用户名: 密码: 验证码:
苏云金芽胞杆菌杀虫晶体蛋白的C-半段对Vip3Aa7和Cry7Ba1蛋白包含体形成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用苏云金芽胞杆菌的表达调控元件及来自Cry1C、Cry1Ac和Cry7Ba1蛋白和晶体形成,蛋白稳定相关的C-半段,辅助蛋白p20等研究对营养期杀虫蛋白Vip3Aa7,杀虫晶体蛋白Cry2Aa,Cry3Aa晶体形成,表达量和杀虫活性的影响,建立了一个苏云金芽胞杆菌高效表达体系;并通过Cry1C、Cry1Ac和Cry7Ba1蛋白的N-、C-半段互换,研究了苏云金芽胞杆菌Cry1类杀虫晶体蛋白的C-半段对Cry7Ba1晶体蛋白溶解性,晶体形成及毒性的影响,主要结果如下:
     1.苏云金芽胞杆菌C-半段使Vip3Aa7形成包含体并且显著提高其表达量
     本文利用苏云金芽胞杆菌ICPs蛋白的各种表达调控元件,希望提高营养期杀虫蛋白Vip3Aa7的表达量,改善其因为分泌到胞外给生产应用带来的不便,研究芽胞依赖型BtⅠ-BtⅡ启动子,上游调控区,终止子及大分子杀虫晶体蛋白C-半段对Vip3Aa7表达量和包含体形成的影响,结果表明:
     1.1 Cry1C的C-半段不仅显著提高了Vip3Aa7融合蛋白的表达量,重组蛋白的表达量比出发菌株的表达量高9.3倍,而且使其形成包含体。
     1.2 Cry1Ac和Cry7Ba1蛋白的C-半段与Cry1C的的C-半段具有同样的功能,均能显著提高Vip3Aa7融合蛋白的表达量,重组蛋白的表达量比出发菌株的表达量分别高9.4和9.0倍,而且也能使其形成包含体。
     1.3生物测定结果表明,重组蛋白的杀虫毒力与出发菌株的蛋白相比普遍降低了。
     本实验首次报道Cry1C晶体蛋白的C-半段能使Vip3Aa7蛋白以包含体的形式存在,并且显著提高其表达量,这为Vip3Aa7蛋白以芽胞制剂的形式在生产中应用奠定了相应的理论基础,具有非常重要的理论实践意义。
     2.辅助蛋白p20提高Vip3Aa7融合蛋白表达的表达量
     将来自以色列亚种的辅助蛋白p20构建到另一穿梭载体pBE2上,与上文构建的重组质粒共转构建了一系列工程菌,发现辅助蛋白p20对以上Vip3Aa7融合蛋白表达量均有提高,几个融合蛋白在晶体形成上没有明显不同,而且p20并不影响融合蛋白的杀虫活性。说明辅助蛋白p20能提高Vip3Aa7融合蛋白的表达量。
     3.Cry1类蛋白的C-半段显著提高Cry2Aa和Cry3Aa蛋白的表达量
     将Cry1C和Cry1Ac的C-半段分别与Cry2Aa和Cry3Aa的毒力核心区融合在一起,构建融合基因,结果表明Cry1C和Cry1Ac的C-半段使不含C-半段的Cry2Aa和Cry3Aa的蛋白表达量显著提高,但仍然不能使Cry2Aa和Cry3Aa形成规则晶体,只能形成无规则形状的包含体,重组蛋白杀虫毒力与出发蛋白相比没有显著变化,说明本文建立的超量表达系统不含C-半段的苏云金芽胞杆菌的表达量也能显著,并且不影响重组蛋白的功能和活性。
     4.4.Cry1类蛋白的C-半段提高了Cry7Ba1蛋白的溶解性并且恢复了其毒力
     Cry7Ba1杀虫晶体蛋白只有在pH>11.5的碱性溶液中才能溶解,并且晶体蛋白只有在体外溶解后才对小菜蛾表现出一定毒性,这极大影响了其在实际生产中的应用,本实验将Cry1C、Cry1Ac和Cry7Ba1的N-、C-半段互换,研究较易溶解的苏云金芽胞杆菌Cry1类的C-半段对Cry7Ba1蛋白溶解性的影响。结果表明:Cry7Ba1的难溶性是由其C-半段决定,其毒性由N-半段决定。通过替换C-半段提高了cry7Ba1晶体蛋白的溶解性从而恢复了其毒力,为解决这一类由于溶解性的丧失导致毒性丧失的苏云金芽胞杆菌的生产应用打开了一个新的思路,在理论和应用上均具重要意义。
Bacillus thuringiensis has unique capability of high expression and crystal formation of these ICPs depended on various Regulated mechanisms.Here we established a high expression system to optimize the yield of Vip3Aa7 through relocating it into the mother cell of B.thuringiensis in the form of inclusion bodies using the regulated mechanism and the C-terminus,of Cry1C,Cry1Ac and Cry7Ba1.And this overexpression system has also been used to increase the yields of other B.thuringiensis proteins which have no C-terminus such as Cry2Aa and Cry3Aa.Then,In order to demonstrate the possibility of exploiting the latent insecticidal properties of crystals like Cry7Ba1,crystals vitro-solubilized were toxic to Plutella xylostella,we constructed a series of plasmids encoding recombinant forms of Cry7Ba1 in which the C-terminal domain was replaced by that of Cry1C and Cry1Ac,leading to improved solubility and effective toxicity to Pluetella xylostella.The following are the major results:
     1.The carboxy-terminal half of ICPs can markedly increased the yields of Vip3Aa7 through forming inclusion bodies in the mother cell of Bacillus thuringiensis.
