用户名: 密码: 验证码:
GG纯钛粘结瓷的改良及GG瓷粉相关性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛瓷结合力低的主要原因是在钛表面极易生成氧化膜。许多研究通过钛表面改性减少TiO2的生成以提高化学结合力,提升钛瓷结合强度。表面改性的方法很多,包括酸蚀、微弧氧化、磁控溅射等,这些方法虽然具有一定效果,但操作复杂、制作时间长、费用较高等都使它们在临床中的应用受到了限制。
     本实验通过改良粘结瓷配方,即通过在粘结瓷中加入具有还原性的物质,达到提高钛瓷结合力的目的。改良粘结瓷与表面改性相比不增加操作步骤,粘结瓷粉还可批量生产,在临床操作便捷性方面具有明显优势。粘结瓷改良后颜色发生了变化,检测其对遮色瓷遮色能力产生的影响。探讨了改良粘结瓷对烤瓷修复体抗腐蚀能力的影响。对GG瓷粉的耐磨性、边缘适合性进行了检测,为GG瓷粉在临床上的使用提供实验依据。
     本实验的研究成果如下:
     1.通过粘结瓷中加入还原性的SnX,得到改良GG粘结瓷。实验确定SnX最适质量百分比为8%,在该实验组中三点弯曲结合强度显著提高,达到45.12±4.97Mpa,明显高于改良前及Superporcelain瓷粉36.17±3.94Mpa;剥脱界面SEM显示8%SnX组的瓷残留最多,EDS显示硅氧含量最高;8%SnX组矢状面SEM显示钛和瓷的结合面界限模糊,钛元素和瓷向对方侵入;线扫描发现在烧结过程中出现了Sn元素向钛瓷结合界面的富集现象;XRD证实由于还原性SnX的加入可以减少TiO_2生成,同时生成了新的化合物Ti3Sn,钛瓷间形成了新的化学键,提高了钛瓷结合力。
     2.粘结瓷的改良还可提高试件在酸性含氟人工唾液中的抗腐蚀能力。虽然在含氟人工唾液中,随着酸浓度的增高,钛瓷结合力降低,但仍然保持了较高水平34.14±3.27Mpa,远远高于ISO规定的25Mpa。瓷剥脱面SEM显示侵蚀使剥脱界面瓷残留减少,钛基底呈蜂窝状疏松结构;XRD结果表明,剥脱面有氢元素和氟元素存在,同时有Ti、TiH_2形成,氧化物消失,证实脆性TiH_2的生成是钛瓷结合力降低的原因。为更进一步模拟口腔状况,在实验条件中加入静压力,在PH5.4的人工唾液中,三点弯结合强度随静压力和氟离子浓度的升高,钛瓷结合力逐渐降低,14天后趋于稳定;单纯酸性唾液和静压力对钛瓷结合无影响;SEM显示:在酸性人工唾液中随着静压力和氟离子浓度的升高,剥脱面瓷残留减少,钛基底呈蜂窝状疏松结构,XRD分析结果与未施静压力相似。
     3.模拟口腔环境,记录不同修复材料与滑石瓷盘对磨时材料体积的磨损百分比,了解材料摩擦磨耗性能。发现在研究的三种瓷材料中GG体瓷的磨损量与天然牙最接近,最适于修复体的制作;且GG体瓷的摩擦系数大,有利于咀嚼功能的发挥。
     4.通过观察铸造钛基底及熔附瓷的不同步骤对试件边缘适合性的影响,了解钛瓷粉因烧结制度的差异对边缘适合性的影响及烧结次数对边缘适合性的影响。研究发现在熔附瓷后边缘浮出量明显高于熔附瓷前;而熔附瓷各步骤组间组内均无明显统计学差异,说明烧结制度的差异不会对边缘浮出量产生影响,GG烤瓷烧结制度适于临床应用。也证实烧结次数的增加对GG瓷粉的边缘适合性没有影响。
     从实验研究结果中可以看出,改良GG粘结瓷减少了钛基底在烧结过程中氧化物生成,利用还原态锡和氧竞争与钛的结合,达到减少TiO_2生成的目的。在改良粘结瓷烧结阶段,Sn元素向钛瓷结合界面迁移,生成Ti3Sn,增加了钛瓷之间的化学键,进一步增强了钛瓷结合力。以上两点是改良GG粘结瓷得以显著提高钛瓷结合力的重要原因。改良GG粘结瓷与广泛应用于临床的Superporcelain瓷粉相比,钛瓷结合强度提高了20%,有助于降低纯钛烤瓷修复体的失败几率,扩大其在临床的应用范围。现在应用于临床的纯钛粘结瓷无法阻止TiO_2生成,且与钛基底之间没有形成牢固结合力,都突显了自主研发的改良GG粘结瓷的优势,也使自主GG纯钛烤瓷材料的研发得到进一步完善。
The low adhesion between titanium is mainly because the formation ofoxide film in the titanium surface. Surface modification is always used to reducethe production of TiO_2and increase the chemical combination between Ti andporcelain. The purpose of this study was to enhance the combination ofTi-porcelain through adding Sn with reducing state into bonding porcelain. Thispaper discussed the sintering parameters of the improved bonding porcelain, thereason of the increased Ti-porcelain bonding force, the effect of the color changof the improved GG bonding porcelain on the mask compatibility of GG opaqueporcelain, and the corrosion ability of the improved bonding porcelain. Alsoexperiments were carried out to determine the wear resistance and the marginalfit of the GG porcelain.
     Results:
