用户名: 密码: 验证码:
杂合抗菌肽Attacin-Thanatin基因工程表达菌的构建及重组抗菌肽的生物学功效
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究旨在构建杂合抗菌肽AT基因的基因工程表达菌,并分别在原核和真核细胞中表达;通过体内、体外抑菌试验、以小鼠为模型的活体试验初步探讨重组抗菌肽AT的生物学功效。首先通过RT-PCR技术,从大肠杆菌攻毒诱导的果蝇中扩增AttacinA基因,通过SOE-PCR技术结合TD-PCR将编码成熟肽的Attacin A基因(简写为mA)与Thanatin基因首位相连连接在一起形成杂合基因Attacin-Thanatin(简写为AT),构建原核、真核重组表达菌,表达重组杂合抗菌肽AT及mA。利用宿主菌对抗菌肽分子内源攻击的敏感性,即表达的抗菌肽对宿主菌有抑制作用、从而造成宿主菌的部分“自杀”这一原理,建立体内活性检测方法并利用该方法检测杂合抗菌肽AT的体内抑菌活性,同时对原核表达产物初步纯化后进行体外抑菌试验。为了考察重组抗菌肽在活体上的生物学功效,以小鼠为模型初步探讨了真核表达产物在调控生产性能、免疫功能及肠道形态上的效果。主要研究结果如下:
     1、采用二步法RT-PCR技术,克隆出了Attacin A基因,电泳分析显示,其条带大小约为732 bp,与预期片段大小相符,测序结果表明,其核苷酸序列与GenBank报道的Attacin A基因同源性高达96%~99%以上,证实已经正确克隆获得Attacin A基因。序列分析显示,该基因完整阅读框包含666 bp,编码221 AA。
     2、以重组TA克隆质粒pMD-AttA为模板,经两次SOE-PCR技术结合TD-PCR扩增后,扩增出杂合肽基因AT,片段大小约为660 bp。该杂合基因以Attacin AN端的189 AA作为N端,C端为Thanatin C端的18 AA,中间有6 AA柔性接头,总共包含213 AA。
     3、成功构建杂合基因AT及mA的原核重组表达载体pET-mAT(pe)、pET-mA(pe),转化宿主菌Rosetta-gami~(TM)(DE3)pLysS,经过IPTG诱导后,SDS-PAGE电泳分析显示,在41.8 kDa、39.2 KDa处有明显的目的条带,与预期目的蛋白分子量理论值一致,表明Rosetta-gami~(TM)(DE3)pLysS可成功表达AT、mA抗菌肽。
     4、将重组表达载体pET-mAT(pe)依次转化宿主菌E.coli DH5α、BL21(DE)、Rosetta-gami~(TM)(DE3)pLysS,采用IPTG诱导表达;通过优化选择该抗菌肽的敏感菌株、诱导剂IPTG浓度、宿主菌诱导起始浓度等初步建立抗菌肽菌内抑菌活性检测方法,并研究了该杂合抗菌肽体内抑菌活性。结果表明以E.coli DH5α为宿主菌、0.1 mmol/LIPTG为工作浓度、D(600nm)值0.3为起始诱导菌浓度检测抗菌肽菌内抑菌活性方法合理可行;AT融合表达产物抑菌活性检测显示,宿主菌E.coli DH5α被本身所表达的杂合抗菌肽所抑制,增殖速度明显较对照菌放缓。
     5、本试验采用Ni~(2+)-NTA agarose beads通过His标签纯化目的蛋白,并初步探讨了该抗菌肽的抑菌活性。结果表明,本试验所获得的抗菌肽AT及mA对E.coli DH5α、E.coli BL21(DE3)、猪霍乱沙门菌、金黄色葡萄球菌具有抑菌活性,其中对大肠杆菌最为敏感。溶血试验表明,其对猪的红细胞几乎没有溶血活性。
     6、为了检测AT及mA在哺乳动物Vero细胞中的表达特点,试验首先构建增强型绿包荧光蛋白EGFP重组报告载体,通过对细胞绿色荧光的观察来确定该基因在哺乳动物细胞中表达的可行性及表达规律。结果显示,构建的重组真核报告表达载体pEGFP-mAT(ee)、pEGFP-mA(ee),转染到哺乳动物细胞Vero中后,AT及mA基因均可在Vero细胞中获得绿色荧光蛋白融合表达产物,72 h时融合蛋白表达量最大,绿色荧光定位观察显示,表达的融合蛋白可以分泌到细胞外。试验进一步构建了重组真核表达载体pCI-mAT(ee)、pCI-mA(ee),转染到Vero细胞中进行表达。根据上述表达特点在转染后72 h检测表达结果,SDS-PAGE电泳显示在23.54 kDa、20.9 kDa处出现目的蛋白条带,大小与预期蛋白分子量理论值基本一致,说明杂合抗菌肽AT及抗菌肽mA均可在Vero细真核胞中获得纯表达。同时收集细胞培养液上清备用。
     7、通过检测细胞培养液上清对受试菌株的抑菌活性,发现高浓度细胞培养液上清较低浓度的能够更好地抑制细菌的生长,说明该上清中含有目的抗菌肽,可以作为进一步小鼠试验研究的素材。
     8、选择80只3~4周龄、平均体重为14.2±1.03 g(平均数±标准差)的断奶小鼠随机分为4组,每组5个重复,连续7天腹腔注射含有抗菌肽AT、mA的细胞培养液上清,正常细胞的培养液上清、氨苄西林作为对照。于第8天大肠杆菌攻毒后继续饲养一周。我们发现连续7天腹腔注射含有抗菌肽AT及mA的细胞培养液上清后,AT杂合抗菌肽组小鼠的日增重较其他3组均略有提高,分别比mA组、细胞培养液上清及抗生素组提高了14.7%、13.8%及12.1%,但差异均不显著。而mA组与细胞培养液上清及抗生素组几乎没有差异。攻毒后的一周内,AT杂合抗菌肽组小鼠的生长性能则分别较mA组、细胞培养液上清及抗生素组提高了34.18%、53.62%及17.78%,其中与细胞培养液上清对照组相比差异达到显著水平(p<0.05)。从试验全期来看,AT杂合抗菌肽组小鼠的日增重与mA组及细胞培养液上清组比较明显提高(p<0.05),提高幅度达25%,而与抗生素组差异不显著。连续腹腔注射重组蛋白后,发现其对胸腺、脾脏的相对重量、十二指肠的绒毛高度没有影响,却极显著增加了空肠的绒毛高度,mA组、AT杂合抗菌肽组小鼠分别较细胞培养液上清组升高了77.4%、74.2%(p<0.01)。对十二指肠隐窝深度有一定的改善,mA组、AT杂合抗菌肽组小鼠分别较细胞培养液上清组下降了16.99%(p<0.01)、11.12%(p>0.05)。攻毒后,与对照组相比,重组抗菌肽组小鼠十二指肠、空肠的隐窝深度均较对照组降低,其中AT及mA组小鼠十二指肠隐窝深度分别较抗生素组降低了11.3%(p<0.05)、15.38%(p<0.01);空肠隐窝深度分别较抗生素组降低了4.8%、7.14%,差异均不显著。注射重组抗菌肽后,小鼠血清中的免疫球蛋白IgM、IL-1β的水平明显提高,而攻毒后,IL-1β的水平较对照组下降。
     结论:本研究成功构建了抗菌肽基因AT、mA的原核、真核基因工程表达菌,并通过体内、体外试验表明了重组抗菌肽AT、mA对大肠杆菌、猪霍乱沙门菌、金黄色葡萄球菌等具有抑菌活性,其中对大肠杆菌最为敏感;通过以小鼠为模型的活体试验证明了该重组抗菌肽在调控小鼠的生产性能、免疫功能及肠道形态上具有较好的生物学功效。
There were two aims for this study:(1) to construct the genetic engineering bacteria for expression of the hybrid peptide AT gene;(2) to investigate the biological effectiveness of the recombinant antimicrobial peptide by antibacterial test and in vivo test taking rats as the model.To achieve the above aims,firstly,the full-length open reading frame(ORF) coding for Attacin A gene was generated using RT-PCR which takes total RNA extracted from Drosophila as the template.The hybrid peptide gene Attacin-Thanatin(abbreviated as AT) was generated by using the technology of gene splicing by overlap extension and touchdown PCR.The genetic engineering bacteria for expression of the antimicrobial peptide AT and mA in Escherichia coli and mammalian cell were constructed.According to the principle that host strain is sensitive to antimicrobial peptide,that is to say,the expressed antimicrobial peptide would inhibit the growth of the host strain,thereby the host strain was caused to "suicide",we developed the method to inspect the antimicrobial activity in vivo and the antimicrobial activity of hybrid peptide AT was detected by this method.Meanwhile,the products of prokaryotic expression were purified and antimicrobial test was carried out in vitro.The biological effectiveness of the recombinant peptide AT was studied by in vivo test taking rats as the model,the ability to regulate the growth performance,immune functions and intestinal morphology of weanling rats were inspected.The results are as followings:
     1.Attacin A gene was cloned by two-step RT-PCR from Drosophila stimulated by E.coli.Results of agarose gel electrophoresis indicated that it included 732 bp in length and encodes 221 AA which was consistent to the predicted size.The sequence analysis revealed that the nucleotide sequence of Attacin A gene had high similarity to other Attacin genes(96%-99%),which indicated that we have cloned Attacin A gene successfully.The nucleotide sequence of Attacin A gene had been submitted in GenBank(Accession No. EU008826).