     1.1 The C-terminus of the Cry1C could not markedly increase Vip3Aa7 yields 9.8-fold than that of wild type strain BMB8901 but also help it form the irregular inclusion bodies in B.thuringiensis.
     1.2 The C-terminal halves of Cry1Ac and Cry7Ba1 have the same function with that of Cry1C,could not largely increase Vip3Aa7 yields 9.4 and 9.0-fold recepectively than that of wild type strain BMB8901 but also help it form the irregular inclusion bodies in B. thuringiensis.
     1.3 Bioassays showed that all proteins produced by recombinant strains had similar toxicities with against H.armigera,S.exigua,and P.xylostella,which were evidently lower than that of wild-type Vip3Aa7 protein
     2.Helper protein p20 increased the yield of Vip3Aa7 fusion proteins
     A searious of recombinant strains were obstained through transforming plasmid pBMB0177 containing the p20 and the expression vectors described above simultaneously.We found that the p20 could increase the yields of Vip3Aa7 protein but could not affect the forming of the inclusion bodies and the toxicities.
     In conclusion,we established an overexpression system to optimize the yield of Vip3Aa7 and relocated it into the mother cell of B.thuringiensis in the form of inclusion bodies.Alterations comprising BtⅠ-BtⅡpromoters,the STAB-SD sequence,the C-terminal,and the terminator of Cry1C affected the expression of Vip3Aa7.
     3.The C-terminus of Cry1C and Cry1Ac increased the yields of proteins of Cry2Aa and Cry3Aa
     In order to know whether the C-terminal of Cry1C can be used to increase the yields of other B.thuringiensis proteins without C-terminus,four recombinants,BMB0192, BMB0193,BMB0194,BMB0195,were gained by replaced the Vip code region with cry2Aa and cry3Aa.The result showed that this high expression system could increase the yields of Cry2Aa and Cry3Aa proteins without C-terminus of Cry1.However,the C-terminus of Cry1 could not make Cry2Aa and Cry3Aa form the bipyramidal(Cry1), cuboidal(Cry2Aa),flat rectangular(Cry3Aa) crystal protein,only irregular inclusion bodies,but did not affect the toxicities of recombinant protein.
     This result demonstrate that the overexpression system can be used to increase the yields of other B.thuringiensis proteins which cannot form crystals or other low expression level proteins and could not affect the activity of recombinants.The expression strategy would facilitate the development of a suitable formulation for the application of this class of insecticidal proteins in the field,and offers an additional method for potentially improving the efficacy of insecticides based on B.thuringiensis.
     4.The C-terminus of Cry1C and Cry1Ac increase the solubility of protein of Cry7Ba1
     After exchanging the C-terminal halves of Cry7Ba1 and Cry1,we found that the limited solubility of Cry7Ba1 was due to its C-terminal half,and that recombinant Cry7Ba1 possessing the C-terminal half of Cry1 showed good solubility and toxicity to P. xylostella but could not form the bypimid crystal the same as that of the parent wild type strain Cry1C,Cry1Ac and Cry7Ba1.
     Our research opens a new way to release hidden biological function from "non-insecticidal" B.thuringiensis strains resulting from limited solubility by simply replacing their C-terminal halves.