     1. Using the thermodynamic formula to determine the percentage range ofSnX added in glass powder was about6%-11%in mass fraction. The lightmicroscopy results of the GG bonding porcelain powder showed that the powder particles were mainly at10μm. This result was consistent with the SuperPorcelain Ti-22particle size analysis results. The XRD results showed that thetypical SnX phase was found in the improved GG bonding porcelain. The threepoint bending strength results showed that the improved GG bonding porcelaincould siginificantly improve the Ti-porcelain bonding strength. The SEM resultsof debonded interfaces of the8%SnX group demonstrated that compared toother groups larger porcelain remains were observed, and the EDS showed thatthere was the highest content of silicon and oxygen particles residue. The aboveresults comfirmed that the appropriate the mass percentage of SnX added intothe glass powder was8%.The XRD results showed that there was a typicalcrystalline phase-Ti3Sn on the debonded surface, which indicated a chemicalcombination between titanium substrate and the bonding porcelain was occurred.The SEM of the sagittal section of the specimes showed the boundaries betweenTi and porcelain were not clear in the8%SnX group. Line scan analysisi foundthat Sn elements wae enriched on the interface. It was unable to identify changeby eyes on the mask compatibility of GG opaque porcelain before and after theuse of the improved bonding porcelain
     2. The three point bending strength results showed that the SnX with reducingstate into bonding porcelain can improve the corrosion resistance of specimens.Ti-porcelain bond strength did not change significantly in acidic saliva. But thebonding strength decreased with the increase of acid concentration and fluorideion, while after7days there were no significant changes in values of bondingstrength. The SEM results showed that porcelain residues reduced on thedebonded interface due to the erosion of the fluoride ions in acidic saliva. Andthe titanium substrate became loose and honeycomb-like. The XRD analysesshowed that hydrogen and fluorine were observed on the debonded surface. At the same time, TiH_2phase was observed on the debonded surface afterimmersion in acidic fluoride saliva, which confirmed that the weak combinationbetween Ti and porcelain is due to the brittle TiH_2formation. The bondingstrength of Ti-porcelain decreased with the increase of acid and fluoride ionconcentration and static pressure, while there were no significant changes invalues of bonding strength after14days.The SEM results showed thatimmersing in the same acidic artificial saliva ceramic residues reduced ondebonded surface as the increase of static pressure. And titanium substratebecame loose, honeycomb-like. The XRD results were similar to the previousexperiment.
     3. The amount of volume loss of the GG body porcelain was mostclose tonatural teeth in this experiment on experimental porcelain materials. The frictioncoefficient curve results showed that the larger friction of the GG body porcelainwas conductive to masticatory function play.