     2.The hybrid peptide gene AT with the 660bp in length was generated using the technology of splicing by overlap extension and touchdown PCR using the recombinant plasmid pMD-AttA as the template.AT gene included Attacin A(189 amino acids in N terminal) and Thanatin(18 amino acids in C terminal).In order to avoid affecting their structure,a specific short peptide(-G-G-S-G-S-G-) was added between them.
     3.The prokaryotic expression vector pET-mAT(pe),pET-mA(pe) were construted successfully and transformed into Rosetta-gami~(TM)(DE3)pLysS.E.coli Rosetta cells harbouring the recombinant pET-mAT(pe) and pET-mA plasmid were induced with IPTG and analyzed by SDS-PAGE.Results showed that the molecular mass of recombinant fusion proteins were in agreement with the calculated value from deduced amino acid sequence,which indicated that Rosetta-gami~(TM)(DE3)pLysS could express the antimicrobial protein AT and mA.
     4.To develop the method of inspecting the antimicrobial activity in vivo,the secombinant expression plasmid pET-mAT(pe) was transformed into E.coli DH5α、BL21(DE)、Rosetta-gami~(TM)(DE3)pLysS respectively.IPTG induction was carried out.In order to optimize the method for assaying bacteriostatic activity in vivo,different factors were tested,including the susceptible strain(E.coli DH5α、BL21(DE3)、Rosetta-gami~(TM) (DE3) pLysS)、concentration of IPTG(0.0-1.0mM) and the initial bacterial cell density of the host strain(D(600nm) = 0.2-1.0) and so on.Optimal method was obtained at an initial cell density of D(600nm) = 0.3 with 0.1mM IPTG when the most sensitive strain E.coli DH5αwas taken as the host strain.After the recombinant plasmid pET-mAT(pe) was transformed into competent E.coli DH5αand induced with IPTG,cell growth was monitored by measuring the optical density at D(600nm) for continuous 14h.The growth curve demonstrated that the generation of E.coli DH5αharboring recombinant plasmid of pET-mAT(pe) was inhibited obviously compared with the normal E.coli DH5α.
     5.The His-tag of the fusion protein made it convenient for protein purification by Ni~(2+)-NTA agarose affinity chromatography.The antibacterial activity of antimicrobial peptide AT and mA were determined by agarose diffusion assay.The results demonstrated that the recombinant antimicrobial peptide AT and mA were active to E.coli DH5α,E.coli BL21(DE3),Salmonella choleraesuis and Staphylococcus aureus.Among these test bacteria,E.coli was most susceptible.The toxicities of the peptide to eukaryotic cells were tested by its ability to lyse porcine red blood cells.We found the peptide had almost no detectable hemolytic activity.
     6.To express AT and mA in mammalian cell,firstly,we carried out the fusion expression with the enhanced green fluorescent protein(EGFP) to determine whether it is feasible to express in mammalian cell through observing the green fluorescent with fluorescent microscope.The results showed that after the recombinant eukaryotic expression vector pEGFP-mAT(ee)、pEGFP-mA(ee) were transfected into Vero cells. There were green fluorescent in Vero cells and the fluorescent amount reached the maximum 72h later.The localization of green fluorescent indicated that the expressed fusion protein could secrete ecto-cell.The eukaryotic expression vector pCI-mAT(ee) and pCI-mA(ee) were constructed subsequently and transfected into Vero cells. According to the above results,SDS-PAGE was conducted after 72h of transfection. Results showed that there were predominant bands with apparent molecular weight of 23.54 kDa and 20.9 kDa which was consistent with the molecular weight calculated from the amino acid sequence.So,eukaryotic expression in Vero cells were carried out successfully.The supernatant of cell culture fluid were collected for the following usage.
     7.By testing the antibacterial activity to E.coli DH5α,E.coli JM109,Streptococcus, Staphylococcus aureus and Salmonella choleraesuis of the supernatant of cell culture medium containing the recombinant peptide AT or mA,we found that the higher concentration of the supernatant,the more inhibition of the bacteria,which indicated that the supernatant of cell culture medium contained the antimicrobial peptide AT or mA and could be as the material for the further study on rats.
     8.Eighty weanling rats with an average initial weight of 14.2±1.03g(means±SD) were randomly allocated to four treatments with five replicate per treatment.The supernatant of cell culture medium containing the recombinant peptide AT or mA was administered by intraperitoneal injection into rats for 7 days consecutively.At the same time,the supernatant of cell culture medium of normal cell and Ampicillin were as control.On day 8, the fresh E.coli was administered by intraperitoneal injection into rats and the rats were reared for another week.The results showed that the supernatant of cell culture medium containing the recombinant peptide AT slightly increased the average daily gain(ADG) of rats by 14.7%、13.8%and 12.1%compared with the supernatant of cell culture medium containing the recombinant peptide mA,the supernatant of cell culture medium of normal cell and Ampicillin.But the difference was not significant.There was no different effect on ADG among the supernatants of cell culture medium containing the mA and of normal cell and Ampicillin.After infected with E.coli,the growth performance of rats treated with the supernatant containing the recombinant peptide AT increased 34.18%、53.62%(p<0.05) and 17.78%compared with the supernatant containing the recombinant peptide mA and of normal cell and Ampicillin.From the whole experiment period,the ADG of rats treated with the supernatant containing the recombinant peptide AT increased significantly compared with the supernatant containing the mA and of normal cell(p<0.05),but there was no significant difference compared with Ampicillin.The supernatant containing the recombinant peptide AT or mA did not affect the relative weights of immune organ thymus gland and spleen,villus height of duodenum,but the villus height of jejunum increased by 74.2%(p<0.01) and 77.4%compared with the supernatant of normal cell.Meanwhile,crypt depths of duodenum were decreased by 11.12%(p>0.05) and 16.99%(p<0.01) compared with the supernatant of normal cell.After infected with E.coli,the crypt depth of duodenum of rats treated with the supernatant containing the recombinant peptide AT or mA were decreased by 11.3%(p<0.05),15.38%(p<0.01) while the crypt depth of jejunum decreased by 4.8%,7.14%compared with Ampicillin.In addition,the level of IgM、IL-1βin serum of rats treated with the supernatant containing the recombinant peptide AT or mA increased obviously while the level of IL-1βdecreased after infected with E.coli.
     Conclusions:The genetic engineering bacteria for expression of the antimicrobial peptide AT and mA in Escherichia coli and mammalian cell were constructed successfully. Antibacterial test indicated that antimicrobial peptide AT and mA were active to E.coli, Salmonella choleraesuis,Staphylococcus aureus and so on.Among these test bacteria, E.coli was most susceptible.In vivo experiments taking the rats as the model demonstrated that the recombinant antimicrobial peptide AT possessed the biological effectiveness on regulating the growth performance,immune functions and intestinal morphology of weanling rats.
