用户名: 密码: 验证码:
环件虚拟轧制技术及过程优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环件轧制技术是借助于轧环机使环件产生壁厚减下、直径扩大、截面轮廓成形的局部塑性加工工艺,具有节能、节材、生产率高、生产成本低、产品范围广等显著特点,在机械、冶金、化工、能源、航空航天等许多工业领域中得到日益广泛的应用,成为轴承环、齿轮环、法兰环、火车车轮、燃气轮机环等各种无缝环件零件的先进制造技术和主要加工方法。
     近20年以来,随着有限元理论逐步完善和相关有限元软件广泛推广,基于通用有限元软件采用计算机模拟环件轧制过程代替传统依靠工程师经验的试错法成为研究的热点。然而环件轧制不仅具有普通的平板轧制、异步轧制、多道次轧制的性质,而且涉及到芯辊和锥辊直线进给运动、主辊旋转轧制运动、抱辊导向运动以及环件自身的转动和直径扩大运动,因此在同一数值模拟仿真模型中既要模拟环件复杂的金属流动,又要实现各轧辊运动轨迹的实时变化,一直成为环件轧制数值模拟研究的难点。
     为了跟踪这些研究热点,解决这些难点问题,本文在前人研究工作的基础上开展了以下几个方面的研究工作。
     (1)首先基于通用动力显式有限元软件LSDYNA建立了环件轧制数值模拟仿真模型,采用质量缩放等技术有效降低计算时间,克服了环件轧制数值模拟过程对计算机性能和长时间计算的要求;然后采用大型结构分析有限元软件ANSYS的APDL参数化语言,建立了环件轧制过程中复杂数控系统仿真模型,实现了环件轧制运动参数实时调用修正,克服了在环件轧制金属流动模拟过程中不能求解含未知变量的问题;最后对这两个模型集成建立了环件虚拟轧制自动修正有限元仿真模型(简称AMFE),从而实现环件金属流动和轧环机数控系统耦合实时仿真。
     (2)基于AMFE虚拟轧制仿真模型对某矩形截面环件的一个生产周期轧制过程进行了数值模拟研究,计算结果和德国SMS Wagner-Banning公司的ROLLTECH实验经验数据、美国P. V. Ranatunga博士的UBET计算数据进行了对比分析,结果显示AMFE模型仿真数据与上述数据基本吻合,从而验证AMFE仿真模型的可靠性,同时AMFE模型仿真结果还显示了环件轧制过程任意时刻的应力、应变和位移云图,以及环件轧制实时扩展和缺陷生成的动态过程,而这些数据是环件轧制工程师急需想要而其它研究方法很难得到的,验证AMFE仿真模型具有精度好、功能强、效率高等特点。该环件实时动态虚拟轧制方法的成功实现,突破了传统环件轧制过程二维、三维局部或者三维瞬态的研究。
     (3)基于AMFE环件虚拟轧制仿真模型,进一步对环件虚拟轧制过程优化进行探讨,针对于不同情况,提出两种优化方案,一是采用MATLAB神经网络工具箱对环件轧制规程、初始毛坯进行优化分析,二是以缩短轧制时间为优化目标,建立环件虚拟轧制过程优化仿真模型,对优化变量、优化策略、优化过程进行了详细分析。并以某矩形截面环件虚拟轧制仿真模型为研究对象,采用两种方案分别对环件轧制过程进行优化,对优化变量(材料模型、质量缩放、网格细化、芯辊进给、锥辊进给、磨擦系数等)进行了优化对比分析,最后对环件虚拟轧制过程整体优化分析,得出了合适的轧制规程、轧制毛坯及其他轧制工艺参数。这些问题的研究超越了前人仅仅停留在如何建立环件轧制三维仿真模型问题上的研究,从而拓宽了环件轧制数值模拟技术研究领域。
     (4)为了把AMFE环件虚拟轧制仿真模型延展到异形截面环件轧制过程的研究,论文对异形截面环件虚拟轧制过程特点进行了分析,对一些关键技术提出了解决方案,分别建立了Φ500型径向轧环机、RAW200/160-5型径轴向轧环机的AMFE虚拟轧制仿真模型,在国内外首次对汽车后桥从动伞齿轮锻件、飞机发动机涡轮机匣锻件和600MW核反应器壳体大型锥形环件三种异形截面环件的一个生产周期内的轧制过程进行了虚拟轧制仿真实证分析,仿真计算结果显示与实际生产过程基本吻合,从而验证了AMFE环件虚拟轧制仿真模型可应用于异形截面环件的虚拟轧制,可用于检验异形截面环件轧制成形制造工艺,可用于对新型环件的轧制工艺和轧制过程的开发,这些对于降低研发成本、缩短研发周期、快速响应市场、实现绿色制造和提升国内外环件轧制水平具有重要意义。
Ring rolling technology is a specialized partial plastic rolling process in which a pre-designed cross-section is formed using a rolling mill. Very often, the wall thickness of the ring is decreased with increase in the diameter. Due to its competitive advantages, such as high efficiency and low cost, this technology has been widely used in mechanics, metallurgy, energy, aerospace, chemical engineering. Nowadays, ring rolling is one of the major advanced methods for production of seamless annular-shaped components, such as bearing races, gear ring, flange ring, railway wheel, turbine ring and pressure vessel ring. The development trend of ring rolling nowadays is to achieve high productivity, precision, complexity and flexibility in production. The traditional trial-and-error method can not respond rapidly to the market change and realize the green manufacture.
