用户名: 密码: 验证码:
铝土矿选择性磨矿—聚团浮选脱硅研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以高效利用我国中低铝硅比的一水硬铝石型铝土矿为目标,开展铝土矿选矿脱硅研究。根据这类资源特点,认为铝土矿选矿必须实现全粒级回收A1203,其技术关键环节是微细粒级铝、硅矿物的分离和粗粒连生体的回收。论文以复合捕收剂疏水聚团为基础,系统地进行了铝土矿选择性磨矿-聚团浮选工艺与机理的研究。
     研究表明,对于铝硅比在3-6范围的铝土矿矿石,磨矿产品的粒度分布呈两极分化,磨矿产品普遍具有选择性碎解特征,+0.074mm粒级的铝硅比较原矿铝硅比高1-2,但以矿物连生体为主,可浮性差;捕收剂油酸钠在一水硬铝石表面的吸附量远高于在铝硅酸盐脉石矿物表面,铝、硅矿物具有较好的选择性分离基础。由此认为,铝土矿选择性磨矿-聚团浮选的工艺基础对于中低铝硅比铝土矿具有普适性。
     油酸钠作为捕收剂浮选时,一水硬铝石颗粒间同相聚集,其本质为疏水絮凝。一水硬铝石的可浮性与聚团的表观粒度呈正相关关系。六偏磷酸钠抑制一水硬铝石的浮选,使聚团粒度降低;增加油酸钠用量、提高浮选温度以及油酸钠和羟肟酸、表面活性剂OL组成的复合捕收剂均可增加聚团粒度,提高一水硬铝石的可浮性。
     油酸钠在一水硬铝石表面的吸附形式随温度而变化,并影响浮选。在低温(15℃)下,油酸钠在一水硬铝石表面的吸附等温线呈典型的由三个直线段构成的S型,达到半胶束吸附时的油酸钠浓度远高于浮选浓度,因此,低温下油酸钠的捕收能力弱。升高温度到32℃,油酸钠的吸附等温线向L型转变,低油酸钠浓度下的吸附量增大,并对应着一水硬铝石聚团粒度增大和可浮性提高。
     研究发现,一水硬铝石的浮选和疏水聚团均易发生在捕收剂溶液表面张力的低值区。少量羟肟酸和表面活性剂OL可以降低油酸钠溶液的界面张力,并与提高捕收能力和促进疏水聚团有对应关系。其中苯甲羟肟酸提高了油酸钠在一水硬铝石表面的吸附量。提出可以将药剂的表面张力值作为初步筛选以油酸钠为主的复合捕收剂的一个判据,并据此形成了一种以油酸钠、苯甲羟肟酸和OL系列药剂组成的铝土矿脱硅复合捕收剂。
     选择性磨矿-聚团浮选工艺研究结果表明,捕收剂组合、搅拌强度等因素影响铝土矿聚团浮选效果。基于复合捕收剂KL的选择性磨矿-聚团浮选工艺,对于中、低铝硅比矿石均有良好的适应性,在对不同产地、不同铝硅比的各种规模的铝土矿选矿脱硅中,均获得了良好的技术指标。对山西铝土矿的扩大连续试验,在原矿铝硅比为4.32时,可获得精矿铝硅比为11.23、Al2O3回收率85.28%的选别指标。对中州铝土矿的工业试验结果表明,铝硅比为6左右中等铝硅比矿石,可获得精矿铝硅比12.33、Al2O3回收率88.74%的指标;对于铝硅比为4左右的低铝硅比矿石,也可获得精矿铝硅比9.34、A1203回收率79.15%的指标。选择性磨矿-聚团浮选工艺在中国铝业中州分公司的生产应用中,对铝硅比为5.5左右和3.5左右的铝土矿选矿脱硅,均取得了良好的效果,为拜尔法生产氧化铝提供了可靠的优质原料,为解决优质铝土矿资源短缺问题,提供了一个有效的途径。
Aiming at efficient utilization of diaspore type bauxite with medium and low alumina-silica ratio, the bauxite desiliciation by beneficiation was studied. It is concluded that Al2O3of all sizes must be recovered in bauxite beneficiation, in which the key technology is the comprehensive recovery of both micro size resource and coarse intergrowth. Based on hydrophobic aggregation of combined colletors, a new processing technology of bauxite-selective grinding-aggregation flotation was investigated, and its mechanism was discussed.