引文
[1] MARTIN E, GANZ T, LEHRER R I. Defensins and other endogenous peptide antibiotics of vertebrates [J]. J Leukoc Biol, 1995, 58(2): 128-36.
    [2] WANG Z, WANG G. APD: the Antimicrobial Peptide Database [J]. Nucleic Acids Res, 2004, 32(Database issue): D590-2.
    [3] LIU Y, LUO J, XU C, et al. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed [J]. Plant Physiol, 2000, 122(4): 1015-24.
    [4] VIZIOLI J, SALZET M. Antimicrobial peptides versus parasitic infections? [J]. Trends Parasitol, 2002, 18(11): 475-6.
    [5] HULTMARK D, STEINER H, RASMUSON T, et al. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia [J]. Eur J Biochem, 1980, 106(1): 7-16.
    [6] STEINER H, HULTMARK D, ENGSTROM A, et al. Sequence and specificity of two antibacterial proteins involved in insect immunity [J]. Nature, 1981, 292(5820): 246-8.
    [7] HANCOCK R E, DIAMOND G. The role of cationic antimicrobial peptides in innate host defences [J]. Trends Microbiol, 2000, 8(9): 402-10.
    [8] LEE J Y, BOMAN A, SUN C X, et al. Antibacterial peptides from pig intestine: isolation of a mammalian cecropin [J]. Proc Natl Acad Sci USA, 1989, 86(23): 9159-62.
    [9] OKADA M, NATORI S. Mode of action of a bactericidal protein induced in the haemolymph of Sarcophaga peregrina (flesh-fly) larvae [J]. Biochem J, 1984, 222(1): 119-24.
    [10] CHALK R, TOWNSON H, NATORI S, et al. Purification of an insect defensin from the mosquito, Aedes aegypti [J]. Insect Biochem Mol Biol, 1994, 24(4): 403-10.
    [11] LOWENBERGER C, BULET P, CHARLET M, et al. Insect immunity: isolation of three novel inducible antibacterial defensins from the vector mosquito, Aedes aegypti [J]. Insect Biochem Mol Biol, 1995, 25(7): 867-73.
    [12] BARILLAS-MURY C, CHARLESWORTH A, GROSS I, et al. Immune factor Gambifl, a new rel family member from the human malaria vector, Anopheles gambiae [J]. EMBO J, 1996, 15(17): 4691-701.
    [13] WADE D, ENGLUND J. Synthetic antibiotic peptides database [J]. Protein Pept Lett, 2002, 9(1): 53-7.
    [14] CHUGH J K, WALLACE B A. Peptaibols: models for ion channels [J]. Biochem Soc Trans, 2001, 29(Pt 4): 565-70.
    [15] EKENGREN S, HULTMARK D. Drosophila cecropin as an antifungal agent [J]. Insect Biochem Mol Biol, 1999, 29(11): 965-72.
    [16] EHRET-SABATIER L, LOEW D, GOYFFON M, et al. Characterization of novel cysteine-rich antimicrobial peptides from scorpion blood [J]. J Biol Chem, 1996, 271(47): 29537-44.
    [17] RODRIGUEZ M C, ZAMUDIO F, TORRES J A, et al. Effect of a cecropin-like synthetic peptide (Shiva-3) on the sporogonic development of Plasmodium berghei [J]. Exp Parasitol, 1995, 80(4): 596-604.
    [18] ZASLOFF M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor [J]. Proc Natl Acad Sci USA, 1987, 84(15): 5449-53.
    [19] ORSI N. The antimicrobial activity of lactoferrin: current status and perspectives [J]. Biometals, 2004, 17(3): 189-96.
    [20] SEEBER F. An enzyme-release assay for the assessment of the lytic activities of complement or antimicrobial peptides on extracellular Toxoplasma gondii [J]. J Microbiol Methods, 2000, 39(3): 189-96.
    [21] DIAZ-ACHIRICA P, UBACH J, GUINEA A, et al. The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1-8)M(1-18), a synthetic cecropin A-melittin hybrid peptide [J]. Biochem J, 1998, 330 ( Pt 1)(453-60.
    [22] PARK Y, JANG S H, LEE D G, et al. Antinematodal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Caenorhabditis elegans [J]. J Pept Sci, 2004, 10(5): 304-11.
    [23] SHAHABUDDIN M, FIELDS I, BULET P, et al. Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin [J]. Exp Parasitol, 1998,89(1): 103-12.
    [24] LEE D G, KIM D H, PARK Y, et al. Fungicidal effect of antimicrobial peptide, PMAP-23, isolated from porcine myeloid against Candida albicans [J]. Biochem Biophys Res Commun, 2001, 282(2): 570-4.
    [25] TYTLER E M, ANANTHARAMAIAH G M, WALKER D E, et al. Molecular basis for prokaryotic specificity of magainin-induced lysis [J]. Biochemistry, 1995, 34(13): 4393-401.
    [26] DE LUCCA A J, BLAND J M, JACKS T J, et al. Fungicidal and binding properties of the natural peptides cecropin B and dermaseptin [J]. Med Mycol, 1998, 36(5): 291-8.
    [27] DE LUCCA A J, WALSH T J. Antifungal peptides: novel therapeutic compounds against emerging pathogens [J]. Antimicrob Agents Chemother, 1999, 43(1): 1-11.
    [28] LEMAITRE B, NICOLAS E, MICHAUT L, et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults [J]. Cell, 1996, 86(6): 973-83.
    [29] PARK K, OH D, SHIN S Y, et al Structural studies of porcine myeloid antibacterial peptide PMAP-23 and its analogues in DPC micelles by NMR spectroscopy [J]. Biochem Biophys Res Commun, 2002, 290(1): 204-12.
    [30] LEHRER R I, SZKLAREK D, GANZ T, et al. Correlation of binding of rabbit granulocyte peptides to Candida albicans with candidacidal activity [J]. Infect Immun, 1985, 49(1): 207-11.
    [31] PATTERSON-DELAFIELD J, MARTINEZ R J, LEHRER R I. Microbicidal cationic proteins in rabbit alveolar macrophages: a potential host defense mechanism [J]. Infect Immun, 1980,30(1): 180-92.
    [32] LEE D G, KIM H K, KIM S A, et al. Fungicidal effect of indolicidin and its interaction with phospholipid membranes [J]. Biochem Biophys Res Commun, 2003, 305(2): 305-10.
    [33] LEE D G, HAHM K S, SHIN S Y. Structure and fungicidal activity of a synthetic antimicrobial peptide, P18, and its truncated peptides [J]. Biotechnol Lett, 2004, 26(4): 337-41.
    [34] CHO Y, TURNER J S, DINH N N, et al. Activity of protegrins against yeast-phase Candida albicans [J]. Infect Immun, 1998, 66(6): 2486-93.
    {35] BELLAMY W, WAKABAYASHI H, TAKASE M, et al. Killing of Candida albicans by lactoferricin B, a potent antimicrobial peptide derived from the N-terminal region of bovine lactoferrin [J]. Med Microbiol Immunol, 1993, 182(2): 97-105.
    [36] PARK Y, LEE D G, HAHM K S. HP(2-9)-magainin 2(1-12), a synthetic hybrid peptide, exerts its antifungal effect on Candida albicans by damaging the plasma membrane [J]. J Pept Sci, 2004, 10(4): 204-9.
    [37] KIM D H, LEE Y T, LEE Y J, et al. Bacterial expression of tenecin 3, an insect antifungal protein isolated from Tenebrio molitor, and its efficient purification [J]. Mol Cells, 1998, 8(6): 786-9.
    [38] LEHRER R I, GANZ T, SZKLAREK D, et al. Modulation of the in vitro candidacidal activity of human neutrophil defensins by target cell metabolism and divalent cations [J]. J Clin Invest, 1988, 81(6): 1829-35.
    [39] CHERNYSH S, KIM S I, BEKKER G, et al. Antiviral and antitumor peptides from insects [J]. Proc Natl Acad Sci USA, 2002, 99(20): 12628-32.