引文
1.蔡启良,刘子铎,孙明,魏芳,喻子牛.苏云金芽胞杆菌营养期杀虫蛋白基因的克隆及表达分析.生物工程学报,2002,18(5):578-582
    2.崔云龙,罔部宗一,浅野昌司.苏云金芽胞杆菌液体培养物上清液中杀虫活性物质的研究.微生物学报.1993,33(1):62-68
    3.李海涛,姚江,郭巍,宋福平,高继国,黄大防,张杰.苏云金芽胞杆菌cry2Aa基因的克隆、表达与活性.农业生物技术学报,2005,(6):87-791
    4.刘子铎,孙明,陈亚华等.苏云金芽胞杆菌以色列亚种20kDa蛋白质对CytA蛋白溶细胞作用的影响.遗传学报,1999,26(1):81-86
    5.刘子铎.苏云金芽胞杆菌杀虫晶体蛋白和辅助蛋白基因的克隆表达.[博士学位论文].武汉,华中农业大学,1998
    6.萨姆布鲁克J,E F弗里奇,T曼尼阿蒂斯.分子克隆实验指南.第二版.金冬雁等(译).北京:科学出版社,1995
    7.邵宗泽.苏云金芽胞杆菌杀虫晶体蛋白和辅助蛋白基因的克隆表达.[博士学位论文].武汉,华中农业大学,1999
    8.余子全,白培胜,郭素霞,喻子牛,孙明.苏云金芽胞杆菌杀线虫伴胞晶体蛋白基因cry6Aa 的克隆与表达.微生物学报,2007a,47:865-868
    9.喻子牛,孙明,刘子铎,戴经元,陈亚华,喻凌,罗曦霞.苏云金芽胞杆菌的分类及生物活性蛋白基因.中国生物防治,1996,12:85-89
    10.喻子牛.苏云金杆菌.北京:科学出版社,1990
    11.喻子牛主编,生命科学和土壤学中几个研究领域的进展.北京:农业出版社,1993,170-179
    12.张宏宇,喻子牛,邓望喜.苏云金杆菌制剂生物测定标准鞘翅目昆虫的筛选.湖北农业科学,1998,2:40-42
    13.张利莉.苏云金芽胞杆菌杀虫晶体蛋白基因cry1D的表达调控.[博士学位论文].武汉,华中农业大学,2000
    14.张振宇.苏云金芽胞杆菌新异杀虫晶体蛋白基因的克隆与基因工程菌WG-001的安全评估.[硕士学位论文].武汉,华中农业大学,2005
    15.赵新民,夏立秋,王发祥,丁学知,单世平,张友明.苏云金芽胞杆菌毒素Cry1Aa,Cry2Aa,Cry3Aa和Cry4Aa结构的计算机对比分析.化学学报,2008,66(1):108-111
    16.郑嵘.辅助蛋白P19和P20蛋白质对苏云金芽胞杆菌cry1基因表达的增效作用.[硕士学位论文].武汉,华中农业大学,1998
    17.朱晨光.苏云金芽胞杆菌抗病杀虫和广谱工程菌的构建.[博士学位论文].武汉,华中农业大学,2003
    18. Adams L F, Brown K L and Whiteley H R. Molecular cloning and characterization of two genes encoding sigma factors that direct transcription from a Bacillus thuringiensis crystal protein gene promoter. J Bacteriol, 1991, 173:3846-3854
    19. Adams L F, Visick J E, Whiteley H R. A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol, 1989, 17(1):521-330
    20. Agaisse H, Lereclus D. Expression in Bacillus subtilis of the Bacillus thuringiensis cryIIIA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spoOA mutant. J Bacteriol, 1994b, 176:4734-4741
    21. Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol, 1995, 177(21):6027-6032
    22. Agaisse H, Lereclus D. STAB-SD: a Shine-Dalgarno sequence in the 5' untranslated region is a determinant of mRNA stability. Mol Microbiol, 1996, 20:633-643
    23. Agaisse H, Lereclus D. Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis. Mol Microbiol, 1994, 13:97-107
    24. Anilkumar K J, Rodrigo-Simón A, Ferré, Pusztai-Carey M, Sivasupramaniam S, Moar W J. Production and characterization of Bacillus thuringiensis Cry1Ac resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol, 2008, 74:462-469
    25. Arantes O, Lereclus D. Construction of cloning vectors for Bacillus thuringiensis. Gene, 1991, 108:115-119
    26. Aronson A I, Han E-S, McGaughey W. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl Environ Microbiol, 1991, 57:981-986
    27. Aronson A I. The protoxin compotion of Bacillus thuringiensis insecticidal inclusions affects solubility and toxicity. Appl Environ Microbiol, 1995, 61(11):4057-4060
    28. Arvidson H, Dunn P E, Strnad S, Aronson A I. Specificity of Bacillus thuringiensis for lepidopteran larvae:factors involved in vivo and in the structure of a purified protoxin. Moecularl Microbiology, 1989, 3:1533-1543
    29. Band J M and Henner D J. Requires a "stringent" Shine-Dalgarno region for gene expression. DNA, 1984, 3:17-21
    30. Baum J A, Coyle D M, Gilbert M P. Novel cloning vectors for Bacillus thuringiensis. Appl Environ Microbiol, 1990, 56:3420-3428
    31. Baum J A, Kakefuda M, Gawron-Burke C. Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol, 1996, 62:4367-4373
    32. Baum J A, Malvar T, Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol, 1995, 18:1-12
    33. Baum J A, Bogaert T, Clinton W, Heck G R, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J. Control of coleopteran insect pests through RNA interference. Nat Biote, 2007, 25:1322-1326
    34. Baxter S W, Zhao J Z, Shelton A M, Vogel H, David G. Genetic mapping of Bt toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella. Insect Biochem Mol Biol, 2008, 38:125-135
    35. Baxter S W, Zhao J Z, Gahan L J, Shelton A M, Tabashnik B E, Heckel D G. Novel genetic basis of field evolved resistance to Bt in Plutella xylostella. Insect Mol Biol, 2005,14:27-4
    36. Bernhard K. Studies on the delta-endotoxin of Bacillus thuringiensis var. tenebrionis. FEMS Microbiol Lett, 1986,33:261-265
    37. Bhalla R, Dalai M, Panguluri S K. Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. FEMS Microbiol Letters, 2005, 243:467-472
    38. Bietlot H P, Vishnubhatla I, Carey P R. Characterization of the cysteine residues and disulfide linkages in the protein crystal of Bacillus thuringiensis. J Biochem, 1990, 267:309-316
    39. Bietlot H, Carey P R, Choma C. Facile preparation and characterization of the toxin from Bacillus thuringiensis var. kurstaki. J Biochem, 1989, 260:87-91
    40. Boonserm P, Davis P, Ellar D J, Li J. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. 2005, J. Mol. Biol, 348:363-382.