     It was shown that the bauxite grinding products with alumina-silica ratio3-6exhibited a great difference not only in size distribution, but also in disintegration. Usually, bauxite with+0.074mm size after grinding is1-2higher in alumina-silica ratio than that of the raw ores, but the mineral particles in thus size is mainly intergrowth and its flotability was very poor. The adsorption of sodium oleate on diaspore surface was considerably higher than that on aluminosilicate surface and it exhibited a selective collection of diaspore. In this way, bauxite selective grinding-aggregation process was commonly suitable for bauxite with medium and low alumina-silica ratio.
     The same-phase aggregation between diaspore particles could be observed due to hydrophobic aggregation when sodium oleate was used as collector. The flotability of diaspore was positively correlated with the apparent size of hydrophobic aggregate. That is to say, the factors affecting aggregate apparent size could also affect the mineral flotability: sodium hexametaphosphate depresses diaspore flotation because it decreased the aggregate size; Both the aggregate size and flotability of diaspore were greatly promoted when increasing sodium oleate dosage, increasing flotation temperature and using combined collector consisting of sodium oleate, hydroximic acid and OL
     The adsorption of sodium oleate on diaspore surface changed as a function of temperature which affected the flotation of diaspore. It could be observed that adsorption isotherm of sodium oleate on diaspore surface presents a typical S type consisting of three line segments under low temperature (15℃). The concentration of semi-micelle adsorption of sodium oleate was much higher than that of flotation. When the temperature was increased to32℃, the adsorption isotherm of sodium oleate turned to L type. The adsorption of sodium oleate in low concentration increased, resulting in the increases of aggregate size and flotability of diaspore correspondingly.
     The diaspore flotation and hydrophobic aggregation tended to appear in the area where surface tension of collector solution was low. A little hydroximic acid and surfactant OL could decrease the surface tension of sodium oleate solution and correlate with improvement the hydrophobic aggregation and flotation of diaspore, in which benzohydroxamic acid could increase the adsorption of sodium oleate on diaspore. So the combined collectors with sodium oleate dominating could be preliminarily selected out by using reagent surface tension as a criterion. A new combined collector with sodium oleate, benzohydroxamic acid and OL was developed and applied in bauxite desilication.
     The aggregation flotation performance of bauxite could be affected by such factors as collector combination and stirring intensity. Selective grinding-aggregation flotation process with combined collector KL was pretty suitable for bauxite desilication by beneficiation and satisfying technology index of bauxite with different alumina-silica ratio could be obtained. Bench-scale tests on bauxite from Shanxi was carried out and beneficiation index of concentrator alumina-silica ratio11.23and Al2O3recovery85.28%were obtained from a raw ore with alumina-silica ratio4.32. Industrial tests on bauxite from Zhongzhou showed that beneficiation index of concentrator alumina-silica ratio12.33and recovery88.74%could be obtained from a bauxite ore with alumina-silica ratio6. And for bauxite with alumina-silica ratio as low as4, index of concentrator alumina-silica ratio9.34and recovery79.15%could also be obtained. Selective grinding-aggregation flotation process has been applied in Zhongzhou Branch, Aluminum Corporation of China and has obtained good desilication performance for bauxite with alumina-silica ratio5.5and3.5. This process provided reliable quality raw materials for aluminium oxide production by Bayer's method has been served as an effective way for alleviating high quality bauxite shortage.
引文
[1]陈万坤,彭关才.一水硬铝石型铝土矿的强化溶出技术.北京:冶金工业出版社,1997.
    [2]杨重愚.氧化铝生产工艺学(修订版).北京:冶金工业出版社,1993.
    [3]张伦和.铝土矿资源合理开发与利用.轻金属,2012,(2):3-11.
    [4]刘祥民.中国铝土矿资源可持续发展战略研究.中国金属通报,2005,(14):9-11.
    [5]刘中凡,杜雅君.我国铝土矿资源综合分析.轻金属,2000,(12):8-12.
    [6]沈阳铝镁设计研究院.全国铝土矿资源分析及综合技术经济评价研究报告.1998.