     During the past 20 years, with the rapid development of finite element theory and the availability of commercial finite element codes, the trial-and-error approach has been replaced gradually by numerical simulation. However, the ring rolling process carries the characteristics of plate rolling, asynchronous rolling and multi-way rolling. Moreover, it also relates to the feed movement of the mandrel and the axial rolls, the rotation of the main roll, the movement of the guide rolls as well as the rotation of the ring itself with the expansion of its diameter. Therefore it is difficult to determine the metal flow process using conventional methods. Particularly, the forming process is affected real-time by the change of each roller movement, which is the main barrier in the virtual ring rolling research. To overcome this barrier and address the research focuses, the following tasks have been completed on the basis of some former research work:
     (1) Firstly, a numerical metal flow model for the ring rolling process was created by using the general dynamic explicit code LSDYNA. In the simulation model, the mass shrink technology was also adopted to reduce the running time, therefore the model released the general requirement of high computer performance and long computation time. Secondly, the ring rolling control process was modeled using a complex numerical simulation technique that made use of the finite element software ANSYS with APDL (ANSYS Parametric Design Language). With the real-time transfer and the modification of movement parameters, the numerical control model could overcome the difficulties in determining the unknown parameters. Lastly, the two simulation models were integrated to form a self-adjusted ring rolling finite element simulation tool (AMFE) for realizing real-time coupling simulations for both the ring metal flow and the numerical control system.
     (2) Based on the AMFE, the rolling process of a ring with rectangular cross-section was simulated for one complete cycle of production. The simulation results were compared with ROLLTECH experimental data reported by the German SMS Wagner-Banning company and the UBET results reported by P. V. Ranatunga. The AMFE was hence validated as good agreement between these results had been found. Moreover, the AMFE simulation also provided dynamic information on the stress, strain and displacement contours of the ring as well as the damage evolution process. Apart from many other advantages, such as high calculation efficiency and versatility, the information provided by the AMFE is very important to conduct a ring rolling process, but usually difficult to be determined experimentally. Therefore, this project is amongst the first attempt to simulate the entry ring rolling process and overcome the limitations in conventional transient studies.
     (3) Two optimization schemes were firstly developed and incorporated into the AMFE simulation model. One was to utilize the MATLAB neural networks toolbox to optimize the rolling process and the initial billet structure of the ring. The other one was to create the optimum model for the ring rolling process, in which the rolling time was taken as the target function and the optimization variables, the strategies as well as the process were analyzed. With the former rectangular cross-section ring being taken as the research object, the rolling process was optimized separately by using the two proposed schemes and the optimization variables were analyzed in detail. Eventually, the whole process of ring rolling was optimized with the optimum rolling process parameters and rolling billet structure found. The contributions of this research do not only create a 3D finite element model, but also provide a computational tool for optimization of a ring rolling process.
     (4) Further research work was conducted to study the ring rolling process of a profiled cross-section ring using the AMFE simulation model. The rolling characteristics of a profiled ring were firstly analyzed, and some solution schemes were proposed accordingly. The AMFE models for theΦ500 radial ring rolling machine and RAW200/160-5 radial-axial ring rolling machine were also created. The whole dynamic rolling process within a complete production cycle was simulated for three kinds of complex profiled rings: a rear axle bevel gear blank, an aero-engine turbine casing blank, and a great conical ring of 600MW nuclear reactor shell. The simulation results matched well with the actual production process, and thus it was proved the validity of the virtual rolling model. The method for studying the profiled ring rolling process may also be used to examine the feasibility of the profiled ring rolling process, and develop a rolling process for a new cross-section profiled ring. The deliverables of this project contribute to save the R&D cost, shorten the overall cycle time, respond more rapidly to the market requirement, and help realizing the green manufacture objective.
引文
[1]朱高峰.全球化时代的中国制造.北京:社会科学文献出版社, 2003.