    41. Bravo A and Soberon M. How to cope with insect resistance to Bt toxins? Trends in Biotech. 2008, ARTICLE IN PRESS
    42. Bravo A, Sarjeet S. Gill, Soberon M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 2007, 49:432-435
    43. Brizzard B L, Schnepf H E, Kronstad J W. Expression of the cryIB crystal protein gene of Bacillus thuringiensis. Mol Gen Genet, 1991, 231:59-64
    44. Brown K L and Whiteley H R. Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes. Proc Natl Acad Sci USA, 1988, 85:4166-4170
    45. Brown K L, Whiteley H R. Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter. J Bacteriol, 1990, 172:6682-6688
    46. Brown K L. Transcriptional regulation of the Bacillus thuringiensis subsp. thompsoni crystal protein gene operon. J Bacteriol, 1993, 175:7951-7957
    47. Butko P. Cytolytic toxin Cyt1A and its mechanism of membrane damage:data and hypotheses. Appl Environ Microbiol, 2003, 69(5):2415-2422
    48. Carroll J, Convents D, Van Damme J. Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry3A delta-endotoxin may facilitate its coleopteran toxicity. J Invertebr Pathol, 1997, 70:41 -49
    49. Chak K-F, Ellar D J. Cloning and expression in Escherichia coli of an insecticidal crystal protein gene from Bacillus thuringiensis var. aizawai HD-133. J Gen Microbiol, 1987,133:2921-2931
    50. Chen J, Sun F, Tang L, Tang M, Shi Y, Yu J, ang Y. Expression of Bacillus thuringiensis full-length and N-terminally truncated vip184 gene in an acrystalliferous strain of subspecies kurstaki. World J of Microy Biotech, 2003, 19:883-889
    51. Chen J, Hua G, Jurat-Fuentes J L, Abdullah M A, Adang M J.Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc Natl Acad Sci, 2007, 104:13901-13906
    52. Cheng P, Wu L, Yu Z N, Aronson A. Subspecies-dependent regulation of Bacillus thuringiensis protoxin genes. Appl Environ microbiol, 1999, 65:1849-1853
    53. Choma C T, Kaplan H. Folding and unfolding of the protoxin from Bacillus thuringiensis:evidence that the toxic moiety is present in anactve confirmation. Biochem, 1990,29:10971-10977
    54. Christou P, Capell T, Kohli A, Gatehouse J A, Gatehouse M R. Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci. 2006, 11:302-308
    55. Couche G A, Pfannenstiel M A, Nickson K W. Structural disulfide bonds in the Bacillus thuringiensis subsp.israelensis protein crystals. J Bacteriol, 1987, 169(7):3281-3288
    56. Craig R P, Ellar D J. Role of Receptors in Bacillus thuringiensis Crystal Toxin Activity Micro Mole Biolo Rev, 2007, 71:2255-2261
    57. Crickmore N, Ellar D J. Involvement of a possible chaperonin in the efficient expression of a cloned CryIIA δ-endotoxin gene in Bacillus thuringiensis. Mol Microbiol, 1992, 6 (11): 1533-1537
    58. Crickmore N, Zeigler D R, Feitelson J, Schnepf E, van Rie J, Lereclus D, Baum J, Dean DH. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. 2008, Updated at http://biols.susx.ac.uk/Home/Neil_Crickmore/Bt/toxins.html
    59. Dai J, Yu L, B. Wang X, Yu Z, Lecadet M M. Bacillus thuringiensis subspecies huazhongensis, serotype H40, isolated from soils in the People's Republic of China. Letters in Appl Microbio, 1996, 22:42-45
    60. De Maggd R A, Kwa MSG, Rlei H, Yamamoto T. Domain III substitution in Bacillus thuringiensis 5-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol, 1996, 62(5): 1537-1543
    61. Dean D H, Rjajamohan F, Lee M K. Hussain Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis-a minireview. Gene, 1996,179:111-117.