    [7]张佰永,王鹏.低铝硅比时代的中国氧化铝工艺选择.轻金属,2001,(7):39-39.
    [8]顾松青.我国氧化铝工业可持续发展之路.中国有色金属学会第六届学术年会论文集.北京:中国有色金属学会,2005:10-18.
    [9]中国长城铝业公司,北京矿冶研究总院,中南工业大学,郑州轻金属研究院,沈阳铝镁设计研究院,中国有色金属工业技术开发交流中心.铝土矿选矿脱硅工业试验报告.1999.
    [10]中南工业大学,北京矿冶研究总院,沈阳铝镁设计研究院,郑州轻金属研究院,中国长城铝业公司.铝土矿浮选脱硅药剂研究与工业试验报告.1999.
    [11]李卫东.拜耳法赤泥选铁新技术研究:[硕士学位论文].长沙:中南大学,2005.
    [12]于传敏,黄国智,方启学,葛长礼,郑桂兵.精矿铝硅比对选矿-拜耳法经济性的影响.轻金属,2002,(9):13-17.
    [13]曲正.铝土矿铝硅比与拜耳法生产能耗的关系.轻金属,1998,(210):20-23.
    [14]马善理.铝土矿品位下降对氧化铝生产的影响.世界有色金属,1997,(210):13-16.
    [15]毕诗文.铝土矿的拜耳法溶出.北京:冶金工业出版社,1997.
    [16]毕诗文,杨毅宏,谢雁丽.21世纪初中国氧化铝工业的发展,中国有色金属学会第五届学术年会论文集,2003,(8):33-35,
    [17]刘家瑞,刘祥民.应用选矿-拜耳法工艺处理一水硬铝石型中低品位铝土矿生产氧化铝的工业实践.轻金属,2005,(4):11-14.
    [18]陶英君,杨玉华.我国氧化铝工业现状与发展建议—第三次全国工业普查资料分析.轻金属,1995,(7):3-9.
    [19]姜涛,邱冠周.中低品位铝土矿选矿预脱硅的新进展.矿冶工程,1999,19(2):3-6.
    [20]冯其明,刘广义,卢毅屏.九十年代铝土矿选矿除杂研究现状与展望.轻金属,1998,(4):9-1
    [21]李隆峰,张国祥,黄开国,胡为柏.一水硬铝石型堆积铝土矿选矿脱硅除铁研究.中南矿冶学院学报,1983,11(4):82-88.
    [22]梁爱珍.国外铝土矿选矿研究概况.国外金属矿选矿,1983,(1):31-36.
    [23]关明久.国外铝土矿选矿试验及生产实践概况.国外金属矿选矿,1991,(6):1-6.
    [24]方启学,黄国智.我国铝土矿资源特征及其选矿脱硅技术.国外金属矿选矿,2000,(5):11-16.
    [25]潘泽琳.低品位铝土矿的流化分选法.轻金属,1987,(1):19-21.
    [26]欧阳坚,卢寿慈.国内外铝土矿选矿研究的现状.矿产保护与利用,1995,(6):40-43.
    [27]孙锦清.平果铝土矿选矿工艺设计与实践综论.有色金属(选矿部分),1996,(05):1-6.
    [28]刘振中,赵万来.对铝土矿选矿可能性的看法.有色金属(选矿部分),1984,(02):49-55.
    [29]中国长城铝业公司,北京矿冶研究总院,中南工业大学,郑州轻金属研究院,沈阳铝镁设计研究院,中国有色金属工业技术开发交流中心.铝土矿选矿-拜耳法生产氧化铝新工艺总报告.1999.
    [30]沈阳铝镁设计研究院.铝土矿选矿试验研究.1982.
    [31]中南工业大学.铝土矿选矿试验研究验收资料汇编.1998.
    [32]谢珉.铝土矿选矿试验研究.有色金属(选矿部分),1995,(06):12-16.
    [33]谢珉.论铝土矿选矿的必要性和可行性.国外金属矿选矿,1991,(7-8):69-76.
    [34]王恩孚,马朝建,陆钦芳,李耀吾.选矿—拜尔法处理中国高硅铝土矿生产氧化铝的探讨.轻金属,1996,(7):3-6.