    [2]柳百成.工程前沿:未来的制造科学与技术.北京:高等教育出版社, 2004.
    [3]国家自然科学基金委员会战略研究报告:先进轧制技术基础.北京:高等教育出版社, 1999.
    [4]华林,黄兴高,朱春东.环件轧制理论和技术.北京:机械工业出版社,2001.
    [5] B. Kang, N. Kim, S. Kobayashi. Computer-aided perform design in forging of an airfoil section blade. International Journal of Machine Tools & Manufacture, 1990, 30: 43-52.
    [6] P.V. Ranatunga. Process Modeling of shape rolling for aerospace industry. In: American Society of Mechanical Engineers, 2002 ASME International Mechanical Engineering Congress and Exposition, New Orleans, LA, United States: Fluids Engineering Division (Publication) FED, 2002, 573-578.
    [7] O. Li. Investigations into profile ring rolling of Aluminium alloy bicycle wheel rims through experiments and numerical process simulations: [PhD Dissertation]. London: University of West London library, 1991.
    [8] M.J. Ward, B.C. Miller, K. Davey. Simulation of a multi-stage railway wheel and tyre forming process. Journal of Materials Processing Technology 1998, 80-81: 206-212.
    [9] M.J. Ward. Practical models for ring rolling of railway wheels and tyres: [PhD Dissertation]. Manchester: University of Manchester library, 1999.
    [10] G.D. Lahoti. Precision forming of bearing rings manufacturing. Advanced Technology of Plasticity, 1999, 2(Proceeding of the 6th ICTP): 951–958.
    [11] G. Moussa, J.B. Hawkyard. Investigation into the Multi-stage ring rolling of Aluminium bicycle wheel rims. International Journal Mechaine Science, 1986, 28(12): 841-851.
    [12] A.G. Mamalis, J.B. Howkyard, W. Johnson. Spread and flow patterns in ring rolling. International Journal Mechanics Science, 1976, 18: 11-16.
    [13] Z.W. Wang, S.Q. Zeng, X.H. Yang et al. The Key Technology and Realization of Virtual Ring Rolling. Journal of Materials Processing Technology, 2007, 182: 374-381.
    [14]胡正寰,刘晋平.零件轧制技术的现状与展望.航空制造技术,2004,3:49~51.
    [15] K. Davey, M.J. Ward. A practical method for finite element ring rolling simulation using the ALE flow formulation. International Journal of Mechanical Sciences, 2002, 44: 165-190.
    [16] W. Johnson, G. Needham. Experiment on ring rolling. International Journal of Mechanical Sciences, 1968, 10: 95-113.
    [17] H.J. Marczinski. Ring rolling mills: State of development. Metallurgy and Metal Forming, 1976: 17-177.
    [18] E.Eruc, R. Shivpuri. A Summary of Ring Rolling Technology-I. Recent Trends in Machines, Processes and Production Lines. International Journal of Machine Tolls & Manufacture, 1992, 32(3):379-398.
    [19] E.Eruc, R. Shivpuri. A Summary of Ring Rolling Technology-II. Recent Trends in Machines, Processes and Production Lines. International Journal of Machine Tolls & Manufacture, 1992, 32(3):399-413.
    [20] Marczinski, H. Juergen. Ring rolling mills: The state of development. Metallurgy and Metal Forming, 1976, 43(6):171-173+176-177.
    [21] J.S. Yun, H.S. Cho. Optimal control system design for ring rolling processes, Advanced Technology of Plasticity, 1984, 21: 1322-1327.
    [22] K. Robert. Installation and performance characteristics of the new ring roller at Scot Forge. Metallurgia, 1995, 62(2):1-3.
    [23] Z.J. Szabo, E. Dittrich. Manufacturing systems for the production seamless-rolled rings. Journal of Materials Processing Technology 1996, 60: 67–72.
    [24] W. Johnson, I. Macleod, G. Needham. An experimental investigation into the process of ring or metal tyre rolling. International Journal of Mechanical Sciences, 1968, 10: 455-468.
    [25] J.B. Hawkyard, W. Johnson, J. Kirikland, et al. Analysis for roll force and torque in ring rolling with some supporting experiments. International Journal of Mechanical Sciences, 1973, 15: 873-893.
    [26] J.B. Hawkyard, E. Appleton, W. Johnson. An experiment wide ring rolling mill of novel design. International Machine Tool Design ans Research, 1972, 85: 547-553.
    [27] A.G. Mamalis, W. Johnson, J.B. Howkyard. Cavity formation in rolling-profiled rings.International Journal of Mechanical Sciences, 1975, 17: 669-672.