    [40] ZHANG L, YU W, HE T, et al. Contribution of human alpha -defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor [J]. Science, 2002, 298(5595): 995-1000.
    [41] MASUDA M, NAKASHIMA H, UEDA T, et al. A novel anti-HIV synthetic peptide, T-22 ([Tyr5,12,Lys7]-polyphemusin II) [J]. Biochem Biophys Res Commun, 1992, 189(2): 845-50.
    [42] WACHINGER M, KLEINSCHMIDT A, WINDER D, et al. Antimicrobial peptides melittin and cecropin inhibit replication of human immunodeficiency virus 1 by suppressing viral gene expression [J]. J Gen Virol, 1998, 79 ( Pt 4):731-40.
    [43] SINHA S, CHESHENKO N, LEHRER R I, et al. NP-1, a rabbit alpha-defensin, prevents the entry and intercellular spread of herpes simplex virus type 2 [J]. Antimicrob Agents Chemother, 2003, 47(2): 494-500.
    [44] DAHER K A, SELSTED M E, LEHRER R I. Direct inactivation of viruses by human granulocyte defensins [J]. J Virol, 1986, 60(3): 1068-74.
    [45] ANDERSEN J H, JENSSEN H, GUTTEBERG T J. Lactoferrin and lactoferricin inhibit Herpes simplex 1 and 2 infection and exhibit synergy when combined with acyclovir [J]. Antiviral Res, 2003, 58(3): 209-15.
    [46] JENSSEN H, ANDERSEN J H, UHLIN-HANSEN L, et al. Anti-HSV activity of lactoferricin analogues is only partly related to their affinity for heparan sulfate [J]. Antiviral Res, 2004, 61(2): 101-9.
    [47] YASIN B, PANG M, TURNER J S, et al. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides [J]. Eur J Clin Microbiol Infect Dis, 2000, 19(3): 187-94.
    [48] YASIN B, WANG W, PANG M, et al. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry [J]. J Virol, 2004, 78(10): 5147-56.
    [49] MOORE A J, DEVINE D A, BIBBY M C. Preliminary experimental anticancer activity of cecropins [J]. Pept Res, 1994, 7(5): 265-9.
    [50] BAKER M A, MALOY W L, ZASLOFF M, et al. Anticancer efficacy of Magainin2 and analogue peptides [J]. Cancer Res, 1993, 53(13): 3052-7.
    [51] SHARMA S V. Melittin-induced hyperactivation of phospholipase A2 activity and calcium influx in ras-transformed cells [J]. Oncogene, 1993, 8(4): 939-47.
    [52] ZANETTI M. Cathelicidins, multifunctional peptides of the innate immunity [J]. J Leukoc Biol, 2004, 75(1): 39-48.
    [53] YANG D, BIRAGYN A, KWAK L W, et al. Mammalian defensins in immunity: more than just microbicidal [J]. Trends Immunol, 2002, 23(6): 291-6.
    [54] YANG D, BIRAGYN A, HOOVER D M, et al. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense [J]. Annu Rev Immunol, 2004,22(181-215.
    [55] SCOTT M G, HANCOCK R E. Cationic antimicrobial peptides and their multifunctional role in the immune system [J]. Crit Rev Immunol, 2000, 20(5): 407-31.
    [56] BOWDISH D M, DAVIDSON D J, HANCOCK R E. A re-evaluation of the role of host defence peptides in mammalian immunity [J]. Curr Protein Pept Sci, 2005, 6(1): 35-51.
    [57] BOWDISH D M, DAVIDSON D J, LAU Y E, et al. Impact of LL-37 on anti-infective immunity [J]. J Leukoc Biol, 2005, 77(4): 451-9.
    [58] COLE A M, LIAO H I, GANZ T, et al. Antibacterial activity of peptides derived from envelope glycoproteins of HIV-1 [J]. FEBS Lett, 2003, 535(1-3): 195-9.
    [59] COM E, BOURGEON F, EVRARD B, et al. Expression of antimicrobial defensins in the male reproductive tract of rats, mice, and humans [J]. Biol Reprod, 2003, 68(1): 95-104.
    [60] LIU L, ROBERTS A A, GANZ T. By IL-1 signaling, monocyte-derived cells dramatically enhance the epidermal antimicrobial response to lipopolysaccharide [J]. J Immunol, 2003, 170(1): 575-80.
    [61] GUTSMANN T, HAGGE S O, LARRICK J W, et al. Interaction of CAP18-derived peptides with membranes made from endotoxins or phospholipids [J]. Biophys J, 2001, 80(6): 2935-45.
    [62] BROGDEN K A, HEIDARI M, SACCO R E, et al. Defensin-induced adaptive immunity in mice and its potential in preventing periodontal disease [J]. Oral Microbiol Immunol, 2003, 18(2): 95-9.
    [63] HULTMARK D, ENGSTROM A, ANDERSSON K, et al. Insect immunity. Attacins, a family of antibacterial proteins from Hyalophora cecropia [J]. EMBO J, 1983, 2(4): 571-6.
    [64] ASLING B, DUSHAY M S, HULTMARK D. Identification of early genes in the Drosophila immune response by PCR-based differential display: the AttA gene and the evolution of attacin-like proteins [J]. Insect Biochem Mol Biol, 1995, 25(4): 7.
    [65] SHIN S W, PARK S S, PARK D S, et al. Isolation and characterization of immune-related genes from the fall webworm, Hyphantria cunea, using PCR-based differential display and subtractive cloning [J]. Insect Biochem Mol Biol, 1998, 28(11): 827-37.
    [66] DUSHAY M S, ROETHELE J B, CHAVERRI J M, et al. Two AttAntibacterial genes of Drosophila melanogaster [J]. Gene, 2000, 246(1-2): 49-57.
    [67] KISHIMOTO K, FUJIMOTO S, MATSUMOTO K, et al. Protein purification, cDNA cloning and gene expression of attacin, an antibacterial protein, from eri-silkworm, Samia cynthia ricini [J]. Insect Biochem Mol Biol, 2002, 32(8): 881-7.
    [68] GENG H, AN C J, HAO Y J, et al. Molecular cloning and expression of Attacin from housefly (Musca domestica) [J]. Yi Chuan Xue Bao, 2004, 31(12): 1344-50.
    [69] S(?)GIYAMA M, KUNIYOSHI H, KOTANI E, et al. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins [J]. Insect Biochem Mol Biol, 1995, 25(3):
    [70] ZHANG B, WANG L M, YE B, et al. Cloning and Analysis of cDNA of the Attacin Gene From the Chinese Oak Silkworm, Antheraea pernyi, Using RLM-RACE Method [J]. Canye Kexue, 2006 32): 333-9.
    [71] WILLIAMS M J, RODRIGUEZ A, KIMBRELL D A, et al. The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense [J]. EMBO J, 1997, 16(20): 6120-30.
    [72] ENGSTROM A, ENGSTROM P, TAO Z J, et al. Insect immunity. The primary structure of the antibacterial protein attacin F and its relation to two native attacins from Hyalophora cecropia [J]. EMBO J, 1984, 3(9): 2065-70.
    [73] KANG D, LUNDSTROM A, STEINER H. Trichoplusia ni AttA, a differentially displayed insect gene coding for an antibacterial protein [J]. Gene, 1996, 174(2): 245-9.
    [74] SUN S C, LINDSTROM I, LEE J Y, et al. Structure and expression of the attacin genes in Hyalophora cecropia [J]. Eur J Biochem, 1991, 196(1): 247-54.
    [75] KADALAYIL L, PETERSEN U M, ENGSTROM Y. Adjacent GATA and kappa B-like motifs regulate the expression of a Drosophila immune gene [J]. Nucleic Acids Res, 1997, 25(6): 1233-9.
    [76] LEVASHINA E A, OHRESSER S, LEMAITRE B, et al. Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin [J]. J Mol Biol, 1998, 278(3): 515-27.