    62. Delecluse A, Poncet S, Klier A. Expression of cryIVA and cryIVB genes independently or in combination, in a crystal negative strain of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbil, 1993, 59:3922-3927
    63. Derbyshire D J, Ellar D J, Li J. Crystallization of the Bacillus thuringiensis toxin Cry1Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Crystallogr Sect D, 2001, 57:1938-1944.
    64. Dervyn E, Poncet S, Klier A. Transcriptional regulation of the cryIVD gene operon from Bacillus thuringiensis subsp. israelensis. J Bacteriol, 1995, 177:2283-2291
    65. De-Souza M T, Lecadet M-M, Lereclus D. Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distand upstream DNA sequence affectiong transcription. J Bacteriol, 1993, 175:2952-2960
    66. Donovan W P, Donovan J C, Engleman J T. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. J Invertebr Pathol, 2001, 78:45-51
    67. Du C, Martin P A W, Nickerson K W. 1994. Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. Appl. Environ. Microbiol, 60:3847-3853.
    68. Estruch J J, Yu C G, Warren G W, Koziel M G, Mullins M A. World Intellectural Property Orgnization Patent WO 2000-06, 107, 279
    69. Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG. 1996 Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA, 1996, 93:5389-5394
    70. Fang J, Xu XL, Shen ZC, Wang P, J Zh Zhao, Shelton A M, J Cheng, M G Feng, Zh C Shen. Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Appl Environ Microbl, 2007, 73(3):956-961
    71. Federici B A, Park H W, Sakano Y. Insecticidal Protein Crystals of Bacillus thuringiensis. Microbiol Monogr. Springer-Verlag Berlin Heidelberg. 2006, p. 195-236.
    72. Florence C, V Vachon , Ce cile Rang, Moozar K, Masson L, Royer M, Martine, Rivest Se B, Brousseau R, Schwartz J L, Laprade R, Frutos R.Role of Interdomain Salt Bridges in the Pore-forming Ability of the Bacillus thuringiensis Toxins Cry1Aa and Cry1Ac. J Biol Chem, 2001, 276(38):35546-35551
    73. Florence C, Vincent V, C Rang. Role of interdomain salt bridges in the pore-forming ability of the Bacillus thuringiensis toxins CrylAa and CrylAc. J Biol. Chem, 2001,276:35546-35551.
    74. Gahan L J, MaY T, CobleM L, Gould M F, Moar W J, Heckel D G Genetic basis of resistance to CrylAc and Cry2Aa in Heliothis virescens, J. Econ. Entomol. 2005, 98:1357-1368
    75. Galitsky N, Cody V, Wojtczak A, Ghosh D, Luft J R, Pangborn W, English L. Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. Sect. D, 2001, 57:1101-1109.
    76. Gatehouse J A. Biotechnological prospects for engineering insect resistant plants. Plant Physiol, 2008, 146:881-887
    77. Gazit E, Bach D, Kerr L D et al. The α5 segment of Bacillus thuringiensis 5-endotoxins:in vitro activity, ion channel formation and molecular modeling. J Biochem, 1994, 304(3):895-902
    78. Gazit E, Burshtein N, Ellar D J et al. Bacillus thuringiensis cytolytic toxin associates specifically with its synthetic helics A and C in the membrane bound state: Implication for the assembly of oligomeric transmembrane pores. Biochem, 1997, 36(49): 15546-15554
    79. Gazit E, Shai Y. The assembly and organization of the α5 and α7 helices from the pore-forming domain of Bacillus thuringiensis 8-endotoxin. J Biol Chem, 1995, 270:2571-2578
    80. Ge B X, Bideshi D, Moar W J et al. Differential effects of helper proteins encoded by the cry2A and cryllA operons on the formation of Cry2A inclusions in Bacillus thuringiensis. FEMS Microbiol Letts, 1998, 165:35-41
    81. Glatron M F, Rapoport G Biosynthesis of the parasporal inclusion of Bacillus thuringiensis:half-1ife of its corresponding messenger RNA. Biochimie, 1972, 54:1291-1301
    82. Griffitts J S, Haslam S M, Yang T, Garczynski S F, Mulloy B, Morris H, Cremer P S, Dell A, Adang M J, Aroian R V. Glycolipds as receptors for Bacillus thuringiensis crystal toxin. Science, 2005, 307:922-925
    83. Griffitts J S, Aroian R V. Many roads to resistance: how invertebrates adapt to Bt toxins. Bioessays, 2005, 27:614-624
    84. Grochuski P, Masson L, Borisova S et al. Bacillus thuringiensis CryIAa insecticidal toxin:crystal structure and channel formation. J Mol Biol, 1995, 254(3):447-464