    [28] A.G. Mamalis, W. Johnson, J.B. Howkyard. On the pressure distribution between stock and rolls in ring rolling, Journal Mechanical Engineering Science, 1976, 18(4): 184-96.
    [29] A.G. Mamalis, W. Johnson, J.B. Howkyard. Pressure distribution, roll force and torque in cold ring rolling. Journal Mechanical Engineering Science, 1976, 18(4): 196-204.
    [30] A.G. Mamalis, W. Johnson, J.B. Howkyard. Ring rolling: Literature Review and some recent experimental results. Metallurgy and metal forming, 1976, 5: 132-140.
    [31] P. Anupongpaiboon. Further development of the experimental ring rolling machine: [MS Thesis]. OH: The Ohio state university library, 2002.
    [32] P.V. Ranatunga. Modeling of profile ring rolling with upper bound element technique: [PhD Dissertation]. OH: The Ohio state university library, 2002.
    [33] A.K. Alfozan, Development and validation of UBET for forward and backward ring rolling process: [PhD Dissertation]. OH: The Ohio state university library, 2003.
    [34] A.K. Alfozan, J.S. Gunasekera. Development of an experiment ring rolling mill and associated instrumentation. Journal of Materials Processing Technology, In Press, Available online 12 March 2007.
    [35]陈永红,周存龙. WHZ-200型环件轧制实验装置的研制,山西机械,1996,2:31-33.
    [36]华林.环件轧制成形原理和技术设计方法:[博士学位论文].西安:西安交通大学图书馆, 2000.
    [37]华林,左治江,兰箭.环件冷碾扩中扩展的实验研究.武汉理工大学学报, 2006, 28(6): 103-106+109.
    [38]俞汉清,陈金德.金属塑性成形原理.北京:机械工业出版社,1999.
    [39] G.W. Rowe. Principles of industrial metal working processes. London: Edward Arnold Ltd.: 1977.
    [40] R. Sowerby, E. Chu, J.L. Duncan. Determination of large strains in metal forming. Journal of Strain Analysis for Engineering Design, Strain Analysis, 1982, 17(2): 95-99.
    [41] V.K. Jain, L.E. Maston, H.L. Gegel, et al. Elastic-plastic analysis of plates of arbitrary shape: a new approach. Material Shaping Technology,1988, 5(4): 243-248.
    [42]许思广,连家创,姚开云.环件轧制应变分布的实验研究.锻压技术, 1991(1): 35-42.
    [43] H Kudo. An Upper Bound Approach to Plane Forging and Extrusion I II III,International Journal Mechanics Science, 1960(l1): 28-34.
    [44] W Johnson, H Kudo. The Mechanics of Metal Extrusion, Manchester University. Press, 1962(10): 343-356.
    [45] Z. Wang, K. Xue, Y. Liu. Backward UBET Simulation of the Forging of a Blade. Materials and Processes in Manufacturing, 1995(22): 437-441.
    [46] S.W. Sloan, P.W. Kleeman. Upper Bound Limit Analysis with Discontinuous Velocity Fields. Computer Methods in Applied Mechanics and Engineering, 1995(127): 293- 314.
    [47] J.H. Lee, Y.H. Kim, W.B. Bae. A Study on Flash and Flashless Precision Forging by the upper bound elemental technique. Journal of Material Processing Technology, 1997, 72: 371-379.
    [48] A.N. Bramley. UBET and TEUBA: Fast Methods for Forging Simulation and Preform Design. Journal of Material Processing Technology. 2001, 116: 62-66.
    [49] J.S. Ryoo, D.Y. Yang, W. Johnson. Lower-upper-bound analysis of the ring rolling process by using force polygon diagram and dual velocity field. Advance Technology of Plasticity, 1984, 1292-1298.
    [50] J.S. Ryoo, D.Y. Yang, W. Johnson. Roll torque and pressing in plane-strain. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 1986, 108(3): 288-295.
    [51] D.Y. Yang, J.S. Ryoo,J.C. Choi, et al. Analysis of roll torque in profile ring rolling of L-section. In: Proceedings of the International Machine Tool Design and Research Conference, London: Wales in Assoc with Macmillan Press Ltd, 1981, 69-74.
    [52] D.Y. Yang, J.S. Ryoo. Investigation into the relationship between torque and load in ring rolling. Journal of Engineering for Industry, Transactions ASME, 1987, 109(3): 190-196.
    [53] J. Gunasekera, Z. Jia, J. Malas. Analysis of Aluminum Extrusion Processes Using Upper Bound Element Technique. In: Processing Third World Conference On Integrated Design and Process Technology, Berlin: 1998, 215-220.