     4. In the two experimental groups, we found significant differences inmarginal fit between the substrate crown and fused porcelain crown. There wereno siginificant differences on marginal fit of crowns when porcelain fused. Thedifferences of the sintering parameters did not affect the marginal fit. Theincrease of the sintering times had no significant effect on marginal fit.
     The improved GG bonding porcelain could prevent the formation of TiO_2,and produce the chemical combination. Compared to Superporcelain Ti-22, thebonding strength of the improved GG bonding porcelain was increased by20%.It was contributed to reduce the failure rate of of the titanium ceramicrestorations and expand the clinical applications of Ti-porcelain restorations.
引文
1.1. H. Yilmaz, C. Dincer, Comparison of the bond compatibility of titaniumand a NiCr alloy to dental porcelain. J. Dent.1999;27:215-222.
    2.郭天文.口腔科用钛理论和技术.第1版ed.北京:人民军医出版社;2005.
    3. Ko¨no¨nen M, Kivilahti J. Fusing of dental ceramics to titanium. J Dent Res2001;80:848–54.
    4. Pjetursson BE, Sailer I, Zwahlen M, Hammerle CH. A systematic review ofthe survival and complication rates of all-ceramic and metal-ceramicreconstructions after an observation period of at least3years. Part Ⅰ: singlecrowns. Clin Oral Implants Res.2007;18Suppl3:73-96.
    5. Sailer I, Pjetursson BE, Zwahlen M, Hammerle CH. A systematic review ofthe survival and complication rates of all-ceramic and metal-ceramicreconstructions after an observation period of at least3years. Part Ⅱ: Fixeddental prostheses. Clin Oral Implants Res.2007;18Suppl3:86-89.
    6. christen GJ.Porcelain-fused-to-mental versus zirconia-based ceramicrestorations,2009.J Am Dent Assoc.2009;140:1036-9
    7. Bergman B, Nilson H, Andersson M. A longitudinal clinical study ofProcera ceramic-veneered titanium copings. Int J Prosthodont.1999;12:135-9.
    8. Lovgren R, Andersson B, Carlsson GE. Prospective clinical5-years studyof ceramic-veneered titanium restorations with the Procera system. JProsthet Dent.2000;84:514-521
    9. Milleding P, Haag P, Neroth B. Two years of clinical experience withprocera titanium crown. Int J Prosthodont.1998;11(9):224-232
    10.邓文正,邱伟芳,郭庆.两种后牙烤瓷固定桥修复的远期疗效分析.广西医学院学报.2008;25:464-5.
    11.肖丹.后牙纯钛烤瓷冠的临床效果评价.口腔医学研究.2010;26:563-565.
    12.吴效民,马永滨.多次烧结对钛瓷修复体表面色的影响.中华口腔医学杂志.1999;34:244.
    13. Togaya T,Suzuki M,Tsutsumi S.Experimental porcelain composition forapplication to cast titanium. Dent MatJ.1983;2(2):210-219
    14. PerssonM,Bergman M. Metal Cermic bond strength.Aeta Odontol Seand,1996;54:160-165.
    15. Panzera, Carlino, Bellle Mead.Dental Porcelain for Titanium and TitaniumAlloys.USA.52288232,1994.
    16. Kvao K,Derand T,Aushrtdm EK. Fracture toughness and flexuralsstrenghth of dental ceramics for titanium.Biomaterials.1995;16(1):73-76.
    17. Seghi RR,Denty IL,Rnoesstid SF.Relatice fracture toughness and hardnessof new dental ceramics.J Proshtet Dent.1995;74:145-150.
    18. Lautenschlager E,Monaghhan P.Titanium and titanium alloys as dentalmatrials.Int Dent J.1998;43:245-253.
    19. Troia MG Jr,Henriques GE,Nobilo MA,Mesquita MF.The effect of thermalcycling on the bond strength of low-fusing porcelain tocommercially puretitanium and titanium-aluminium-vanadium alloy.Dent Mater.2003;19:790-6.
    20. Atsti S, Berksun S. Bond strength of three porcelains to two forms oftitanium using two firing atmospheres. J Prothet Dent.2000;84(5):567-574.