    [77] TANIAI K, ISHII T, SUGIYAMA M, et al. Nucleotide sequence of 5'-upstream region and expression of a silkworm gene encoding a new member of the attacin family [J]. Biochem Biophys Res Commun, 1996, 220(3): 594-9.
    [78] KATO Y, TANIAI K, HIROCHIKA H, et al. Expression and characterization of cDNAs for cecropin B, an antibacterial protein of the silkworm, Bombyx mori [J]. Insect Biochem Mol Biol, 1993, 23(2): 285-90.
    [79] SUGIYAMA M, KUNIYOSHI H, KOTANI E, et al. Characterization of a Bombyx mori cDNA encoding a novel member of the attacin family of insect antibacterial proteins [J]. Insect Biochem Mol Biol, 1995, 25(3): 385-92.
    [80] KATO Y, MOTOI Y, TANIAI K, et al. Lipopolysaccharide-lipophorin complex formation in insect hemolymph: a common pathway of lipopolysaccharide detoxification both in insects and in mammals [J]. Insect Biochem Mol Biol, 1994, 24(6): 547-55.
    [81] YAMANO Y, MATSUMOTO M, INOUE K, et al. Cloning of cDNAs for cecropins A and B, and expression of the genes in the silkworm, Bombyx mori [J]. Biosci Biotechnol Biochem, 1994, 58(8): 1476-8.
    [82] HULTMARK D. Immune reactions in Drosophila and other insects: a model for innate immunity [J]. Trends Genet, 1993, 9(5): 178-83.
    [83] SUN S C, FAYE I. Affinity purification and characterization of CIF, an insect immunoresponsive factor with NF-kappa B-like properties [J]. Comp Biochem Physiol B, 1992, 103(1): 225-33.
    [84] KOBAYASHI A, MATSUI M, KUBO T, et al. Purification and characterization of a 59-kilodalton protein that specifically binds to NF-kappa B-binding motifs of the defense protein genes of Sarcophaga peregrina (the flesh fly) [J]. Mol Cell Biol, 1993, 13(7): 4049-56.
    [85] IP Y T, REACH M, ENGSTROM Y, et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila [J]. Cell, 1993, 75(4): 753-63.
    [86] CARLSSON A, NYSTROM T, DE COCK H, et al. Attacin-an insect immune protein-binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis [J]. Microbiology, 1998, 144 ( Pt 8)(2179-88.
    [87] HU Y, AKSOY S. An antimicrobial peptide with trypanocidal activity characterized from Glossina morsitans morsitans [J]. Insect Biochem Mol Biol, 2005, 35(2): 105-15.
    [88] VAARA M, VILJANEN P. Binding of polymyxin B nonapeptide to gram-negative bacteria [J]. Antimicrob Agents Chemother, 1985, 27(4): 548-54.
    [89] ENGSTROM P, CARLSSON A, ENGSTROM A, et al. The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli [J]. EMBO J, 1984, 3(13): 3347-51.
    [90] CARLSSON A, ENGSTROM P, PALVA E T, et al. Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription [J]. Infect Immun, 1991, 59(9): 3040-5.
    [91] FEHLBAUM P, BULET P, CHERNYSH S, et al. Structure-activity analysis of thanatin, a 21-residue inducible insect defense peptide with sequence homology to frog skin antimicrobial peptides [J]. Proc Natl Acad Sci USA, 1996, 93(3): 1221-5.
    [92] BULET P, HETRU C, DIMARCQ J L, et al. Antimicrobial peptides in insects; structure and function [J]. Dev Comp Immunol, 1999, 23(4-5): 329-44.
    [93] MANDARD N, SODANO P, LABBE H, et al. Solution structure of thanatin, a potent bactericidal and fungicidal insect peptide, determined from proton two-dimensional nuclear magnetic resonance data [J]. Eur J Biochem, 1998, 256(2): 404-10.
    [94] TAGUCHI S, KUWASAKO K, SUENAGA A, et al. Functional mapping against Escherichia coli for the broad-spectrum antimicrobial peptide, thanatin, based on an in vivo monitoring assay system [J]. J Biochem, 2000, 128(5): 745-54.
    [95] PAGES J M, DIMARCQ J L, QUENIN S, et al. Thanatin activity on multidrug resistant clinical isolates of Enterobacter aerogenes and Klebsiella pneumoniae [J]. Int J Antimicrob Agents, 2003, 22(3): 265-9.
    [96] WU M, MAIER E, BENZ R, et al. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli [J]. Biochemistry, 1999, 38(22): 7235-42.
    [97] ZHANG L, BENZ R, HANCOCK R E. Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides [J]. Biochemistry, 1999, 38(25): 8102-11.
    [98] LEE D G, PARK Y, KIM H N, et al. Antifungal mechanism of an antimicrobial peptide, HP (2--20), derived from N-terminus of Helicobacter pylori ribosomal protein L1 against Candida albicans [J]. Biochem Biophys Res Commun, 2002, 291(4): 1006-13.
    [99] BESSALLE R, HAAS H, GORIA A, et al. Augmentation of the antibacterial activity of magainin by positive-charge chain extension [J]. Antimicrob Agents Chemother, 1992, 36(2): 313-7.
    [100] DATHE M, NIKOLENKO H, MEYER J, et al. Optimization of the antimicrobial activity of magainin peptides by modification of charge [J]. FEBS Lett, 2001, 501(2-3): 146-150.
    [101] MATSUZAKI K, SUGISHITA K, HARADA M, et al. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria [J]. Biochim Biophys Ada, 1997, 1327(1): 119-30.
    [102] VAZ GOMES A, DE WAAL A, BERDEN J A, et al. Electric potentiation, cooperativity, and synergism of magainin peptides in protein-free liposomes [J]. Biochemistry, 1993, 32(20): 5365-72.
    [103] HOFFMANN J A, REICHHART J M. Drosophila innate immunity: an evolutionary perspective [J]. Nat Immunol, 2002, 3(2): 121-6.
    [104] LOCKEY T D, OURTH D D. Formation of pores in Escherichia coli cell membranes by a cecropin isolated from hemolymph of Heliothis virescens larvae [J]. Eur J Biochem, 1996, 236(1): 263-71.
    [105] CHRISTENSEN B, FINK J, MERRIFIELD R B, et al. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes [J]. Proc Natl Acad Sci USA, 1988, 85(14): 5072-6.
    [106] BOBEK L A, SITU H. MUC7 20-Mer: investigation of antimicrobial activity, secondary structure, and possible mechanism of antifungal action [J]. Antimicrob Agents Chemother, 2003, 47(2): 643-52.
    [107] CHEN Y, XU X, HONG S, et al. RGD-Tachyplesin inhibits tumor growth [J]. Cancer Res, 2001, 61(6): 2434-8.
    [108] HELMERHORST E J, BREEUWER P, VAN'T HOF W, et al. The cellular target of histatin 5 on Candida albicans is the energized mitochondrion [J]. J Biol Chem, 1999, 274(11): 7286-91.
    [109] KAVANAGH K, DOWD S. Histatins: antimicrobial peptides with therapeutic potential [J]. J Pharm Pharmacol, 2004, 56(3): 285-9.
    [110] HARITON-GAZAL E, FEDER R, MOR A, et al. Targeting of nonkaryophilic cell-permeable peptides into the nuclei of intact cells by covalently attached nuclear localization signals [J]. Biochemistry, 2002, 41(29): 9208-14.
    [111] MAI J C, MI Z, KIM S H, et al. A proapoptotic peptide for the treatment of solid tumors [J]. Cancer Res, 2001, 61(21): 7709-12.
    [112] CHEN H M, LEUNG K W, THAKUR N N, et al. Distinguishing between different pathways of bilayer disruption by the related antimicrobial peptides cecropin B, B1 and B3 [J]. Eur J Biochem, 2003, 270(5): 911-20.
    [113] HARDER J, BARTELS J, CHRISTOPHERS E, et al. Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic [J]. J Biol Chem, 2001, 276(8): 5707-13.
    [114] KRAGOL G, LOVAS S, VARADI G, et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding [J]. Biochemistry, 2001, 40(10): 3016-26.