    [54] P.V. Ranatunga, J. Gunasekera, K. Hur. Use of UBET for Design of Flash Gap in Closed Die Forging. Journal of Material Processing Technology, 2001, 111: 107-112.
    [55]许思广,王海文,单志辅.用上限元法对环件轧制过程的模拟.太原重型机械学院学报,1989, 10(1): 1-10.
    [56]周存龙,姚开云,孙斌煜,等.用上限元法计算L型截面环件在轧制过程中的轧制力.太原重型机械学院学报,1999, 20(3): 272-277.
    [57] C.R. Boer, P. Gudmumdson, N. Rebelo. Comparison of elasto-plastic FEM, rigid plastic FEM and experiments for cylinder upsetting. In: Pittman JFT, editors. Numerical methods in industrial forming processes. Swansen: Pineridge Press, 1992.
    [58] C.H. Lee, S. Kobayashi. New solutions to rigid-plastic deformation problems using a matrix method. Journal of Engineering for Industry, 1973, 95: 865-873.
    [59] S. Kobayashi. The role of the finite element method in metal forming technology. Advanced Technology of Plasticity, 1984, 11:315-321.
    [60] M.S. Joun, J.H. Chung, R. Shivpuri. An axisymmetric forging approach to perform design in ring rolling using a rigid-viscoplastic finite element method. International Journal of Machine Tools & Manufacture, 1998, 38: 1183-1191.
    [61] H. Takizawa, T. Matsui, H. Kikuchi. Rigid-plastic finite element analysis of partially modeled ring rolling, in: K. Mori (Ed.), Simulation of Materials Processing: Theory, Methods and Application.2001, l44: 601-606.
    [62] D.Y. Yang, KH. Kim Rigid plastic finite element analysis of plane strain ring rolling. International Journal of Mechanical Sciences, 1988, 30: 541-550.
    [63] N. Kim, S. Machida, S. Kobayashi. Ring rolling process simulation by the three dimensional FEM. International Journal of Machine Tools & Manufacture, 1990, 30(4): 569-577.
    [64] Y. Yea, N. Kim, J. Lee. Prediction of spread, pressure distribution and roll force in ring rolling process using rigid–plastic finite element method. Journal of Materials Processing Technology, 2003, 140(1-3): 478-486.
    [65] S.G. Xu, J.C. Lian, J.B. Hawkyard. Simulation of ring rolling using a rigid plastic finite element model. International Journal of Mechanical Sciences, 1991, 33(5): 393-401.
    [66] S.G. Xu, K.J. Weinmann, D.Y. Yang, et al. Simulation of the hot Ring rolling process by using a thermo-coupled three-dimensional rigid–viscoplastic finite element method. Journal of Manufacturing Science and Engineering, 1997, 119: 542–549.
    [67] C.L. Xie, S.J. Li, S.H. Huang. Rigid–viscoplastic dynamic explicit FEA of the ringrolling process. International Journal of Machine Tools & Manufacture, 2000, 40: 81-93.
    [68] H.D. Hibbit, P.V. Marcal, J. R. Rice. A finite element formulation for problems of large strain and large displacement. International Journal Solid Structure, 1970, 6: 1069 -1087.
    [69] J.T. Oden, D.R. Bhandari., G. Yagewa et al. A new approach to the Finite element formulation and solution of a class of problems in coupled thermo-elasto-visco plasticity of solids. Nuclear Engineering and Design, 1973, 24: 420- 429.
    [70] R.M. McMeeking, J.R. Rice. Finite element formulation for problems of large elastic plastic deformation. International Journal Solid Structure, 1975, 11: 601.
    [71] L. Dewasurendra, A Finite Element Method for Ring Rolling Processed: [PhD Dissertation]. OH: The Ohio state university library, 1998.
    [72] U. Hiroshi, S. Yoshihiro, S. Tomoaki. Elastic-plastic finite element analysis of cold ring rolling process. Journal of Materials Processing Technology, 2002, 125-126: 613-618.
    [73] H. Yang, L.G. Guo, M. Zhan, et al. Research on the influence of material properties on cold ring rolling processes by 3D-FE numerical simulation. Journal of Materials Processing Technology, 2006, 177(1-3): 634-638.
    [74] Z.M. Hu, I. Pillinger, P. Hartley, et al. Thermo-plastic finite-element modeling of the rolling of a hot titanium ring. In: S.F. Shen, P.R. Dawson, editors. Simulation of materials processing: theory and applications. Rotterdam: Balkema; 1995: 941-946.
    [75] T. Lim, I. Pillinger, P. Hartley. A finite-element simulation of profile ring rolling using a hybrid mesh model. Journal of Materials Processing Technology, 1998, 80-81: 199–205.
