozoan parasite Giardia duodenalis[J]. Mol. Biochem. Parasitol.,1996, 83(2):211-220.
    [14]Yu P., McKinnon J.J., Christensen C.R., Christensen D.A.. Using synchrotron-based FTIR microspectroscopy to reveal chemical features of feather protein secondary structure:comparison with other feed protein sources[J]. J. Agric. Food Chem.,2004,52(24):7353-7361.
    [15]Akhtar W., Edwards H.G.M.. Fourier-transform Raman spectroscopy of mammalian andavian keratotic biopolymers[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc.,1997,53A(1):81-90.
    [16]Aluigi A., Zoccola M., Vineis C., Tonin C., Ferrero F., Canetti M.. Study on the structure and properties of wool keratin regenerated from formic acid[J]. Int. J. Biol. Macromol,2007,41(3):266-73.
    [17]Xie H.B., Li S.H., Zhang S.B.. Ionic liquids as novel solvents for the dissolution and blending of wool keratin fibers[J]. Green Chem.,2005,7(8):606-608.
    [18]Reddy N., Yang Y.Q.. Structure and properties of chicken feather barbs as natural protein fibers[J]. J. Polym. Environ.,2007,15(2):81-87.
    [19]Nam G.W., Lee D.W., Lee H.S., Lee N.J., Kim B.C., Choe E.A., Hwang J.K., Suhartono M.T., Pyun Y.R.. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinaseproducing thermophilic anaerobe[J]. Arch. Microbiol.,2002,178(6):538-547.
    [20]Zaghloul T.I., Embaby A.M., Elmahdy A.R.. Key determinants affecting sheep wool biodegradation directed by a keratinase-producing Bacillus subtilis recombinant strain[J]. Biodegradation,2011,22(1):111-128.
    [21]Jeong J.H., Jeon Y.D., Lee O.M., Kim J.D., Lee N.R., Park G.T., Son H.J.. Characterization of a multifunctional feather-degrading Bacillus subtilis isolated from forest soil[J]. Biodegradation,2010,21(6):1029-1040.
    [22]Ramnani P., Singh R., Gupta R.. Keratinolytic potential of Bacillus licheniformis RG1:structural and biochemical mechanism of feather degradation[J]. Can. J. Microbiol.,2005,51(3):191-196.
    [23]Bockle B., Muller R.. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers[J]. Appl. Environ. Microbiol.,1997,63(2): 790-792.
    [24]Onifade A.A., Al-Sane N.A., Al-Musallam A.A., Al-Zarban S.. A review: potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources [J]. Bioresour. Technol.,1998,66(1):1-11.
    [25]朱晓飞,张玲,赵平芝,王睿勇.链霉菌B221的角蛋白降解机制初探[J].中国农学通报,2007,23(6):18-22.
    [26]黄林,熊智强,蔡华静,郭美锦,涂国全.链霉菌降解角蛋白的生化机制研究[J].微生物学通报,2006,33(4):36-42.
    [27]Jeong J.H., Lee O.M., JeonY.D., Kim J.D., Lee N.R., Lee C.Y., Son H.J.. Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growth-promoting activity [J]. Process Biochem.,2010,45(10):1738-1745.
    [28]Jeong J.H., Park K.H., Oh D.J., Hwang D.Y., Kim H.S., Lee C.Y., Son H.J.. Keratinolytic enzyme-mediated biodegradation of recalcitrant feather by a newly isolated Xanthomonas sp. P5[J]. Polym. Degrad. Stabil.,2010,95(10):1969-1977.
    [29]Harrap B. S., Woods E. F.. Soluble derivatives of feather keratin.1. Isolation, fractionation and amino acid composition[J]. Biochem. J.,1964,92(1):8-18.
    [1]Brandelli A., Daroit D.J., Riffel A.. Biochemical features of microbial keratinases and their production and applications[J]. Appl. Microbiol. Biotechnol.,2010,85(6): 1735-1750.
    [2]陈循军,尹国强,崔英德.羽毛角蛋白综合开发利用新进展[J].化工进展,2008,27(9):1390-1393.
    [3]於勤,郑赛华,汪原.化烫头发蛋白质丢失的测定及护发香波对其修护的作用[J].日用化学工业,2002,32(5):62-64.
    [4]高飞,金锡鹏.物理性因素对头发的影响[J].日用化学品科学,2000,23(4):141-145.
    [5]梁平.现代护发素—季铵化蛋白质介绍[J].福州师专学报,1991,(2):63-67.
    [6]裘丙毅.化妆品化学与工艺技术大全[M].1997,中国轻工业出版社,北京,203,663,1132.
    [7]蔡婷,赵耀明,杨崇岭.羽毛角蛋白的护发效果研究[J].香料香精化妆品,2007(5):14-16.
    [8]Sandhu S.S., Rohbins C.R.. A Simple and sensitive technique, based on protein loss measurements, to assess surface damage to human hair[J]. J. Soc. Cosmet. Chem., 1993,44(3):163-175.
    [9]刘莲,俞镇慌.羽毛非织造材料对有毒染料孔雀石绿的吸附研究[J].产业用纺织品,2009,(1):15-20.
    [10]Sun P., Liu Z.T., Liu Z.W.. Chemically modified chicken feather as sorbent for removing toxic chromium(VI) ions[J]. Ind. Eng. Chem. Res.,2009,48(14): 6882-6889.
    [11]Mittal A.. Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater[J]. J. Hazard. Mater.,2006, 128(2-3):233-239.
    [12]de la Rosa G., Reynel-Avila H. E., Bonilla-Petriciolet A., Cano-Rodriguez I., Velasco-Santos C., Martinez-Hernandez A. L.. Recycling poultry feathers for Pb removal from wastewater:kinetic and equilibrium studies [J]. Int. J. Chem. Biol. Eng., 2008,1(4):185-193.
    [13]党艳,罗倩,李克斌,魏红,郭宏生.荞麦皮生物吸附去除水中罗丹明B的吸附条件响应面法及热力学研究[J].环境科学学报,2011,31(12):2601-2608.
    [14]Jain R., Sikarwar S.. Removal of hazardous dye congored from waste material[J]. J. Hazard. Mater.,2008,152(3):942-948.
    [15]胡英,吕瑞东,刘国杰,陆曜南.物理化学(上册)[M].1993,第3版,高等教育出版社,北京,363-364.
    [16]钱永,黄天寅,王东田,程宏英,龚菁.活性染料在D201大孔树脂上的脱色性能[J].过程工程学报,2010,10(6):1098-1103.
    [17]Ozcan A., Mine Oncu E., Safa Ozcan A.. Kinetics, isotherm and thermodynamic studies of adsorption of acid blue 193 from aqueous solutions onto natural sepiolite[J]. Colloid. Surface. A Physicochem. Eng. Aspects.,2006,277(1-3):90-97.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700