    85. Gunning R V, Dang H T, Kemp F C, Nicholson I C, Moores G D. New resistance mechanism in Helicoverpa armigera threatens transgenic crop expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol, 2005, 71:2558-2563
    86. Higgins C F, Causton H C, Dang G S, Mudd E A. The role of the 3' end in mRNA stability and decay. In:Belasco J G and Brawerman G. Control of messenger RNA stability. Academic Press, 1993, 13-30
    87. Hofte H, Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev, 1989, 53(2):242-255
    88. Hua G, Zhang R, Abdullah M F, Adang M J. Anopheles gambiae cadherin AgCadl binds Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of Ag Cad1 synergizes toxicity. Biochemistry 2008, 47:5101-5110
    89. Huang F, Leonard B R, Andow D A. Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize. J Econ Entomol 2007, 100:164-171
    90. Hue K K, Cohen S D, Bechhofer D H. A polypurine sequence that act as a 5' mRNA stabilizer in Bacillus subtilis. J Bacteriol, 1995, 177:3465-3471
    91. Jurat-Fuentes J L, Adang M J. Cry toxin mode of actionin susceptible and resistant Heliothis virescens larvae. J Invertebr Pathol, 2006, 92:166-171
    92. Kim H S, H. Saitoh S, YamashitabT, AkaoY, Park S, Maeda M, Tanaka R, Mizuki E, Ohba M. Cloning and Characterization of Two Novel Crystal Protein Genes from a Bacillus thuringiensis serovar dakota Strain. Currt Microbioy, 2003, 46:33-38
    93. Kleter G Bhula R, Bodnaruk K, Carazo E, Felsot A S, Harris C A, Katayama A, KuiperH A, Racke K D, Rubin B, Shevah Y, Stephenson G R, Tanaka K, Unsworth J, Wauchope R D, Wong S S. Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Manag Sci 2007, 63:1107-1115
    
    94. Lambert B, H(o|¨)fte H, Annys K, Jansens S, Soetaert P, Peferoen M. Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae. Appl. Environ. Microbiol, 1992, 58:2536-2542
    
    95. Lecadet M-M, Chaufaux J, Ribier J. Construction of novel Bacillus thuringiensis strains with different insecticidal specificities by transduction and by transformation.Appl Environ Microbiol, 1992, 58:840-849
    
    96. Lee M K, Miles P and Chen J S. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midgets. Biochemical and Biophy Res Commun, 2006, 339(4): 1043-1047
    
    97. Lee M K, Waiters F S, Hart H. The mode of action of the Bacillus thuringieusis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin. Appl Environ Microbiol, 2003, 69(8):4648-4657
    
    98. Lereclus D, Arantes O. spbA locus ensures the segregational stability of pHT1030, a novel type of gram-positive replicon. Mol Microbiol, 1992, 7:35-46
    
    99. Li J D, Carroll J, Ellar D J. Crystal structure of insecticidal 8-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature, 1991, 353(31):815-821
    
    100.Li J D, Koni P A, Ellar D J. Structure of the mosquitocidal 5-endotoxin CytB from Bacillus thuringiensis SP. kyushuensis and implications for membrane pore formation. J Mol Biol, 1996, 257(1): 129-152
    101.Li L, Yang C, Liu Z, Li F, Yu Z. Screening of acrystalliferous mutants from Bacillus thuringiensis and their transformation properties. Acta Microbiol. Sin, 2000, 40:85-90
    102.Ma G, Roberts H, Sarjan M, Featherstone N, LahnsteinJ, Akhurst Rand Schmidt O. Is the mature endotoxin Cry1Ac from Bacillus thuringiensis inactivated by a coagulation reactionin the gutlumen of resistant Helicoverpa armigera larvae? Insect Biochem Mol Biol, 2005, 35:729-739
    103.Mahbubur R M, Harry L, Roberts S, Schmidt O. Tolerance to Bacillus thuringiensis endotoxin in immune suppressed larvae of the flour moth Ephestia kuehniella. J Invertebr Pathol 2007, 96:125-132
    104.Malvar T, Baum J A. Tn5401 disruption of the spoOF gene, identified by direct chromosomal sequencing, results in CryIIIA overproduction in Bacillus thuringiensis.J Bacteriol, 1994, 176:4750-4753
    105.Mao Y B, Cai W, Wang J W, Hong G J, Tao XY, Wang L J, Huang Y P, Chen X Y.Silencing a cotton boll worm monoxygen as egene by plant-mediated RNAi impairs larval tolerance to gossypol. Nat Biotechnol, 2007, 25:1307-1313
    106.Martin P A W. An iconoclastic view of Bacillus thuringiensisecology. Am. Entomol,1994, 40:85-90.