    [35]国家计划委员会文件.国家计委关于一水硬铝石型铝土矿生产氧化铝新工艺新技术研究项目可行性研究报告的批复.1996.
    [36]中南工业大学.铝土矿选矿试验研究报告.1997.
    [37]中南工业大学.铝土矿选矿验证试验研究报告.1998.
    [38]中南工业大学.铝土矿选矿扩大连续试验报告.1998.
    [39]北京矿冶研究总院.铝土矿选矿脱硅新技术的研究小型试验报告.1997.
    [40]北京矿冶研究总院.铝土矿选矿脱硅新技术的研究不同地点不同铝硅比矿样小型验证试验报告.1998.
    [41]北京矿冶研究总院.铝土矿选矿脱硅新技术的研究扩大连选试验报告.1998.
    [42]郑州轻金属研究院.选矿脱硅精矿拜耳法最佳溶出条件试验报告.1998.
    [43]沈阳铝镁设计研究院.选矿-拜耳法生产氧化铝新技术研究技术经济论证报告.1997.
    [44]钮因键.铝土矿选矿-我国氧化铝工业的希望.轻金属,2000,(12):3-7.
    [45]中南大学,中国长城铝业中州铝厂.中州铝土矿选矿工业试验报告.2001.
    [46]肖婉琴,程新朝,杨慧芬.铝土矿反浮选脱硅研究的进展.国外金属矿选矿,2005,(12):16-19.
    [47]章晓林,徐瑾.低铝硅比铝土矿反浮选脱硅的研究.轻金属,2011,(02):8-10.
    [48]张国祥,李隆峰,黄开国,胡为柏.一水硬铝石、高岭石粘土岩、褐铁矿粉碎性质的试验研究.中南矿冶学院学报,1982,13(3):75-82.
    [49]中南大学等.国家基础研究发展规划项目鉴定资料汇编.2001.
    [50]沈阳铝镁设计研究院.铝土矿选矿试验报告选编.1996.
    [51]刘逸超,杨彩云,程学志.水云母-一水硬铝石型铝土矿浮选试验.有色金属(选矿部分),1984,(1):11-15.
    [52]关明久.我国耐火级铝土矿选矿研究进展概况.轻金属,1989,(12):1-5.
    [53]关明久.我国冶金级一水硬铝石-高岭石型(或水云母型)铝土矿的选矿研究概况(二).矿产资源综合利用,1989,(5):19-23.
    [54]芦东,严育红.铝土矿选精矿过滤设备应用研究.轻金属,2011,(6):5-7.
    [55]杨菊,方启学,黄国智,郑桂兵.铝土矿选矿脱硅新工艺研究.有色金属(选矿部分),2001,(06):10-14.
    [56]曾克文,刘俊星,周凯,郑桂兵,张云海,任爱军,刘水红.低铝硅比铝土矿选矿试验研究.有色金属(选矿部分),2008,(05):1-4.
    [57]陈湘清,马俊伟,陈占华.一种改善铝土矿磨矿产物粒度分布的磨矿方法.中国专利,ZL 200710099825.3,2007-05-31.
    [58]Hill R J. Crystal structure refinement and electron density distribution in diaspore. Physics and Chemistry of Minerals,1979,5(2):179-200.
    [59]张国范.铝土矿浮选脱硅基础理论及工艺研究.[博士学位论文].长沙:中南大学,2001.
    [60]张锡秋,方邺森,胡立勋.高岭土.北京:轻工业出版社,1988.
    [61]陈武,季寿元.矿物学导论.北京:地质出版社,1985.
    [62]王淮,潘兆鲁,翁玲宝.系统矿物学.北京:地质出版社,1982.
    [63]Fuerstenaua D W, Pradip. Zeta potentials in the flotation of oxide and silicate minerals. Advances in Colloid and Interface Science,2005,114-115(6):9-26.
    [64]Shaw D J. Electrophoresis. New York:Academic Press,1969.
    [65]Williams D, Williams K P. Electrophoresis and zeta potential of kaolinite. Journal of Colloid and Interface Science,1978,65(1):79-87.
    [66]胡为柏.浮选.北京:冶金工业出版社,1989.
    [67]欧阳坚.微细粒矿物分散和疏水团聚理论与应用研究.[博士学位论文].长沙:中南大学,1995.