    21. Liu J,Atsuta M,Watanabe I.Bond strength of porcelain to degassed casttitanium.Int Chin J Dent.2002;2:67-74.
    22. Makdad Chakmakchi, George Eliades, Spiros Zinelis. Bonding agents oflow fusing cpTi porcelains: Elemental and morphological characterization.Journal of Prosthodontic Research.2009;53:166–171
    23.何惠明.钛及钛合金的表面烤瓷基础研究.第四军医大学博士论文.1996.
    24.汪大林,徐君伍,艾绳前,于家斗,周忠慎.钛材表面烤瓷的瓷金属界面研究.实用口腔医学杂志.1990;25:180-182
    25.任卫红.RG钛专用低熔瓷粉的研制.第四军医大学博士论文.2001.
    26.莫安春,王建华,廖运茂,岑远坤.遮色瓷中结晶相对钛-瓷结合强度的影响研究.华西口腔医学杂志,2001;19:357-59.
    27.王晓洁.GGW钦粘结瓷的研制及钛表面处理对钛/瓷结合强度的影响。
    2005.
    28.张惠.钛表面磁控溅射氮硅锆涂层对钛瓷结合的影响及G1钛遮色瓷的研制.2006.
    29.刘啸晨.纯钛烤瓷的基础研究.2007.
    30. King BW, Tripp HP, Duckworth WH..Nature of adherence of porcelainenamels to metals.J Am Ceram Soc.1995;42:504-509.
    31. Pask JA,Fulrath RM.Fundamentals of glass to metal bonding:Nature ofwetting and adherence.J Am Ceram Soc.1962;45:592-596
    32.刘洋.钛瓷结合界面研究及Ti-bond钛烤瓷系列的临床应用研究.四川大学口腔医学硕士专业学位论文.2005.
    33. Kononen M,Kivilahti J.Bonding of low-fusing dental porcelain tocommercially pure titanium.J Biomed Mater Res.1994;28:1027-1035
    34. Watanabe K.Interface reactions between titanium and porcelain duringfiring.Jpn J Dent Mater.1993;12:620-9.
    35. Hanawa T,Kon M,Oskawa s,Asaoka K.Diffudino of elements in porcelaininto titanium oxide.Dent Mater J.1994;13:164-73.
    36. Suansuwan N,Swain MV.Adhesion of porcelain to titanium and a titaniumalloy.J Dent.2003;31:509-18.
    37.赵文轸.材料表面工程导论.西安:西安交通大学出版社.1998;33:349-351.
    38. Zerg K, Oden A, Rowchffe D. Flexure tests on dental ceramics. Int JProsthodont.1996;9:35-31.
    39. No Authers Listed. Porcelain-metal-alloy compatibility: Criteria and testmethods. J Am Dent Assoc.1981;102:71-73.
    40. ISO9693. International Organization for Standardization. Geneva.1999.
    41. Pang IC,Gilbert J,Chai J,Lautensehlager E.Bonding charaeteristies oflow-fusing porcelain bonded to pure titanium and palladiu-copper alloy.JProsthet Dent.1995;73:17-25.
    42. Probster L,Maiwald U,Weber H.Three-Point bending strength of ceramicsfused to cast titanium.Eur J Oral SCi.1996;104:313-9.
    43. Yilmaz H,Dineer C.Comparison of the bond compatibility of titanium anda NiCr alloy to dental porcelain.Journal of Dentistry.1999;27:215-222.
    44. Troia MG Jr,Henriques GE,Nobilo MA,Mesquita MF.The effect ofthermal cycling on the bond strength of low fusing porcelain tocommercially pure titanium and titanium-aluminium-vanadium alloy.DentMater.2003;19:790-6.
    45. Persson M, Bergman M.Metal-ceramic bond strength.Aeta OdontolScand.1996;54:160-165.
    46. Liu J,Atsuta M,Watanabe I.Bond strength of porcelain to degassed casttitanium.Int Chin J Dent.2002;2:67-74.
    47. Suanswuan N,Swain MV.Adhesion of porcelain to titanium and titaniumalloy.J Dent.2003;31:509-18.
    48. Flinn RA, Trojan PK: Engineering material and their application.NewYork.1995.Wiley.
    49.王嘉德.口腔医学实验教程.北京:人民卫生出版社.2004.