    107.Masson L, Erlandson M, Puzstal-carey M, Rousseau R, Juarez-perez V, Frutos R. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strain. Appl Environ Microbiol, 1998, 64:4782-4788
    108.Mclean K, Whiteley H R. Expression in Escherichia coli of a cloned crystal protein gene of Bacillus thuringiensis subsp. israelensis. J Bacteriol, 1987, 169:1017-1023
    109.Meadows M P, Ellis D J, Butt J, Jarrett P, Burges H D. Distribution, frequency, and diversity of Bacillus thuringiensis in an animal feed mill. Appl Environ Microbiol,1992,58:1344-1350
    110.Meng Y, Song R, Zhang Zh, Zhu Z, Sun M, Yu Z. Novel insecticidal crystal protein genes of Bacillus thuringiensis strains isolated from soil samples in China. The Abstract of 41st Annual Meeting of the Society for Invertebrate Pathology and 9th International Conference on Bacillus thuringiensis. 2008, p38
    111 .Minnich S A, Aronson A I. Regulation of protoxin synthesis in Bacillus thuringiensis.J Bacteriol, 1984, 158:447-454
    112.Morse R J, Yamamoto T, Stroud R M. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure (Camb), 2001, 9(5):409-417
    113.Naresh A, Selvapandiyan A, Neema A, Bhatnagar R K. Relocating expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis. Bioche and Biophy Res Com, 2003, 310:158-162
    114.Ochoa Campuzano C, Real M D, Martinez-Ramirez A C, Bravo A, Rausell C. An ADAM met alloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor. Biochem Biophys Res Commun, 2007, 362:437-442
    115.Oeda K, Oshie K, Shimizu M. ucleotide sequence of the insecticidal protein gene of Bacillus thuringiensis strain aizawai IPL7 and its high-level expression in Escherichia coli. Gene, 1987, 53:113-119
    116.Panadda B, Min M, Chanan A, Julien L. Structure of the Functional Form of the Mosquito Larvicidal Cry4Aa Toxin from Bacillus thuringiensis at a 2.8-Angstrom Resolution. J. Bacteriol, 2006, 188(9):3391-3401
    117.Panadda B, Paul D, David J, Ellar D J, Jade Li. Crystal Structure of the Mosquito-larvicidal Toxin Cry4Ba and Its Biological Implications. J. Mol. Biol, 2005,348:363-382
    
    118.Park H W, Ge B-X, Bauer L S. Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl Environ Microbiol, 1998, 64(10):3932-3938
    119.Park H W, Bideshi D K, Federici B A. Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield. Appl Environ Microbiol, 2000, 66:4449-4455
    120.Peng D, Chen S, Ruan Li, Li L, Yu Z, Sun M, Assessment of Transgenic Bacillus thuringiensis with VIP insecticidal protein gene by Feeding Studies. Food and Chem Toxi Saf, 2007, 45:1179-1185.
    121.Perez C, Fernandez L E, Sun J, Folch J L, Gill S S, Soberon M, Bravo A. Bacillus thuringiensis subsp. israelensis CytlAa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proc Natl Acad Sci, 2005, 102:18303-18308
    122.Perez C, Garay C M, Portugal L C, Sanchez J, Gill S S, Soberon M, Bravo A.Bacillus thuringiensis subsp. israelensis CytlAa enhances activity of CryllAa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol, 2007,9:2931-2937
    123.Petosa C, Collier R J, Klimpel K R, Leppla S H, Liddington R C. Crystal structure of the anthrax toxin protective antigen. Nature, 1997, 385 (6619):833-838
    124.Qaim M and Zilberman D. Yield effects of genetically modified crops in developing countries. Science, 2003, 299:900-902
    125.Rahman M M, Rahman M, Harry M, Roberts L S, Sarjan M, Asgari S, Schmidt O.Induction and transmission of Bacillus thuringiensis tolerance in the flour moth Ephesia kuehniella. Proc Natl Acad Sci, 2004, 101:2696-2699
    
    126.Rang C M, Bes V, Lullien-Pellerin, Wu D, Federici B A, Frutos R. Influence of the 20kDa protein from Bacillus thuringiensis ssp. israelensis on the rate of production of truncated Cry1C proteins. FEMS Microbiol Lett, 1996, 141:261-264.
    127.Rang C, Patricia G, Nathalie N, Jeroen V R, Roger F. Novel Vip3-Related Protein from Bacillus thuringiensis. Appl Environ Microbiol, 2005, 71:6276-6281
    128.Schnepf E, Crickmore N, van Ran J, et al. Bacillus thuringiensis and its pesticidal proteins. Microbiol Mol Biol Rev, 1998, 62(3):775-806
    129.Selvapandiyan A, Arora N, Rajagopal R, Jalali S K, Venkatesan T, Singh S P, Bhatnagar R K. Toxicity analysis of N- and C-terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis. Appl Environ Microbiol, 2001,67(12):5855-5858
    130.Shao Z Z, Liu Z D, Yu Z N. Effects of the 20-kilodalton-helper protein on Cry1Ac production in Bacillus thuringiensis. Appl Environ Microbiol, 2001, 67:5362-5369
    131.Shi Y, Xu W, Yuan M. Expression of vipl /vip2 genes in Escherich-coli and Bacillus thuringiensis and the analysis of their signal peptides peptides. Appl Microbiol, 2004,97:757-65
    132.Slaney A C, Robbins H L, English L. Mode of action of Bacillus thuringiensis toxin CryIIIA:an analysis of toxicity in Leptinotarsa decemlineata (Say) and Diabrotica undecimpunctata howardi Barber. Insect Biochem and Mol. Bio, 1992, 22(1):9-18
    133.Smith G P, Ellar D J. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryIC δ-endotoxin affects insecticidal specificity. J Biochem, 1994,302:611-616
    134.Soberon M, Pardo-López L, López I, Gómez I, Tabashnik B E, Bravo A. Engineering modified Bt toxins to counter insect resistance. Sci, 2007, 318:1640-1642
    
    135.Strizhov N, Keler M, Mathur J, Koncz Kalman Z, Bosch D, Prudovsky E, Schell J,Sneh B, Koncz C, Zilberstein A. A synthetic cry1C gene, encoding a Bacillus thuringiensis 8-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc Natl Acad Sci USA, 1996, 93:15012-1501
    136.Tabashnik B E, Cushing N L, Finson N. Field development of resistance to Bacillus thuringiensis in diamondback moth. J Econom Entomol, 1990, 83:1671-1676.