    [68]刘晓文.一水硬铝石和层状硅酸盐矿物的晶体结构与表面性质研究:[博士学位论文].长沙:中南大学,2002.
    [69]陈远道.铝土矿浮选脱硅高效捕收剂的设计与应用.[博士学位论文].长沙:中南大学,2006.
    [70]Yehia A, Miller J D, Ateya B G. Analysis of the adsorption behaviour of oleate on some synthetic apatites. Mineral Engineering,1993.6(1):79-86.
    [71]Rao H, Forssberg K. Mechanism of fatty acid adsorption in salt-type mineral flotation. Mineral Engineering,1991,4(7-11):879-890.
    [72]Valdiviezo E, Oliveira J F. Synergism in aqueous solutions of surfactant mixtures and its effect on the hydrophobicity of mineral surfaces. Mineral Engineering, 1993,6(6):655-661.
    [73]Van Wazer J R, Callis C F. Metal complexing by phosphates. Chemical Reviews, 1958,58(6):1011-1046.
    [74]Lu Y, Zhang G, Feng Q, Ou L. A novel collector RL for flotation of bauxite. Journal of Central South University of technology,2002,9(1):21-24.
    [75]邓传宏,马军二,张国范,冯其明,朱阳戈.水玻璃在钛铁矿浮选中的作用.中国有色金属学报,2010,20(3):551-556.
    [76]Feng B, Lu Y, Feng Q, Li H. The solution chemistry of sodium silicate and implications for pyrite flotation. Industrial & Engineering Chemistry Research, 2012,51(37):12089-12094
    [77]Shortridge P G., Harris P J, Bradshaw D J, Koopal L K. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc. International Journal of Mineral Processing,2000,59(3):215-224.
    [78]刘中凡.世界铝土矿资源综述.轻金属,2001.(5):7-12.
    [79]Hu Y, Dai J. Hydrophobicaggregation of alumina in surfactant solution. Mineral Engineering,2003,16 (11):1167-1172.
    [80]冯其明,卢毅屏,欧乐明,张国范,肖金华.铝土矿的选矿实践.金属矿山,2008,(10):1-5.
    [81]中南工业大学.铝土矿选矿试验研究(国家重点科技项目(攻关)计划研究报告).1997.
    [82]陈宗淇,戴闽光.胶体化学.北京:高等教育出版社1986.
    [83]闻辂.矿物红外光谱学.重庆:重庆出版社.1989
    [84]Kobayashi D, Hayashida K, Sano K. Terasaka, Agglomeration and Rapid Ascent of Microbubbles by Ultrasonic Irradiation. Ultrasonics Sonochemistry,2010
    [85]Warren L J. Shear-flocculation of ultrafine scheelite in sodium oleate solutions. Journal of Colloid and Interface Science,1975,50 (2):305-318.
    [86]Srinivas K, Sreenivas T, Natarajan R, Padmanabhan N P H. Studies on the recovery of tungsten from a composite wolframite-scheelite concentrate. Hydrometallurgy,2000,58 (1):43-50
    [87]Trahar W J, Warren L J. The flotability of very fine particles-A review. International Journal of Mineral Processing,1976,3 (2):103-131
    [88]Wang Qun, Heiskanen. Selective hydrophobic flocculation in apatite-hematite system by sodium oleate. Minerals Engineering,1992,5 (3-5):493-501
    [89]Samygin V D. Colloid Journal,1968, (4):581
    [90]Hu Weibai, Wang Dianzuo, Qiu Guanzhou. Principle and application of pamification carrier flotation. Journal of Central South Intitute of Mining and Metallurgy,1987,18 (4):408-414
    [91]Valderrama L, Rubio J. High intensity conditioning and the carrier flotation of gold fine particles. International Journal of Mineral Processing,1998,52 (4): 273-285
    [92]Lange A G, Skinner W M, Smart R S C. Fine:coarse particle interactions and aggregation in sphalerite flotation. Mineral Engineering,1997,10(7):681-693
    [93]郭建斌.东鞍山赤铁矿载体浮选试验研究.矿冶工程,2003,23(3):29-31
    [94]Atesok G, Boylu F, Celik M S. Carrier flotation for desulfurization and deashing of difficult-to-float coals. Mineral Engineering,2001,14 (6):661-670