    50. Anusavice KL.Phillips’Science of Dental Materials.New YorkSaunders.2003;73:54-55.
    51. Van Meerbeek B, Willems G, celis JP.Assessment by nano-indentation ofthe hardness and elasticity of resin-dentin bonding area.J Dent Res.1993;72:1434-36.
    52.中华人民共和国国家技术监督局.GB/T19534-1996.中华人民共和国国家标准.北京:中国标准出版社.1996.
    53.王吉会.材料力学性能.天津:天津大学出版社.2006.
    54. Uctasli S, Harrington E, Wilson HJ. The fracture resisitance of dentalmaterial. J Oral Rehabil.1995;22:877-882.
    55. Ferracane JL, Berge HX. Fracture toughness of experimental dentalcomposites aged in ethanol.J Dent Res.1995;71:1418-25.
    56. Ferracane JL. Current trends in dental composites. Crit Rev Oral Biol Med.1995;6:302-12.
    57. Whittle DP, Stringer J.Improvements in high temperatureoxidationresistance by additions of reaetive elements or oxidedispersions.Philos.Trans R Soc Lond A.1980;295:309-329.
    58. OshidaY,HashemA.Titnaium-porcelain system.Part Ⅰ:Oxidation kinetiesof nitrided puer titnaium,simulated to porcelain firing process.BiomedMater Eng.1993;3:185-98.
    59. Kononen M, Kivilahti J. Bonding of low-fusing dental porcelain tocommercially pure titanium.J Biomed Mater Res.1994;28:1027-35.
    60. Oshida Y, Munoa CA, Winkler MM. Fractal dimension analysis ofaluminum oxide particle for sandblasting dental use.Biomed MaterEng.1993;3:117-126.
    61. Gilbert JL,Covey DA,Lautensehlager EP. Bond characteristics of porcelainfused tomilled titanium. Dent Mater.1994;10:134-140.
    62. Derand T,Hero H.Bond strength of porcelain on cast vs. Wrought titanium.Scand J Dent Res.1992;3:186-191.
    63. Papadopoulos T,Tseteskou A,Eliades G..Effect of aluminium oxidesandblasting on cast commericially pure titanium surfaee. Eur J ProsthodontRestor Dent.1999;7:15-21.
    64. Inan O,Aear A,Halkaci S. Effects of sandblasting and electrical dischargemachining on porcelain adherence to cast and machined commereially puretitanium. J Biomed Mater Res B Appl Biomater.2006;30:315-322.
    65. Cai Z, Bunce N, Nunn ME.Porcelain adherence to dental cast CPtitanium:effects of surface modifications. Biomaterials.2001;22:979-86.
    66. Al Hussainil,Al Wazzan KA.Effect of surface treatment on bond strength oflow-fusing porcelain to commercially pure titanium. J P D.2005;94:350-6.
    67. Cai Z,Woody RD. Effects of interafacial variables on ceramic adherence tocast and maehined commereially pure titnaium. J Prosthet Dent.2003;90:10-17.
    68. Wang RR,Fung KK.Oxidation behavior of surface modifled titanium fortitanium-ceramic restorartions. J Porsthet Dent.1997;77:423-434.
    69. Suansuwan N,Swain MV. Adhesion of porcelain to titanium and a titaniumalloy. J Dent.2003;31:509-518.
    70. Lee KM,Cai Z,Griggs JA. SEM/EDS evaluation of porcelain adherence togold-coated cast titnaium. J Biomed Mater Res.2004;68:165-73.
    71.黄平,徐可为,憨勇.基于表面生物学改性的多孔状二氧化钛/磷灰石复合薄膜的制备.硅酸盐学报.2002;30:316-22.
    72. EvansB,Chan. To wet or not towet. Physics World.1996;4:48-52.
    73.张梅菊.能量参数对钦合金微弧氧化膜层表面形貌及膜层/环氧树脂结合强度的影响.西安理工大学学位论文.2004.
    74. Zichuan Zhang, Pei Zhang, Litong Guo, Tianwen Guo. Effect of TiO2–SiO2sol–gel coating on the cpTi–porcelain bond strength. MaterialsLetters.2011;65:1082–1085.
