用户名: 密码: 验证码:
水稻胚乳特异性表达基因的鉴别及应用性探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究对象为水稻胚乳文库及其生物信息数据库和从嘉兴市农科院及四川省农科院生物技术核技术研究所采集的966个不同水稻品种胚乳总RNA。
     为探索水稻胚乳中特异表达基因,我们将水稻胚乳EST经BLASTN比对分析,获576个有功能注释的基因。统计结果显示,贮藏蛋白以及相应的核糖体蛋白,起始因子,延伸因子以及转录因子等基因高丰度表达。
     为进一步确认这些胚乳特异表达基因,我们将来自水稻胚乳文库的2013个TUT制作cDNA阵列,以水稻花期和花后10-15天的胚乳,胚,穗,叶片,茎节间等总RNA为探针与其杂交。利用贝叶氏T检验,对这些基因的表达谱进行分析,检测胚乳与其他水稻组织的差异表达基因,以期揭示灌浆期胚乳特异表达基因。设定Bayesian p-value为0.05对所有探针杂交结果进行差异分析,检测到230个TUT具有显著差异,其中129个基因在胚乳中明显下调表达。101个TUT在胚乳中高表达,包括75个具有功能注释。这些基因大部分编码或者参与编码贮藏蛋白和淀粉。29个TUT编码贮藏蛋白,4个TUT参与淀粉合成。而贮藏蛋白主要包括谷蛋白,醇溶谷蛋白和过敏性蛋白等;淀粉合成包括直链淀粉和支链淀粉的合成。另外还有α-淀粉酶,光诱导蛋白,光受体,转录因子以及一些信号传递物质等基因表达量也很高。在显著表达的101个基因中有26个是未知基因,占有较大的比例。随后的Northern印迹结果验证了cDNA微阵列的准确性。同时我们证实,谷蛋白、醇溶谷蛋白、脂类转运蛋白、可溶性淀粉合成酶Ⅱ-3、18 kDa油体蛋白、α-淀粉酶等基因为胚乳特异表达基因。另外发现Rbe1基因有一较大转录本在水稻胚乳中特异表达。
     为检测不同水稻样本中Wx基因表达差异,我们将966个水稻品种总RNA制作微阵列,以Wx基因为探针,进行杂交实验。结果表明该基因表达丰度在总体上与水稻胚乳AC呈正相关。对两个转录本RNA微阵列的杂交结果经贝叶氏T检验分析表达差异显著性,发现fold与AC之间呈正相关,该值的转折点处,的水稻品种米质较好。另外发现非成熟转录本也存在于AC较高的水稻品种(AC大于20%)中。
     其他的淀粉分支酶RBE1、ADP葡萄糖焦磷酸化酶和可溶性淀粉合成酶Ⅱ-3等淀粉合成关键基因以及其他19个水稻胚乳特异表达的基因,未发现与直链淀粉含量之间有直接的关系。
     利用RNA微阵列对水稻胚乳贮藏蛋白,淀粉合成相关的基因,脂类基因等19个基因进行表达谱分析,发现H105D02是GluB组基因或者GluA-1和GluA-2基因,H063F03是GluA组中与GluA-3表达一致的基因。
     对未知基因H098F12和H051G06与其他10个已知基因的聚类,发现H098F12与过敏性蛋白(克隆ID:H097G05)具有相似的表达调控机制。而H051G06与10 kDa油体蛋白(克隆ID:H129F01)表达模式最相近,其次为可溶性淀粉合成酶Ⅱ-3(克隆ID:H144A06)和13kDa醇溶谷蚩白(克隆ID:H110F01),该未知基因与胚乳贮藏物质基因共调控表达,而且
    