    [115] OTVOS L, JR., O I, ROGERS M E, et al. Interaction between heat shock proteins and antimicrobial peptides [J]. Biochemistry, 2000, 39(46): 14150-9.
    [116] DATHE M, WIEPRECHT T. Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells [J]. Biochim Biophys Acta,1999,1462(1-2):71-87.
    [117]OTVOS L,JR.Antibacterial peptides isolated from insects[J].J Pept Sci,2000,6(10):497-511.
    [118]MERRIFIELD R B,MERRIFIELD E L,JUVVADI P,et al.Design and synthesis of antimicrobial peptides[J].Ciba Found Syrup,1994,186(5-20;discussion -6.
    [119]TOSSI A,SCOCCHI M,ZANETTI M,et al.An approach combining rapid cDNA amplification and chemical synthesis for the identification of novel,cathelicidin-derived,antimicrobial peptides[J].METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN TOTOWA-,1997,78:133-50.
    [120]PATHAK N,SALAS-AUVERT R,RUCHE G,et al.Comparison of the effects of hydrophobicity,amphiphilicity,and alpha-helicity on the activities of antimicrobial peptides[J].Proteins,1995,22(2):182-6.
    [121]ANDREU D,UBACH J,BOMAN A,et al.Shortened cecropin A-melittin hybrids.Significant size reduction retains potent antibiotic activity[J].FEBS Lett,1992,296(2):190-4.
    [122]JURETIC D,CHEN H C,BROWN J H,et al.Magainin 2 amide and analogues.Antimicrobial activity,membrane depolarization and susceptibility to proteolysis[J].FEBS Lett,1989,249(2):219-23.
    [123]CHEN H C,BROWN J H,MORELL JL,et al.Synthetic magainin analogues with improved antimicrobial activity[J].FEBS Lett,1988,236(2):462-6.
    [124]OHSAKI Y,GAZDAR A F,CHEN H C,et al.Antitumor activity of magainin analogues against human lung cancer cell lines[J].Cancer Res,1992,52(13):3534-8.
    [125]PEREZ-PAYA E,HOUGHTEN R A,BLONDELLE S E.The role of amphipathicity in the folding,self-association and biological activity of multiple subunit small proteins[J].J Biol Chem,1995,270(3):1048-56.
    [126]SITARAM N,NAGARAJ R.Interaction of antimicrobial peptides with biological and model membranes:structural and charge requirements for activity[J].Biochim Biophys Acta,1999,1462(1-2):29-54.
    [127]BOMAN H G,WADE D,BOMAN I A,et al.Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids[J].FEBS Lett,1989,259(1):103-6.
    [128]WADE D,ANDREU D,MITCHELL S A,et al.Antibacterial peptides designed as analogs or hybrids of cecropins and melittin[J].Int J Pept Protein Res,1992,40(5):429-36.
    [129]JAYNES J M,NAGPALA P,DESTEFANO-BELTRAN L,et al.Expression of a eecropin B lytic peptide analog in transgenic tobacco confers enhanced resistance to bacterial wilt caused by Pseudomonas solanacearum[J].Plant Sci,1993,85:43-54.
    [130]WEI Q,KIM Y S,SEO J H,et al.Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in Escherichia coil[J].Appl Environ Microbiol,2005,71(9):5038-43.
    [131]汪以真,刘光富,初晓娜等.猪乳铁蛋白n-叶基因plf-N在大肠杆菌中的克隆、表达及特性分析[J].农业生物技术学报,2005,13(05):635-638.
    [132]李兵,王宇光.抗菌肽cmiv在大肠杆菌中的表达与纯化[J].广西农业科学,2008,39(04):434-436.
    [133]陈玉清,秋雯,焦波,等.抗菌抗癌肽CM4N在大肠杆菌中的融合表达与活性鉴定 [J].药物生物技术,2008,15(03):161-165.
    [114]刘海峰,王小花,刘平,等.抗菌肽CM4与人可溶性B淋巴细胞因子hsBAFF在大肠杆菌中的融合表达[J].中国生物工程杂志,2008,28(03):32-37.
    [135]马凤龙,张瑜,刘焕珍等.牛乳素Lfcin B基因的合成及其在酵母菌中的表达研究[J].安徽农业科学,2008,36(02):446-448.
    [136]易俊波,黄德新,李凌云.抗菌肽牛乳铁多肽素(LfcinB)在毕赤酵母中的表达及活性鉴定[J].微生物学报,2007,34(2):265-269.
    [137]张建峰,蒋宗勇,唐兆新,等.抗菌肽模式肽PGYa的分子设计、克隆及在毕赤酵母中的分泌表达[J].农业生物技术学报,2008,(01):154-157.
    [138]徐建华,朱家勇,金小宝,等.抗菌肽Cecropin-His-6基因的真核表达及其生物活性研究[J].中国热带医学,2006,6(07):1119-1121.
    [139]CHEN J,FALLA T J,LIU H,et al.Development of protegrins for the treatment and prevention of oral mucositis:structure-activity relationships of synthetic protegrin analogues[J].Biopolymers,2000,55(1):88-98.
    [140]TONEY J H.Iseganan(IntraBiotics pharmaceuticals)[J].Curr Opin Investig Drugs,2002,3(2):225-8.
    [141]PAQUETTE D W,SIMPSON D M,FRIDEN P,et al.Safety and clinical effects of topical histatin gels in humans with experimental gingivitis[J].J Clin Periodontol,2002,29(12):1051-8.
    [142]FALLA T J,HANCOCK R E.Improved activity of a synthetic indolicidin analog[J].Antimicrob Agents Chemother,1997,41(4):771-5.
    [143]GIACOMETTI A,CIRIONI O,GHISELLI R,et al.Effects of pexiganan alone and combined with betalactams in experimental endotoxic shock[J].Peptides,2005,26(2):207-16.
    [144]PAPAGIANNI M.Ribosomally synthesized peptides with antimicrobial properties:biosynthesis,structure,function,and applications[J].Biotechnol Adv,2003,21(6):465 -99.
    [145]REED W A,ELZER P H,ENRIGHT F M,et al.Interleukin 2 promoter/enhancer controlled expression of a synthetic cecropin-class lyric peptide in transgenic mice and subsequent resistance to Brucella abortus[J].Transgenic Res,1997,6(5):337-47.
    [146]SAMBROOK J,FRITSCH E,MANIATIS T等.分子克隆实验指南,第二版[M].北京:科学出版社,1996.
    [147]HOFFMANN J A,KAFATOS F C,JANEWAY C A,et al.Phylogenetic perspectives in innate immunity[J].Science,1999,284(5418):1313-8.
    [148]BOMAN H G,NILSSON-FAYE I,PAUL K,et al.Insect immunity.I.Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cynthia pupae[J].Infect Immun,1974,10(1):136-45.
    [149]SCHRODER J M.Epithelial antimicrobial peptides:innate local host response elements [J].Cell Mol Life Sci,1999,56(1-2):32-46.
    [150]NIZET V,OHTAKE T,LAUTH X,et al.Innate antimicrobial peptide protects the skin from invasive bacterial infection[J].Nature,2001,414(6862):454-7.
    [151]LAZZARO B P,CLARK A G.Evidence for recurrent paralogous gene conversion and exceptional allelic divergence in the Attaein genes of Drosophila melanogaster[J].Genetics,2001,159(2):659-71.
    [152]SHAI Y,OREN Z.From "carpet" mechanism to de-novo designed diastereomeric cell-selective antimicrobial peptides[J].Peptides,2001,22(10):1629-41.
    [153]EPAND R M,VOGEL H J.Diversity of antimicrobial peptides and their mechanisms of action[J].Biochim Biophys Acta,I999,1462(1-2):11-28.
    [154]蔡青松,翟朝阳.新型抗菌肽分子的计算机辅助设计[J].华西医科大学学报,2002,33(03):447-449.
    [155]王禾,贾士荣.抗菌肽的构效关系及分子设计.马铃薯抗菌肽基因工程[M].北京:中国农业科技出版社,1996,39-49.
    [156]吴映雅,刘飞鹏.抗菌肽与碱性成纤维细胞生长因子基因的融合及其在酵母中的表达[J].生物工程进展,1998,18(005):11-15.