    75. Krysmann W, Diltrich K.H, Kruze P, Schneider H.G. Processcharacteristics and Parameters of Anodic Oxidation by spark Discharge(ANOF). Cryst.Res Technol.1984;19:973-979.
    76. Van T B, Wirtz Gp,Brown S D. Mechanism of Anodic spark. Deposition.Am, Ceram. Soc Bull.1977;56:563-6.
    77. Wirtz G P, Knven W.M,Brown S D. Ceramic Coatings by AnodicsparkDeposition. Mater. Manuf.Process.1991;6:87-115.
    78. Wang RR, Meyers E, Katz JL. Scanning acoustic microscopy study oftitanium ceramic interface of dental restorations. J Biomed MaterRes.1998;42:508-16.
    79. Wang RR, Welsh GE, Monteiro O. Silicon nitride coating on titanium toenable titanium-ceramic bonding. J Biomed Mater Res.1999;46:262-70.
    80. Wang RR., Fenton A. Titanium for prosthodontic applications:A review ofthe literature.Quintessence Int.1996;27:401-8.
    81.梁英,朱瑞富,吕宇鹏等.纯钛表面涂层与烤瓷熔附的研究.中国口腔种植学杂志.2000;5:61-3.
    82.魏宝明主编.金属腐蚀理论及应用.第l版.北京北学工业出版杜.1984.
    83. ISO TR10271. Dentistry-Determination of tarnish and corrosion of metalsand alloys.lst ed. Switzerland.1993;1-5.
    84. Shepard FE,Moon PC,Garnt GC. Allergic contact stomatitis from a goldalloy-fixed partial denture. JADA.1983;106:198-9.
    85. Luacs LC, Lemons JE, Buchanan RA. Susecptibility ofsugicalcalcolbat-base alloy to pitting corrsion. J Biomde Mater Res.1982;16:799-810.
    86. Cai Z, Brantle, Vennilyea SG. In vitro corrosion resistance ofhigh-palladium dental casting alloys. Dent Mater.1999;15:202-10.
    87.梁成浩,陈婉,郭亮. Hank′s人工模拟体液中离子注氮对4种植入金属材料腐蚀行为的影响.稀有金属材料与工程.2002;31:274-8.
    88.张新平,于思荣.新型牙科用Ti合金人工体液中电化学腐蚀研究.腐蚀科学与防护技术.2003;15:252-7.
    89. Nakagawa M,Shiarishi T, Matsuya S. Effect of fluoride concertration andph on corrosion behavior of titanium for dental use. J Dent Res.1999;78:1568-73.
    90.高勃,严晓东,汤慧萍,陈静,黄瑜.激光立体成形Ti-Zr合金腐蚀性能研究.实用口腔医学杂志.2006;22:325-28.
    91. Pimenova NV, Starr TL. Electrochemical and corrosion behavior ofTi-xAl-yFe alloys prepared by direct metal deposition method.Electrochimica Acta.2006;51:2042-49.
    92. Lee EU,Vasudevan AK,Sadananda K. Effects of various environments onfatigue crack growth in Laser formed and IM Ti–6Al–4V alloys.International Journal of Fatigue.2005;27:1597-1607.
    93. Litong Guo,Xiaochen Liu,Haitao Wu,Tianwen Guo,Jiqiang Gao. Effectof fluoride corrosion on the bonding strength of Ti–porcelain under staticloads. Materials Letters.2009;63:2486-88.
    94. Shinji Takemoto,Masayuki Hattori,Masao Yoshinari,Eiji Kawada,YutakaOda. Corrosion behavior and surface characterization of titanium in solutioncontaining fluoride and albumin.2005;26:829-837.
    95. Nakagawa M, Matsuya S,Udoh K. Corrosion behavior of pure titaniumand titanium alloys in fluoride-containing solutions. Dent Mater J.2001;20:305–14.
    96. Nakagawa M,Matsuya S,Udoh K. Effect of fluoride and dissolved oxygenconcentrations on the corrosion behavior of pure titanium and titaniumalloys. Dent Mater J.2002;21:83–92.