    [76] N.T. Rudkin, P. Hartley, I. Pillinger. Friction modeling and experimental observations in hot ring compression tests. Journal of Materials Processing Technology, 1996, 60 (1-4): 349-353.
    [77] W.K Liu, T. Belytschko, H. Chang. An arbitrary Lagrangian–Eulerian finite element method for path dependent materials. Computer Methods in Applied Mechanics and Engineering, 1986, 58: 227–245.
    [78] D.J. Benson. An efficient accurate simple ALE method for nonlinear finite element programs. Computer Methods in Applied Mechanical and Engineering 1989, 72: 305-50.
    [79] W.F. Noh. A time-dependent two-space-dimensional coupled Eulerian-lagrangian code. In: B. Alder, S. Fernbach, M. Rotenberg, eds. Methods in Computational Physics, Academic press: New York, 1964:10.
    [80] S. Ghosh, N. Kikuchi. An arbitrary Lagrangian-Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids. Computer Mathematics Apply Mechanics Engineering, 1991, 86:127-188.
    [81] Y.K. Hu, W.K. Liu. ALE Finite element formulation for ring rolling analysis. International Journal for Numerical Methods in Engineering 1992, 33:1217-1236.
    [82] T.Z. Yanada, K. Kikuchi. An Arbitrary Lagrangian-Eulerian Finite Element Method for incompressible Hyper-elasticity, Computer Mathematics Apply Mechanics Engineering, 1993, 102: 149-177.
    [83] H. Askes, A. Rodrígues-Ferran, A. Huerta. Adaptive analysis of yield line patterns in plates with the arbitrary Lagrangian–Eulerian method. Computers and Structures, 1999, 70: 257-271.
    [84] K. Davey, M.J. Ward. A successive preconditioned conjugate gradient method for the quadratic and non-linear functions, IMACS. Applied Numerical Mathematics, 2000, 35: 129-156.
    [85] K. Davey, M.J. Ward. An efficient solution method for finite element ring rolling simulation. International Journal for Numerical Methods in Engineering 2000, 47: 1997–2018.
    [86] K. Davey, M.J. Ward. An ALE approach for finite element ring rolling simulation of profiled rings. Journal of Materials Processing Technology, 2003, 139(1-3): 559-566.
    [87] H.J. Marczinski. The hot ring rolling process and its integration into automatic production lines. In: Processing 3rd International conference on Rotary Metal working Processes, Kyoto, Japan, 1984: 251-265.
    [88] D.Y. Yang, C.S. Lee, H.S. Cho et al. Development of a new computer-aided manufacturing system for the hot ring rolling process. In: Processing 3rd InternationalConference on Rotary Metalworking Processes, Kyoto, Japan, 1984: 229-238.
    [89] T. Noda, K. Tsumura, Y. Okagata. Process controlled ring rolling line. In: Processing 3rd International conference on Rotary Metalworking Processes, Kyoto, Japan, 1984: 239-250.
    [90] H.D. Choi, H.S. CHo. An adaptive control approach to the ring geometry control for radial-axial ring rolling processes. Journal Mechanics Engineering Science, 1989, 203: 243-254.
    [91] K. Takaaki, A. Takashi, Y. Kazuo. Control for mandrel pressing velocity of ring rolling mill. Transactions of the Japan Society of Mechanical Engineers, Part C, 1991, 57 (539): 2271-2276.
    [92] R. Kopp. New control system for ring rolling. In: Proceeding of 2nd ICTP, Stuttgart: 1987, 803-806.
    [93] R. Kopp, H. Wiegels. Improvement of precision and material properties in ring rolling, Stahl Eisen, 1991, 111: 87-93.
    [94] J. Henkel, H. Wiegels, R. Kopp. Analysis of the machining allowances in ring rolling of square cross sections and proposals for their reduction. Stahl Eisen, 1986, 106: 1207- 1212.
    [95] H. Wiegels, R. Kopp. Process control in ring rolling with adaptive models. Stahl Eisen, 1988, 108 (16):39-44.
    [96] U. Koppers, R. Kopp.Kinematic and geometrical fundamentals in ring rolling. Steel Research, 1991, 62(6): 240-247.
    [97] K.Y. Lee, H. Wiegels, R. KOPP. Control of Strain and Temperature Distribution in the Ring Rolling Process. Journal of Materials Processing Technology, 1994(45): 137.
    [98]黄尚宇,常志华,刘振铎,等.齿坯碾扩机微机控制系统研究.武汉汽车工业大学学报,1998, l20(1): 5-8.
    [99]鄢奉林,华林,吴永桥.冷辗扩过程实时测控技术的发展状况.锻压技术, 2006,(5):1-5.