    Northem印迹实验证实其在胚乳中特异表达,推测H05lG06可能参与胚乳贮藏物质的积累。
     制作RNA微阵列的9“个水稻品种多为育种材料,如在嘉兴早稻杂交一代的ZR卫6样
    本中,醇溶谷蛋白,谷蛋白以及参与淀粉合成的基因等都具有表达量远远高于其他的杂交一
    代的特点。这可为以后FZ代的选育提供参考。本研究所检测基因的表达谱可以应用于选育
    优良品种,优化选择。
In the study, rice endosperm library, its bioinformatics database and 966 different rice endosperm total RNA from Jiaxing Academy of Agricultural Sciences and Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, were used.
    576 TUTs were annotated after ESTs searching against oryza sativa database of NCBI. Of them, most highly-expressed genes encoded storage proteins, starch, ribosome proteins, initiation factors, elongation factors and transcription factors.
    In order to analyze genes expression profiles of different rice tissues and to find the highly-expressed genes in endosperm, 2013 TUTs were printed on cDNA array. And different tissues included endosperm, embryo, ear, leaf and stem internode during anthesis and 10-15 days after anthesis. Differential expression analysis, especially comparing endosperm with other tissues, was performed by Cyber-T Bayesian statistical framework. While Bayesian p-value was set to be 0.05, expression of 203 TUTs changed remarkablly. Except for 129 down-regulated genes, a total of 101 TUTs were up-regulated prominently in endosperm, and 75 TUTs were annotated. The up-regulated genes were mostly concerned with storage protein and starch synthesis. There were 29 TUTs encoding storage protein, such as glutelin and prolamin. 4 TUTs participated in amylose and amylopectin synthesis. Other genes mostly encoded ct-amylase, light-inducible protein, transduction factor, signal recognition particle and so on. Unkown genes occupied about a
    quarter of all up-regulated genes.
    And the veracity of cDNA array was validated by following Northern blot hybridization. The result had confirmed the credibility of cDNA-array. And glutelin, prolamin, lipid transfer protein, soluble starch synthase, 18 kDa oleosin and ot-amylase were found only expressed in endosperm, the same as the larger Rbel transcription.
    The hybridization with RNA array of 966 RNA indicated that Wx gene had linear relationship with rice AC on the whole. But some rice samples were not coincident with the rule. Wx gene mature mRNA and an un-mature mRNA were tested by Cyber-T. And the result indicated that fold had positive relationship with AC. AC was 17%-20% while fold between -1 and +1.
    19 genes expression profiles were analyzed by RNA array. These genes coded storage protein, starch and lipid. And we found the expression of homologous genes may be different.
    According to the expression profile of four glutelin genes, the expression of H105D02 is similar to GluB, and the expression of H063F03 simialr to GluA.
    Two unkown genes (H098F12, H051G06) and other 10 known genes were clustered. And the result indicated that H098F12 had closer expressional pattern with allergenic protein (H097G05).
    
    
    
    H051G06 was similar to 10 kDa oleosin (H129F01), soluble starch synthase (H144A06), and 13kDa prolamin (H110F01). We deduced they were respectively co-regulated genes. And northern had confirmed H051G06 as endosperm-specific gene; we deduced it was concerned with storage substance genes.
    Our results could provide reference for rice breeding, because a large number of samples were generations during breeding. For example, ZRF6 was one of F1 of early rice from Jiaxing agricultural academy of sciences. The expression of prolamin, glutelin and the genes concerned with starch synthesis in ZRF6 was higher than other samples of Fl of early rice. This could direct to select high-quality F2. And this was also adapt to new rice combination of 2003 and fertility restoring line select of 2003 from Sichuan agricultural academy of sciences.
引文
Ball S, Guan H P, James M, et al. From Glycogen to Amylopectin: A Model for the Biogenesis of the Plant Starch Granule. Cell, 1996, 86: 349-352.
    Burton R A, Bewley J D, Smith A M, et al. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. The Plant Journa, 1995, 7: 3-15.
    Commuri P D and Keeling P L. Chain-length specificities of maize starch synthase Ⅰ enzyme: studies of glucan affinity and catalytic properties The Plant Journal, 2001, 25(5): 475-486.
    Craig J, Lloyd J R, Tomlinson K, et al. Mutations in the gene encoding starch synthase Ⅱ profoundly alter amylopectin structure in pea embryos. Plantcell, 1998, 10: 413-426.
    Fujita N, Kubo A, Francisco P B J, et al. Purification, characterization, and cDNA structure of isoamylase from developing endosperm of rice. Planta, 1999, 208(2): 283-293.
    Fulton D C, Edwards A, Pilling E, et al. Role of granule-bound starch synthase in determination of amylopectin structure and starch granule morphology in potato. Boil chem, 2002, 277(13): 10834-10841.
    Gallant D J, Bouchet B, Baldwin P M. Microscopy of starch: Evidence of a new level of granule organization. Carbohydrate Polymers, 1997, 32: 177-191.
    Hussain H, Mant A, Seale R, et al. Three Isoforms of Isoamylase Contribute Different Catalytic Properties for the Debranching of Potato Glucans. The Plant Cell, 2003, 15(1): 133-149.
    Krishnan, H. B., Okita, T. W. Structural relationship among the rice glutelin polypeptide. Plant Physiol, 1986, 81: 748-753.
    Kubo A, Fujita N, Harada K, Matsuda T, et al. The Starch-Debranching Enzymes Isoamylase and Pullulanase Are Both Involved in Amylopectin Biosynthesis in Rice Endosperm. Plant Physiol, 1999, 121: 399-410.
    Lloyd JR, Springer F, Buleon A, et al. The influence of alterations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta, 1999, 209(2): 230-238.
    Martin C and Smith A M. Starch biosynthesis. Plant Cell, 1995, 7: 971-985.
    Mizuno K, Kobayashi E, Tachibana M, et al. Characterization of an isoforms of rice starch branching enzyme, RBE4, in developing seeds. Plant Cell Physiology, 2001, 42(4): 349-357.
    Nakamura Y, Takeichi T, Kawaguchi K, et al. Purification of two forms of starch branching enzyme(Q-enzyme) from developing rice endosperm. Physiologia Plantarum,
    