    97. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoride contentand pH on the corrosion resistance of titanium and its alloys. Biomaterials.2002;23:1995–2002.
    98. Ide K, HattoriM, YoshinariM, Kawada E, Oda Y. The influence of albuminon corrosion resistance of titanium in fluoride solution. Dent Mater J.2003;22:359–70.
    99. Wataha JC, Nelson SK, Lockwood PE. Elemental release from dentalcastingalloys into biological media with and without protein. Dent Mater.2001;17:409–14.
    100.Hallab NJ, Skipor A, Jacob JJ. Interfacial kinetics of titanium-andcobalt-based implant alloys in human serum: metal release and biofilmformation. J Biomed Mater Res.2003;65:311–8.
    101.Bauer W,Diedrich P,Vanden Hoven F. Wear in the upper and lowerincisors in relation to incisal and condylar guidanee. J Orofac Orthop.1997;58:306-19.
    102.Wedel A,Carlsson GE,Borrman H. Tooth wear and temporomandibularjoint morphology in a skull material from the17th century. Swed DentJ.1995;22:85-95.
    103.Won-Suck Oh,Ralph Delong,Kenneth J,Allusavice. Factor affectingenamel and ceramic wear. J Prosthet Dent.2002;87:451-8
    104.H.Y. Yu,Z.B. Cai,P.D. Ren. Friction and wear behavior of dentalfeldspathic porcelain. Wear.2006;261:611-21.
    105.马军萍,宋应亮,姚月玲.牙釉质与5种牙用烤瓷材料间磨耗性能测试研究.实用口腔医学杂志.2001,17:206-8.
    106.Heinize S.D.,ZaPPini G..,Rousson V. Wear of ten dental restorativematerials in five wear simulators-Results of a round rodin test. DentalMaterials.2005;21:304-17.
    107.何立弘. SHOFU长石质陶瓷疲劳性能研究.四川大学.2005.
    108.黎红,周仲荣,张杰.新型牙科修复材料-钛与天然牙摩擦学特性匹配的研究.生物医学工程学杂志.2001;18:561-4.
    109.M. Shabanian, L.C.Riehards. In vitro wear rates of materials under differentloads and varying PH. The Journal of Prosthetie Dentistry.2002;87:650-6.
    110.M.E. Barbour,GC. Allen,D.M. Parker,K.D. Jandt. Human enameldissolution in citric acid as a function of PH in the range2.30≤PH≤6.30-Ananoindentation study. European Journal of Oral Seienees.2003;111:258-262.
    111.Y. Imai,S.Fukushima,S.Suzukiand. Enamel wear of modified orcelains.American Journal of Dentistry.2000;13:315-23.
    112.H. Li,Z.R. Zhou.Wear behavior of human teeth in dry and artifieial salivaconditions.Weat.2002;249:980-4.
    113.P. Chuajedong,U.Kedjarune一Leggat,D. ertPon,V.Chongsuvivatwong,P. Benjakul. Associated fators of tooth wear in southern Thailand. Joumal ofOral Rehabilitation.2002;29:997-1002.
    114.VS. Nagarajan,Jahanmir B.J.,Hoekeyands. Contact wear mechanismsof a dental composite with high filler content. Journal of Material Seienee.2000;35:487-496.
    115.S. Habelitz,GW. MarshallJr,S.J. Marshall, M. Balooeh. MechanicalProperties of human dental enamel on the nanometer scale. Arehives of OralBiology.2001;46:173-183.
    116.Gohring T.N, Schmidlin P.R, Besek M.J. Attritional wear and abrasivesurface alterations of composite resin materials in vitro. J Dentistry,2002;30:119-26.
    117.Jahnmir S. Wear behavior of dental ceramics [M]. In: Proceedings of the7thPortuguese Conference on Tribology,porto,2000.
    118.Yu.H.Y,He.L.H, Zhou Z.R. The friction and wear behavior of dentalporcelains with different surface strengthing tehniques. Key EngineeringMaterials.2005;288:637-40。
    119.J.A. Hughes, NX. West,M.Addy. The effect of PH on the erosion of dentineand enamel by dietary acids in vitro. Journal of Oral Rehabilitation.2001;28:860-4.