    [100]蒋日东,黄树槐,王运赣.环轧过程计算机辅助工程.华中理工大学学报,1997,125:1-3.
    [101]解春雷,李尚健,郭正华,等.宏观量和分布量结合的环轧过程控制系统设计.机械工程,1999,10(6): 611-613.
    [102] J.M. Allwood, A.E. Tekkaya, T.F. Stanistreet. The development of ring rollingtechnology. Steel Research International, 2005, 76(2-3):111-120.
    [103] T.F. Stanistreet, J.M. Allwood, A.M. Willoughby.The design of a flexible model ring rolling machine. Journal of Materials Processing Technology, 2006, 177(1-3): 630-633.
    [104]蒋日东.环轧过程计算机辅助工程:[博士学位论文].武汉:华中理工大学图书馆,1994.
    [105]解春雷.环件轧制过程刚粘塑性动力显式算法有限元模拟:[博士学位论文].武汉:华中理工大学图书馆,1998.
    [106]袁海伦.异形截面环件毛坯结构优化设计及轧制过程计算机仿真:[博士学位论文].武汉:华中理工大学图书馆,2006.
    [107] http://www.girard.cc/wagner/wagner.php3
    [108]杨桂通.弹塑性力学引论.北京:清华大学出版社, 2004.
    [109]孟凡中.弹塑性有限变形理论和有限元方法.北京:清华大学出版社, 1985.
    [110]白金泽.LSDYNA3D理论基础与实例分析.北京:科学出版社, 2005.
    [111]美国ANSYS股份有限公司.ANSYS/LSDYNA算法基础和使用方法.1999.
    [112] H.D. Choi, H.S. Cho, C.O. Lee. Application of an adaptive control method to the guide roll force control for ring rolling processes. In: IFAC Symposia Series Proceedings of a Triennial World Congress, Tallinn: Publish by Pergamon Press Inc, 1991, 4: 335-340.
    [113] M.R. Forouzan, M. Salimi, M.S. Gadala. Effect of Guide rolls on ring rolling process parameters. Advanced Technology of Plasticity, Proceedings of the Seventh ICTP, Yokohama, Japan, 2002, 1: 541-546.
    [114] M.R. Forouzan, M. Salimi, M.S. Gadala. Three-dimensional FE analysis of ring rolling by employing thermal spokes method. International Journal of Mechanical Sciences, 2003, 45(12): 1975-998.
    [115]解春雷,李尚健,黄树槐.碾环过程动力有限元分析中的抱辊约束.锻压机械, 1997, 5: 13-15.
    [116]许思广,连家创.环件轧制中最佳抱辊位置的确定.锻压机械,1991,6,22-25.
    [117]许思广,曹起骧,连家创.环件轧制中晶粒变化的计算机模拟,塑性工程学报,1994,11: 24-30.
    [118] C.Y. Yeol, H.H. Won, K. Cheeha. Simulation on the integration of process control systems of rolling mill plants through standard networks. In: Proceedings of theIndustrial Computing Conference, 1996, 6(1): 1-14.
    [119] J.L. Song, A.L. Dowson, M.H. Jacobs, et al. Coupled thermo-mechanical finite element modeling of hot ring rolling process. Journal of Materials Processing Technology, 2002, 121: 332-340.
    [120] D.S. Qian, L. Hua, Z.J. Zuo. Investigation of distribution of plastic zone in the process of plastic penetration. Journal of Materials Processing Technology, 2007, 187-188: 734-737.
    [121] L.G. Guo, H. Yang, M. Zhan. Research on plastic deformation in cold ring rolling by FEM numerical simulation. Modeling and Simulation in Materials Science and Engineering, 2005, 13(7): 1029-1046.
    [122] M.Y. Wang, H. Yang, Z.C. Sun. Dynamic explicit FE modeling of hot ring rolling process .Transactions of Nonferrous Metals Society of China (English Edition), 2006, 16(6): 1274-1280.
    [123]庄茁,张帆,岑松.ABAQUS非线性有限元分析与实例.北京:科学出版社, 2005.
    [124]陈火红.Marc有限元实例分析教程.北京:机械工业出版社, 2002.
    [125]李裕春,时党勇,赵远编. ANSYS10.0/LS-DYNA基础理论与工程实践.北京:中国水利水电出版社, 2006.
    [126]阚前华,谭长建,张娟. ANSYS高级工程应用实例分析与二次开发.北京:电子工业出版社, 2006.
    [127]博弈创作室.APDL参数化有限元分析技术及其应用实例.北京:中国水利水电出版社, 2004.