    137.Tabashnik B E. Insect resistance to Bt crops: evidence versus theory. Nat Biotechnol,2008,26:199-202
    138.Van Rie J, McGaughey W H, Johnson D E et al. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Sci, 1990, 247:72-74
    139.Vellanoweth R L and Rabiowitz J C. The influence of ribosome binding site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Mol Microbiol, 1992, 6:1105-1114
    140.Visick J E, and Whitdeley H R. Effect of a 20-kilodalton protein from Bacillus thuringiensis subsp. israelensis on production of the CytA protein by Escherichia coli.J. Bacteriol, 1991, 173:1748-1756
    141.Ward E S, and Ellar D J. Cloning and expression of two homologous genes of Bacillus thuringiensis subsp. israelensis which encode 130-kilodalton mosquitocidal proteins. J Bacteriol, 1988, 170:727-735.
    142.Warren G W, Koziel M G, Mullins M A, Yu C G, Estruch J J. World Intellectural Property Orgnization Patent WO, 1998, 5:849- 870
    143.Winder W R, Whiteley H R. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subspecies kurstaki possess different host range specificities. J Bacteriol, 1989, 171:965-974
    144.Wirth M C, Park H W, Walton W E, Federici B A. Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquef asciatus. Appl Environ Microbiol, 2005, 71: 185-189
    145.Wong H C, Chang S. Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc Natl Acad Sci USA, 1986, 83:3233-3237
    146.Wong H C, Schnepf H E, Whiteley H R. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J Biol Chem, 1983, 258:1960-1967
    147.Wu D, Cao X L, Aronson A J. Sequence of an operon containing a novel 8-endotoxin gene from Bacillus thuringiensis. FEMS Microbiol Letts, 1991, 81:31-36
    148.Wu D, Federici B A. A 20-kilodalton protein preserves cell viablility and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. J Bacteriol, 1993, 175:5276-5280
    149.Xu X, L Yu, Wu Y. Disruption of a cadherin gene associated with resistance to Cry1Ac- endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol, 2005, 71:948-954
    150.Yamamoto T, Watkinson I A, Kim.L, Sage M V, Stratton R, Akande N, Li Y, Ma D P, Roe B A. Nucleotide sequence of the gene coding for a 130KDa mosquitocidal protein of Bacillus thuringiensis subsp. israelensis. Gene, 1988, 66:107-120 151.Yang Y, Chen H, Wu Y, Yang Y, Wu S. Mutated cadherin alleles from a field populationo f Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Appl Environ Microbiol, 2007, 73:6939-6944
    152.Yoshisue H, Fukada T, Yoshida K L, Sen K, Kurosawa S I, Sakai H, Komano T. Transcriptional regulation of Bacillus thuringiensis subsp. israelensis Mosquito larvicidal crystal protein gene cry1VA. J Bacteriol, 1993, 175:2750-275 153.Yoshisue H, Yoshida K, Sen K, Sakai H, Komano T. Effects of Bacillus thuringiensis 20-kDa protein on production of the Bti 130-kDa crystal protein in Escherichia coli. Biosci Biotech Biochem, 1992, 56:1429-1433
    154.Yu C G, Mullins M A, Warren G W, Koziel M G, Estruch J J. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol, 1997, 63(2):532-536
    155.Yu J, Xie R, Tan L, Xu W, Zeng S, Chen J, Tang M, Pang Y. Expression of the full-length and 3'-spliced cry1Ab gene in the 135-kDa crystal protein minus derivative of Bacillus thuringiensis subsp. kyushuensis. Curr Microbiol, 2002 , 45(2):133-138
    156.Zhang X, Candas M, Griko N B, Taussig R, Bulla L A. A mechanism of cell death involving ganadenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci, 2006, 103:9897-9902
    157.Zhao J Z, Cao J, Collins H L, Bates S L, Roush R T, Earle E D, Shelton A M. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci, 2005, 102:8426-8430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700