    120.S.M. Higham,B.T. Amaechi, W.M. Edgar.Tooth Wear and Sensitivity.MinDunitz.2000.
    121.Dabis SH, Campbell SD, Kelly JR. Use of an elalastormeric material toimprove the occlusal seat and marginal seal of cast restoration.Prosthet Dent.1982;62:288-93.
    122.Wolf BH, Walter MH, Boeing KW. Margin quality of titanium and highgold inlays and onlays: a clinical study. Dent Mater.1998;14:370-4.
    123.Petteno D, Bassi F, Sehierano G. Comparison of marginal fit of threedifferent mental-ceramic systems: an in vitro study. Int J Prosth.2000;13:405-8.
    124.陈熙,程辉,郑明,马守治,李秀容.不同冠边缘形式的非贵金属金瓷冠边缘适合性的研究.口腔颌面修复学杂志.2007;8:111-4.
    125.陆永健,吴循,蒋丽萍.不同轴面聚合度对cercon全瓷冠边缘适合性的影响研究. Journal of Oral Science Research.2011;27:590-3.
    126.Gardner FM. Margins of complete crown-leterature review. J Prosthet Dent.1982;48:396-400.
    127.Mclean JW, Von Fraumhofer JA. The estimation of cement film thicknessby an in vivo technique. BR Dent J.1971;131:107-11.
    128.Mclean JW. Polycarboxylate cements, five year experience in generalpractice. BR Dent J.1972;132:19-5.
    129.Way KB, Russel MM, Razzooy ME. Precison of fit: Procera all ceramiccrown. J Prosthet Dent.1998;80:394-404.
    130.李秉鸿.钴铬合金烤瓷全冠边缘适合性的实验研究.实用医技杂志。2005;12:2599-2600.
    131.Cho LR, Kook JY, Song HY.Manal accuracy and fracture strength ofceromer/fiber-reinforced composite crowns: effect of variations inpreparation design. J Prosthet Dent.2002;88:388-395.
    132.马丁.浅析金属烤瓷冠边缘适合性的影响因素. Journal of Oral ScienceResearch.2007;23:460-1.
    133.曹洪喜,丁伟山,张建中,薛淼.包埋料和热处理对自研贵金属合金铸造适合性的影响.口腔材料器械杂志.2002;11:181-3.
    134.李星星.纯钛专用GG遮色瓷的粒度组成优化及色彩学研究.第四军医大学博士论文.2011
    135.Watanabe K. Interface reactions between titanium and porcelain duringfiring. Jpn J Dent Mater.1993;12:620-9.
    136.Papazoglou E, Brantley WA. Porcelain adherence vs force to failure forPalladium-gallium alloys: a critique of metal-ceramic bond testing.DentMater.1998;14:112-9.
    137.Stephen P, Schaffer BS.An approach to determining the bond strength ofceramometal.J Prosthet Dent.1982;48:282-4.
    138.Hammad IA, Talic YF.Desigrs of bond strength tests for metalceramiccomplexes:Review of the literature.J Prosthet Dent.1996;75:602-8.
    139.Kimura H, Okazaki M,Horng CJ, Takahahsshi J.Oxidation effects onporcelain-titanium interface reactions and bond strength.Dent MaterJ.1990;9:91-9.
    140.董宏伟,石四箴.影响牙科用钛及钛合金腐蚀性的因素.复旦学报(医学版).2005;32.:245-9.
    141.Tamer E. Shokry, Mazen Attia, Mohamed Elhosary.Effect of metalselection and porcelain firing on the marginal accuracy of titanium-basedmetal ceramic restorations. J Prosthet Dent.2010,103:45-21。
    142.Gemalmaz D,Alkumru HN.Marginal fit changes during porcelain firingcycles.J Prosthet Dent.1995,73:49-54.
    143.Johnson Campideli Fonseca, Guilherme Elias Pessanha Henriques.Stress-relieving and porcelain firing cycle influence on marginal fit ofcommercially pure titanium and titanium–aluminum–vanadiumcopings.Dent Materials.2003,19:686-91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700