    [95]Rubio J, Capponi F, Rodrigues R T, Matiolo E. Enhanced flotation of sulfide fines using the emulsified oil extender technique. International Journal of Mineral Processing,2007,84 (1-4):41-50
    [96]韦大为,丘继存.中性油在油团聚中的作用机理.有色金属,1988,9(4):41-45
    [97]Wei Dawei, Wei Kewu, Qiu Jicun. Hydrophobic agglomeration and spherical agglomeration of wolframite fines. International Journal of Mineral Processing, 1986,16 (3):261-271
    [98]Hu Yuehua. Role of neutral oil in wolframite floatation with chelating collector. Journal of Central-South Institute of Mining and Metallurgy,1986, (2):31-36
    [99]Bandopadhyay P,戴子林.用油团聚和絮凝-浮选法选别超细粒的研究.国外金属矿选矿,1988,(6):1-6
    [100]Gaikara V G, Padalkara K V, Aswalb V K. Characterization of mixed micelles of structural isomers of sodium butyl benzene sulfonate and sodium dodecyl sulfate by SANS,FTIR spectroscopy and NMR spectroscopy. Journal of Molecular Liquids,2008,138 (1-3):155-167
    [101]Roy P, Fuerstenau D W. The heat of immersion of alumina into aqueous sodium dedecyl sulfonate solution. Journal of Colloid and Interface Science, 1968,26 (1):102-109
    [102]邱冠周,微细粒矿物浮选理论及工艺研究:[博士学位论文].长沙:中南工业大学,1987.
    [103]Israclachvili J N. Intermolecular and Surface Forces. London:Academic Press, 1985.294-295
    [104]Sivamohan R. The problem of recovering very fine particles in processing-A review. International Journal of Mineral Processing,1990,28 (3-4):247-288
    [105]Hogg R, Healy T W, Fuerstenau D W. Mutual coagulation of colloidal dispersions. Transactions of the Faraday Society,1966,62 (62):1638
    [106]邱冠周,胡岳华,王淀佐.微细粒赤铁矿载体浮选机理研究.有色金属,1994,46(4):23-28
    [107]蒋昊.铝土矿浮选脱硅过程中阳离子捕收剂与铝矿物和含铝硅酸矿物作用的溶液化学研究.[博士学位论文],长沙:中南大学,2004.
    [108]王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社,1988.
    [109]Takahashi, K.,Wakamatsu, T. The role of amino acid on the xanthate adsorption at the water-mineral interface. International Journal of Mineral Processing, 1984.12(1-3):127-143.
    [110]Paulus E F, Siam K, Wolinski K. Crystal structures of 4,4'-dimethoxydithiophene and comparison with quantum mechanical calculations. J. Mol. Struct.,1989.196:171-179.
    [111]Numata Y, Takahashi K, Liang R. Adsorption of 2-mercaptobenzothiazole onto pyrite. International Journal of Mineral Processing,1998.53(1-2):75-86.
    [112]O'Dea A R, Smart R S C, Gerson A R. Molecular modelling of the adsorption of aromatic and aromatic sulfonate molecules from aqueous solutions onto graphite. Carbon,1999.37(7):1133-1142.
    [113]Pradip R B, Rao T K. Molecular Modeling of Interactions of Alkyl Hydroxamates with Calcium Minerals. J. Colloid Interface Sci.,2002. 256(1):106-113.
    [114]Porento M. Hirva P. A theoretical study on the interaction of sulfhydryl surfactants with a covellite (001) surface. Surf. Sci.,2004.555(1-3):75-82.
    [115]Hu Y, Wei S, Hao J. The anomalous behavior of kaolinite flotation with dodecyl amine collector as explained from crystal structure considerations. International Journal of Mineral Processing,2005.76(3):163-172.
    [116]谭燕葵.微细粒一水硬铝石和高岭石的浮选研究:[硕士学位论文].长沙:中南大学,2007
    [117]胡岳华,王淀佐.盐类矿物的溶解、表面性质变化与浮选分离控制设计.中南工业大学学报,1992,23(3):273-279
    [118]陈湘清.硅酸盐矿物强化捕收与一水硬铝石选择性抑制的研究:[博士学位论文].长沙:中南大学,2004.