    [157]郑青,鲍时翔,姚汝华,等.新型抗菌肽基因设计、合成及在酵母中的表达(Ⅱ)[J].华南理工大学学报(自然科学版),1998,26(04):33-37.
    [158]文良柱,张家骊,钱坤,等.蜂毒肽与死亡素杂合肽(MT)在火肠杆菌中融合表达的研究[J].食品与生物技术学报,2006,25(06):45-48.
    [159]翁宏飚,牛宝龙.家蚕抗菌肽-死亡素杂合肽基因在大肠杆菌中的克隆与表达[J].生物工程学报,2002,18(003):352-325.
    [160]黄亚东,曾锦绣,温硕洋,等.昆虫抗真菌肽Thanatin-CAD双价基因的合成、克隆及其表达[J].蚕业科学,2003,29(002):162-166.
    [161]KANAKURA Y,CANNISTRA S A,BROWN C B,et al.Identification of functionally distinct domains of human granulocyte-macrophage colony-stimulating factor using monoclonal antibodies[J].Blood,1991,77(5):1033-43.
    [162]刘丽,徐琪.SAPGTP和PG为接头的5'IL6-TNFα衍生物融合蛋白[J].中国生物化学与分子生物学报,1999,15(004):517-521.
    [163]KLIMKA A,BARTH S,DRILLICH S,et al.A deletion mutant of Pseudomonas exotoxin-A fused to recombinant human interleukin-9(rhIL-9-ETA') shows specific cytotoxicity against IL-9-receptor-expressing cell lines[J].Cytokines Mol Ther,1996,2(3):139-46.
    [164]来鲁华.蛋白质的结构预测与分子设计[M].北京:北京大学出版社,1993.
    [165]王栋,药立波.人IgG3上游铰链区/p53四价功能域融合基因的构建及空间构象分析[J].细胞与分子免疫学杂志,2001,17(004):381-383.
    [166]孙强明,戴长柏.huIL-6-GM-CSF(9-127)融合蛋白的表达及活性测定[J].免疫学杂志,2002,18(004):253-257.
    [167]张雪峰,葛忠良.rhGM-CSF/LIF融合蛋白基因的克隆及表达[J].生物化学与生物物理学报(英文版),1997,29(005):425-431.
    [168]JONES S E,KHANDELWAL P,MCINTYRE K,et al.Randomized,double-blind,placebo-controlled trial to evaluate the hematopoietic growth factor PIXY321 after moderate-dose fluorouracil,doxorubicin,and cyclophosphamide in stage Ⅱ and Ⅲbreast cancer[J].J Clin Oncol,1999,17(10):3025-32.
    [169]MECHOLD U,GILBERT C,OGRYZKO V.Codon optimization of the BirA enzyme gene leads to higher expression and an improved efficiency of biotinylation of target proteins in mammalian cells[J].J Biotechnol,2005,116(3):245-9.
    [170]SRIVASTAVA P,BHATTACHARAYA P,PANDEY G,et al.Overexpression and purification of recombinant human interferon alpha2b in Escherichia coli[J].Protein Expr Purif,2005,41(2):313-22.
    [171]ZHOU Z,SCHNAKE P,XIAO L,et al.Enhanced expression of a recombinant malaria candidate vaccine in Escherichia coil by codon optimization[J].Protein Expr Purif,2004,34(1):87-94.
    [172]张雅丽,杨国庆.密码子优化的牛精蛋白基因在大肠杆菌中的表达[J].高技术通讯,2002,12(004):42-46.
    [173]SINCLAIR G,CHOY F Y.Synonymous codon usage bias and the expression of human glucocerebrosidase in the methylotrophic yeast,Pichia pastoris[J].Protein Expr Purif,2002,26(1):96-105.
    [174]CHEN G F,INOUYE M.Suppression of the negative effect of minor arginine codons on gene expression;preferential usage of minor codons within the first 25 codons of the Escherichia coli genes[J].Nucleic Acids Res,1990,18(6):1465-73.
    [175]WU X,JORNVALL H,BERNDT K D,et al.Codon optimization reveals critical factors for high level expression of two rare codon genes in Escherichia coil:P,NA stability and secondary structure but not tRNA abundance[J].Biochem Biophys Res Commun,2004,313(1):89-96.
    [176]HO S N,HUNT H D,HORTON R M,et al.Site-directed mutagenesis by overlap extension using the polymerase chain reaction[J].Gene,1989,77(1):51-9.
    [177]DON R H,COX P T,WAINWRIGHT B J,et al.'Touchdown' PCR to circumvent spurious priming during gene amplification[J].Nucleic Acids Res,1991,19(14):4008.
    [178]邹晓月,焦志军.降落式PCR检测载脂蛋白A5基因[J].2007,17(04):358-359.
    [179]萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M].黄培堂,王嘉玺,朱厚础,等译.第三版.北京:科学出版社,2002.
    [180]朱立平,陈学清.免疫学常用实验方法[M].北京:人民军医出版社,2000.
    [181]SCHEIN C H.Production of Soluble Recombinant Proteins in Bacteria[J].Bio/Technology,1989,7(1141 - 9).
    [182]WINGFIELD P T.Preparation of soluble proteins from Escherichia coil[J].Curr Protoc Protein Sci,2005,Chapter 6(Unit 6 2).
    [183]LEHRER R I,ROSENMAN M,HARWIG S S,et al.Ultrasensitive assays for endogenous antimierobial polypeptides[J].J Immunol Methods,1991,137(2):167-73.
    [184]YANG S T,SHIN S Y,HAHM K S,et al.Design of perfectly symmetric Trp-rieh peptides with potent and broad-spectrum antimicrobial activities[J].Int J Antimicrob Agents,2006,27(4):325-30.
    [185]BIGNAMI G S.A rapid and sensitive hemolysis neutralization assay for palytoxin[J].Toxicon,1993,31(6):817-20.
    [186]RISSO A.Leukocyte antimicrobial peptides:multifunctional effector molecules of innate immunity[J].J Leukoc Biol,2000,68(6):785-92.
    [187]GURA T.Innate immunity.Ancient system gets new respect[J].Science,2001,291(5511):2068-71.
    [188]CHEN H,XU Z,XU N,et al.Efficient production of a soluble fusion protein containing human beta-defensin-2 in E.coli cell-free system[J].J Biotechnol,2005,115(3):307-15.
    [189]SKOSYREV V S,KULESSKIY E A,YAKHNIN A V,et al.Expression of the recombinant antibacterial peptide sarcotoxin IA in Escherichia coli cells[J].Protein Expr Purif,2003,28(2):350-6.
    [190]KANE J F.Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli[J].Curr Opin Biotechnol,1995,6(5):494-500.
    [191]SPANJAARD R A,CHEN K,WALKER J R,et al.Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes:assigning a codon to argU tRNA and T4tRNA(Arg)[J].Nucleic Acids Res,1990,18(17):5031-6.
    [192]HU X,SHI Q,YANG T,et al.Specific replacement of consecutive AGG codons results in high-level expression of human cardiac troponin T in Escherichia coil[J].Protein Expr Purif,1996,7(3):289-93.
    [193]HANNIG G,MAKRIDES S C.Strategies for optimizing heterologous protein expression in Escherichia coli[J].Trends Biotechnol,1998,16(2):54-60.
    [194]MAKRIDES S C.Strategies for achieving high-level expression of genes in Escherichia coli[J].Microbiol Rev,1996,60(3):512-38.
    [195]PAZGIER M,LUBKOWSKI J.Expression and purification of recombinant human alpha-defensins in Escherichia coli[J].Protein Expr Purif,2006,49(1):1-8.
    [196]INOUYE S,SAHARA Y.Soluble protein expression in E.coli ceils using IgG-binding domain of protein A as a solubilizing partner in the cold induced system[J].Biochem Biophys Res Commun,2008,376(3):448-53.
    [197]LIANG Y,WANG J X,ZHAO X F,et al.Molecular cloning and characterization of cecropin from the housefly(Musca domestica),and its expression in Escherichia coil[J].Dev Comp Immunol,2006,30(3):249-57.