    [128] L.Y. Feng, L. Hua, Y.Q. Wu. Planning feed speed in cold ring rolling. International Journal of Machine Tools & Manufacture, 2007, 47: 1695-1701.
    [129]李宏伟,杨合,郭玲,等.混合硬化弹塑性本构关系及其在环件冷辗扩模拟中的应用.机械工程学报, 2005, 7: 119-125.
    [130]袁海伦,王泽武,曾青,等.异形截面环件虚拟轧制及其工艺优化.塑性工程学报, 2006, 6: 15-18.
    [131]田景文,高美娟.人工神经网络算法研究及应用.北京:北京理工大学出版社, 2006.
    [132] ASM Metal Handbook (Ninth edition, Vol.14). Forming and forging, Ring rolling. OH: ASM International, 1988: 108-127.
    [133] U. Koppers. Optimizing the ring-rolling operation with process control. JOM, 1992, 44(2): 24-27.
    [134]曹卫华,郭正.最优化技术方法及MATLAB的实现.北京:化学工业出版社, 2005.
    [135]孙优贤,褚健.工业过程控制技术.北京:化学工业出版社, 2006.
    [136]飞思科技产品研发中心.MATLAB6.5应用接口编程.北京:电子工业出版社,2003.
    [137]陈志刚,菅海燕,宋涛.大型钛环的轧制,锻压技术, 1994(5): 43-45.
    [138]菅海燕,陈志刚,宋涛.径轴向轧环机轧环工艺,锻压技术, 1995(3): 37-40.
    [139]丛爽.面向MATLAB工具箱的神经网络理论与应用.合肥:中国科学技术大学出版社,1998.
    [140] D.Y. Yang, K.H. Kim, J.B. Hawkyard. Simulation of T-Section Profile Ring Rolling by the 3-D Rigid-Plastic Finite Element Method. International Journal of Mechanical Sciences 1991, 33(7): 541-550.
    [141] Y. Maekawa, T. Hirai, T. Katayama, et al. Modeling and Numerical Analysis of Cross Rolling and Profile Ring Rolling Processes. Advanced Technology of Plasticity, 1984(2): 930-935.
    [142] M. Salimi. Investigations into and rolling of thick and thin walled profiled rings: [PhD Dissertation]. Manchester: Manchester University library, 1988.
    [143] M. Salimi, J.B. Hawkyard. Forming of Thin Walled Profiled Rings by Ring Rolling. International Journal Mechanical Science, 1988, 30(7): 527–532.
    [144] K. Mori, N. Hiramatsu, M. Shibata. Simplified 3D FEM simulation of ring rolling with grooved rolls, In: K. Mori (Ed.), Simulation of Materials Processing: Theory Methods and Application, 2001: 607-612.
    [145] D. Souza, U.V., Suhas; P. Zach, et al. Profile ring rolling Advanced Materials and Processes, 2003, 161(5): 35-37.
    [146] K.H. Kim, H.G. Suk, M.Y. Huh. Development of the profile ring rolling process for large slewing rings of alloy steels. Journal of Materials Processing Technology, 2007, 187-188:730-733.
    [147] K.H. Kim, B.T. Kim and H.G. Suk. Finite element analysis of externally round grooved profile ring rolling process, Transaction Material Processing, 2003, 12(7): 631-639.
    [148] http://www.firthrixson.com/
    [149] www.nam.org/s_nam/bin.asp?CID=284& DID=226660&DOC=FILE.PDF
    [150] www.colorado.edu/cspv/blueprints/ newsletter/pdf/BPNewsVol2Issue1.pdf
    [151]中国机械工程学会锻压分会.锻压手册(锻造).北京:机械工业出版社,2002.
    [152]张华.环形锻件精化工艺研究.机械加工(热加工), 2002,1: 56-57.
    [153]王华.镍基高温合金轧环件锻造缺陷分析.红旗技术, 2002.4: 19-21.
    [154] J.T. Yeom, J.H. K, N.K. P. Ring-rolling design for a large-scale ring product of Ti-6Al-4V alloy. Journal of Materials Processing Technology, 2007, 187-188:747-751.
    [155] T. Kazuhito; I. Shinya; T. Atsushi, et al. Profile ring-rolling process of fan case front for V2500 turbo engine. Research and Development Kobe Steel Engineering Reports, 1999, 49(3): 19-22.
    [156] L. Hua, X.S. Mei, X.T. Wu. Vibration and control in ring rolling process. Transactions Nonferrous Metals Society China, 1999, 9(2): 213-217.
    [157]于文泉,松雷钧,王同春,等.大型锥形环件锻造工艺模拟试验研究.一重技术, 1992, 53(2): 11-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700