    [119]胡岳华.螯合剂中性油浮选细粒黑钨矿的研究:[硕士学位论文].长沙:中南矿冶学院,1984
    [120]Gaudin A M. Flotation. Mcgraw:hill Book Company,1995:1-7.
    [121]Miettinen T, Ralston J. The limits of fine particle flotation. Minerals Engineering,2010,23 (5):420-437
    [122]Joanne V, Stearnes B. Fine particle flotation and the influence of dissolved gas on interparticle interactions:[Thesis of Ph.D]. Ian Wark Research Institute, 2000
    [123]Gaudin A M. Transactions of the American Institute of Mining, Metal and Petroleum Engineers.1934, (112):319-347
    [124]Cooke M A, Nixon J C. Journal of Physical Chemistry,1950, (54):445- 459
    [125]Kulkarni R D, Somasundaran P. Flotation chemistry of hematite/oleate system. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1980,1 (3-4):387-405
    [126]胡岳华,邱冠周,王淀佐.细粒浮选体系中扩展的DLVO理论及应用.中南矿冶学院学报,1994,25(3):310-314.
    [127]宋少先,卢寿慈.微粒矿物诱导疏水絮凝中的疏水作用.武汉钢铁学院学报,1992,15(3):225-231.
    [128]卢寿慈,李国庆.微细矿粒在水中的疏水絮凝行为研究.武汉钢铁学院学报,1984,(2):4-11.
    [129]Lu S, Song Shaoxian. Hydrophobic interaction in flocculation and flotation 1. Hydrophobic flocculation of fine mineral particles in aqueous solution. Colloids and Surfaces,1991,57:49-60
    [130]Somasundaran P, Huang L. Adsorption/aggregation of surfactants and their mixtures at solid-liquid interfaces. Advances in Colloid and Interface Science, 2000,88 (1-2):179-208
    [131]Somasundaran P, Fuerstenau D W. Mechanism of alkyl sulfonate adsorption at alumina-water interface. Journal of Physical Chemistry,1966,70(1):90-96
    [132]Fuerstenau D W.浮选(纪念A.M.高登文集).北京:冶金工业出版社,1982.
    [133]赵国玺,朱步瑶.表面活性剂作用原理。北京中国轻工业出版社,2003.
    [134]Sun W, Xie Z J, Hu Y H, Deng M J, Yi L, He G. Effect of high intensity conditioning on aggregate size of fine sphalerite. Transactions of Nonferrous Metals Society of China,2008,18(2):438-443.
    [135]Stassen F J N. Conditioning in the flotation of gold, uranium oxide, and pyrite. Journal of the South African Institute of Mining and Metallurgy,1991,91(5): 169-174.
    [136]Bulatovic S M, Salter R S. High-intensity conditioning-a new approach to improving flotation of mineral slimes. In:Mineral Processing and Extractive Metallurgy, on Processing of Complex Ores. Halifax,1989,169-181.
    [137]Bulatovic S M, Wyslouzil D M. Research and development in selective froth flotation of mineral fines from polymetallic refractory sulphide ores. In: Mineral Processing and Extractive Metallurgy, Proceedings of Second International Conference. Beijing.1992,23-27.
    [138]Engel M D, Middlebrook P D, Jameson G J. Advances in the study of high intensity conditioning as a means of improving mineral floatation performance. Minerals Engineering,1997,10(1):55-68.
    [139]Valderrama L, Rubio J. High intensity conditioning and the carrier flotation of gold fine particles. International Journal of Mineral Processing.1998,52(4): 273-285.
    [140]徐刚.最新磷化工工艺技术手册.北京:中国知识出版社,2005.
    [141]Tatu Miettinena, John Ralstonb, Daniel Fornasiero. The limits of fine particle flotation. Minerals Engineering,2010,23(7):420-437.
    [142]张晶.表面活性剂在油酸钠浮选一水硬铝石中的作用:[硕士学位论文].长沙:中南大学,2010.
    [143]朱建光周春山.混合捕收剂的协同效应在黑钨、锡石细泥浮选中的应用.中南工业大学学报,1995,26(4):465-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700