    [198]PALMER I,WINGFIELD P T.Preparation and extraction of insoluble(inclusion-body)proteins from Escherichia coli[J].Curt Protoc Protein Sci,2004,Chapter 6(Unit 6 3).
    [199]徐建华,朱家勇,金小宝,等.Attacin抗菌肽基因体内抗菌活性研究[J].中华医院感染学杂志,2007,17(09):1051-1053.
    [200]翁宏飚,牛宝龙,孟智启,等.抗菌肽Cecropin B基因的克隆及体内活性检测方法的构建[J].浙江农业学报,2003,15(05):273-279.
    [201]BOMAN H,WADE D,BOMAN I,et al.Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids[J].FEBS Lett,1989,259(1):103-6.
    [202]LEE D,SHIN S,MAENG C,et al.Cecropin A-melittin hybrid peptide exerts its antifungai effects by damaging on the plasma membranes of Trichosporon beigelii[J].Biotechnology Letters,1998,20(3):211-4.
    [203]ZHANG J,ZHANG S,WU X,et al.Expression and characterization of antimicrobial peptide ABP-CM4 in methylotrophic yeast Pichia pastoris[J].Process Biochemistry,2006,41(2):251-6.
    [204]LEE D G,PARK Y,KIM P I,et al.Influence on the plasma membrane of Candida albicans by HP(2-9)-magainin 2(1-12) hybrid peptide[J].Biochem Biophys Res Commun,2002,297(4):885-9.
    [205]GIACOMETTI A,CIRIONI O,KAMYSZ W,et al.In vitro activity and killing effect of the synthetic hybrid cecropin A-melittin peptide CA(1-7)M(2-9)NH(2) on methicillin-resistant nosocomial isolates of Staphylococcus aureus and interactions with clinically used antibiotics[J].Diagn Microbiol Infect Dis,2004,49(3):197-200.
    [206]GIACOMETTI A,CIRIONI O,KAMYSZ W,et al.Comparative activities of cecropin A,melittin,and cecropin A-melittin peptide CA(1-7)M(2-9)NH2 against multidrug-resistant nosocomial isolates of Acinetobacter baumannii[J].Peptides,2003,24(9):1315-8.
    [207]MUNOZ A,LOPEZ-GARCIA B,PEREZ-PAYA E,et al.Antimicrobial properties of derivatives of the cationic tryptophan-rieh hexapeptide PAF26[J].Biochem Biophys Res Commun,2007,354(1):172-7.
    [208]HU Y J,AKSOY S.In vitro expression of tsetse AttAnd its activity against Trypanosoma brucei[J].Am J Trop Med Hyg,2002,(67):371-378.
    [209]LEE M K,CHA L,LEE S H,et al.Role of amino acid residues within the disulfide loop of thanatin,a potent antibiotic peptide[J].J Biochem Mol Biol,2002,35(3):291-6.
    [210]YAMAUCHI K,TOMITA M,GIEHL T J,et al.Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment[J].Infect Immun,1993,61(2):719-28.
    [211]张敏,任慧霞.报告基因的应用研究进展[J].食品与药品,2007,9(09A):45-48.
    [212]杨英军,周鹏.转基因植物中的标记基因研究新进展[J].遗传,2005,27(003):499-504.
    [213]SHIMOMURA O,JOHNSON F,SAIGA Y.Extraction,purification and properties of aequorin,a bioluminescent protein from the luminous hydromedusan,Aequorea[J].Journal of Cellular and Comparative Physiology,1962,59(3):223-39.
    [214]徐建华,朱家勇,金小宝,等.多聚组氨酸标签的Attacin抗菌肽基因克隆及其在CHO细胞中稳定表达[J].广东医学,2007,28(12):1910-1913.
    [215]金小宝,朱家勇,马艳,等.家蝇抗菌肽基因Cecropin在COS-7细胞中的表达及产物活性初步研究[J].中国人兽共患病学报,2007,23(006):566-568.
    [216]周红,郑江,鲁永玲,等.抗菌肽葛佬素在非洲绿猴肾细胞株COS-7中的表达及其活性的初步分析[J].中华烧伤杂志,2003,19(002):86-88.
    [217]窦君,王娉,周勇,等.重组真核表达载体pEGFP-C1/cecropin-XJ的构建及其在胃癌细胞MGC80-3中的表达[J].新疆大学学报(自然科学版),2007,24(004):449-453.
    [218]陈玉清,张双全,焦波,等.抗菌肽CM4与绿色荧光蛋白融合基因的真核载体构建及表达[J].生物技术通讯,2008,19(001):8-10.
    [219]温刘发,翁照南.抗菌肽酵母制剂的生产及其作饲料添加剂应用价值的探讨[J].广东蚕业,2001,35(002):34-36.
    [220]陈晓生,温刘发,张辉华,等.饲粮中添加抗菌肽对肉鸭生产性能及免疫器官、内脏器官的影响[J].畜禽业,2005,2:12-13.
    [221]马卫明,佘锐萍,胡艳欣,等.猪小肠抗菌肽对雏鸡的促生长作用及其机理初探[J].中国农业科学,2006,39(008):1723-1728.
    [222]黄永彤,黄自然,黄建清,等.抗菌肽与抗生素饲喂肉鸡的效果比较[J].广东饲料,2004,13(002):24-25.
    [223]陈晓生,刘为民,周庆国,等.饲粮中添加抗菌肽对肉鸭血清代谢激素及生理生化指标的影响[J].兽药与饲料添加剂,2005,10(002):4-6.
    [224]瞿明仁,熊玲玲,唐志强等.日粮蛋氨酸水平对0-4周龄泰和乌骨鸡生长性能和血清尿素氮含量的影响[J].中国饲料,2003,7:25.
    [225]刘忠渊,徐涛。王启贵,等.新疆家蚕抗菌肽对雏鸡生长性能及血清激素、理化指标的影响[J].中国家禽,2007,22:16-19.
    [226]王广军,谢骏,余德光.抗菌肽在南美白对虾养殖中的应用试验[J].饲料工业,2005,26(008):33-34.
    [227]汪以真.猪乳铁蛋白基因克隆、表达及其产物对断奶仔猪生长、免疫和抗菌肽基因表达影响的研究.[学位论文].杭州,浙江大学,2004.
    [228]LILLARD J W,JR.,BOYAKA P N,CHERTOV O,et al.Mechanisms for induction of acquired host immunity by neutrophil peptide defensins[J].Proc Natl Acad Sci USA,1999,96(2):651-656.
    [229]PENCO S,PASTORINO S,BIANCHI-SCARRA G,et al.Lactoferrin down-modulates the activity of the granulocyte macrophage colony-stimulating factor promoter in interleukin-1 beta-stimulated cells[J].J Biol Chem,1995,270(20):12263-12268.
    [230]SORIMACHI K,AKIMOTO K,HATTORI Y,et al.Activation of macrophages by laetoferrin:secretion of TNF-alpha,IL-8 and NO[J].Biochem Mol Biol Int,1997,43(1):79-87.
    [231]SON K N,PARK J,CHUNG C K,et al.Human lactoferrin activates transcription of IL-lbeta gene in mammalian cells[J].Biochem Biophys Res Commun,2002,290(1):236-241.
    [232]OKAI Y,QU X M.Effects of a purified eeeropin D from a Chinese silk moth on growth,function and differentiation of murine hemopoietic cells[J].Immunol Lett,1989,20(2):127-132.
    [233]国果,吴建伟,付萍等.家蝇幼虫分泌物抗菌肽对小鼠血清溶菌酶含量的影响[J].贵阳医学院学报,2007,32(006):586-587.
    [234]任文华,张双全,宋大祥等.少棘蜈蚣抗菌肽粗品对小鼠巨噬细胞的体外激活作用[J].中药材,2007,30(012):1491-1494.
    [235]PORTER P,NOAKES D E,ALLEN W D.Secretory IgA and antibodies to Escherichia coli in porcine colostrum and milk and their significance in the alimentary tract of the young pig[J].Immunology,1970,18(2):245-257.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700