    1992, 4: 329-335.
    Nakamura Y, Umemoto T, Ogata N, et al. Starch debranching enzyme(R-enzyme or pullulanase) from developing rice endosperm: purification, cDNA and chromosomal localization of the gene. Planta, 1996, 199(2) 209-218.
    Nielsen TH, Baunsgaard L, Blennow A. Intermediary Glucan Structures Formed during Starch Granule Biosynthesis Are Enriched in Short Side Chains, a Dynamic Pulse Labeling Approach. J. Biol. Chem, 2002, 277(23): 20249-20255.
    Nishi A, Nakamura Y, Tanaka N, Satoh H. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiol, 2001, 127(2): 459-472.
    Nisshiki M, Nakajima M, Satoh H, et al. Dull: rice mutants with tissue-specific effects of the splicing of the waxy pre-mRNA. Plant J, 2000, 23(4): 451-460.
    Okuno M, Fuwa H, Yano M. A new mutant gene lowering amylose content in endosperm starch of rice Oryza Sativa L. Jap J Breed, 1983, 33: 387-394.
    Sano Y. Differential regulation of waxy gene expression in rice endosperm. Theor Appl Genet, 1984, 68: 467-473.
    Stark D M. Regulation of the amount of starch in plant tissues by ADP-glucose pyrophosphorylase. Science, 1992, 258: 287-292.
    Takaiwa F and Oono K. Genomic DNA sequences of two new genes for new storage protein glutelin in rice. Jpn J Genet, 1991, 66: 161-171.
    Takaiwa F. Sequence of three members and expression of a new major subfamily of glutelin genes from rice. Plant Mol Biol, 1991, 17: 875-885
    Tan Y F, Li J X, Yu S B, et al. The three important traits for cooking and eating quality of rice grains are controlled by a single locus in an elite rice hybrid, Shanyou 63. Theor Appl Genet, 1999, 99: 642-648.
    Van der Wal M, Hulst, C D, Vincken, J P, et al. Amylose is synthesised in vitro by extension of and cleavage from amylopectin. Biol Chem, 1995, 273: 2232 22240.
    Visser R G F. Inhibition of the express of the gene for granule-bound starch synthase in patato by antisense constructs. Mol Gen Gent, 1991, 225: 289-296.
    Wang Z Y, Zheng F Q, Shen G Z, et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. The Plant Journal, 1995, 7(4): 613-622.
    Zeeman S C, Umemoto T, Lue W L, et al. A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell, 1998, 10: 1699-1712.
    包劲松,何平,李仕贵等.异地比较定位控制稻米蒸煮食味品质的数量性状基因.中国农业
    
    科学,2000,33 (5):1-7.
    蔡毅,谢冬绿,王宗阳,洪孟民.水稻淀粉分支酶基因 5’上游区缺失对基因表达的影响.植物生理与分子生物学学报,2002,28 (1):23-27.
    陈建国,朱军.籼粳杂稻米蛋白质含量的基因型×环境互作效应地分析.中国农业科学,1999,32(5):579-581.
    陈豫,曲乐庆,贾旭.水稻种子储藏蛋白及其基因表达.遗传,2003,25 (3):367-372.
    何予卿,吕志仁.籼稻米直链淀粉含量的遗传及其基因剂量效应.华中农业大学学报,1993,12(5):414-420.
    江绍玫,徐朗莱,万建民.水稻谷蛋白研究进展.江西农业大学学报,2002,24(1):14-19.
    李欣,顾铭洪.灌浆期间环境条件对稻米品质的影响.江苏农学院学报,1989,10 (1):7-12.
    梁敬焜,梁承邺.籼型杂交稻品质性状与亲本关系的初步研究.中国水稻科学,1988,2(3):111-116.
    刘海虹,周海鹰,张文绪.水稻胚乳淀粉粒显微结构的初步观察.电子显微学报,2001,20(3):185-187.
    吕艳梅,青先国.稻米直链淀粉含量及其影响因素研究进展.湖南农业科学,2003,5:33-36.
    石春海,朱军.籼稻稻米外观品质与其他品质特性的相关性分析.浙江农业大学学报,1994,6:606-610.
    孙义伟.水稻灌浆成熟期气温对稻米品质的影响.水稻文摘,1993,12(2):6-8.
    谈移芳,张启发.水稻蜡质基因引导区的两个SSR序列与直链淀粉含量的相关性.植物学报.2001,43 (2):146-150.
    谭周镃,周光洽.水稻结实期光照强度对米质影响的研究.湖南师范大学学报(自然科学版),1987,5:39-43.
    汤圣祥,Khush GS.稻米胶稠度的遗传研究.中国水稻科学,1991,5(1):25-28。
    徐辰武,张爱红.籼粳杂交稻米品质性状的遗传分析.作物学报.1996,22 (5):230-234.
    易小平,陈芳远.籼型杂交水稻稻米蒸煮品质、碾米品质及营养品质的细胞质遗传效应.中国水稻科学,1992,4:187-189.
    钟旭华,李太贵.不同结实温度下稻米直链淀粉含量与千粒重的关系.中国水稻科学,1994,8(2):126-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700