用户名: 密码: 验证码:
低维氧化锌体系的p型掺杂和外场调控的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种典型的宽禁带直接带隙半导体材料,在室温条件下它的禁带宽度为3.37eV,激子束缚能为60meV。所以在室温甚至更高温度情况下,ZnO在紫外发光器件领域里有着潜在的应用价值。基于以上的特性,人们分别从实验测量和理论计算的角度对ZnO这种材料的性质和应用进行不断的探索。本论文主要是利用第一性原理的方法对ZnO表面及其部分低维纳米结构(例如ZnO双层纳米结构、ZnO单层纳米结构以及ZnO纳米条带结构)进行了详细的研究。我们的计算结果将有助于理解表面效应是如何影响ZnO的p型导电性,同时预测了外加的电场和应力场对其低维纳米结构物性的调控。
     本论文主要包括以下四章。第一章主要是从理论和实验上回顾了ZnO这种材料的基本结构和性质。其中,对ZnO的三维纤锌矿结构,主要综述了电子结构性质、本征缺陷性质以及如何实现p型掺杂等问题。接着以纤锌矿结构为基础,重点讨论了极性表面和非极性表面的电学性质。最后总结了不同种类的低维纳米结构特征,显示了丰富的结构使得ZnO在纳米器件领域里有着广泛的应用前景。正是基于ZnO这种材料所具有的不同结构和性质,所以在本论文里我们选择在ZnO的表面进行p型掺杂以及对低维纳米结构的物性进行调控作为主要研究内容。
     第二章主要介绍了整个论文计算工作所涉及到的密度泛函理论。该理论主要以体系处于基态时的电荷密度为基础,认为一个多粒子体系的物理性质都是基态电荷密度的泛函,通过求解Kohn-Sham方程,将复杂的多体问题变为单粒子问题。在本章的最后,还介绍了本论文工作所使用到的计算程序包。
     从第三章开始,将主要介绍本人攻读博士学位期间所做的研究工作。
     第三章详细讨论了p型杂质原子Li、N以及共掺的Li-N在ZnO的非极性表面和极性表面的最优位置分布和热离化能级,我们的计算结果表明替位的LiZ、No以及Lizn-No处于ZnO表面区域时的稳定性要比在ZnO体中时的稳定性好,并且Lizn、No以及Lizn-No在表面区域的热离化能要比其在体结构中的热离化能大很多。事实上,ZnO表面效应的存在会使p型杂质原子掺杂的ZnO薄膜材料的p型导电能力大幅度降低,这个结果对低维ZnO体系p型掺杂有着重要的指导意义。我们还发现由于不同的表面具有不同的静电势分布,所以在不同的ZnO表面区域里,Lizn、No以及Lizn-No的热离化能会表现出很大的差异。在此基础上,进一步讨论了不同浓度Li、N等p型杂质原子是如何在ZnO表面上沉积分布的,计算结果表明只有通过控制p型杂质原子的浓度和体系原有缺陷浓度之比,才能获得相对稳定的p型ZnO薄膜样品。
     第四章主要讨论了几种低维ZnO纳米体系的结构和性质。首先讨论了具有不同叠加方式ZnO双层纳米结构的相对稳定性和电子结构性质,计算表明两个单层之间通过静电吸引和偶极矩相互作用耦合在一起。基于Zn原子和O原子电负性的差异,利用外加电场可以有效地调节其电子结构性质和光学性质,使得ZnO双层结构在纳米器件领域里有着潜在的应用前景。接着讨论了氢气在ZnO单层结构上的吸附和脱离行为。发现单个氢分子以-0.13eV的结合能吸附在ZnO单层结构中的O原子上方,这意味着氢分子与ZnO单层结构的相互作用要强于氢分子在单层石墨烯上的吸附作用。计算结果表明在零温下ZnO单层结构的储氢量可以达到4.7wt%,在298K和5Mpa条件下其储氢量为1.5-2.1wt%,这意味着ZnO单层结构在储氢上有实际的应用价值。最后讨论了ZnO锯齿形纳米条带在外加应力作用下会从初始的平面六角蜂窝状结构转变为新的基态方形纳米条带,并且伴随着从金属相到半导体相的转变,可以应用在纳米转换开关等领域。
Zinc oxide is a direct band gap semiconductor, with the wide band gap of3.37eV at room temperature. The exciton binding energy of ZnO is as large as60meV, which allows it to have potential applications in ultraviolet optoelectronic devices at room temperature and higher temperatures. Owing to these properties, much attention has been paid to exploring the properties and applications of ZnO by experimental and theoretical methods. In this dissertation, with using first-principles calculations we investigate the properties of ZnO surface and its low-dimensional structures, including ZnO bilayer、ZnO single sheet and ZnO nanoribbons. Our study will be helpful for understanding the surface effect on the p-type conductivity and how to modulate the properties of ZnO low-dimensional structures.
     This dissertation consists of four chapters. In the first chapter, we review the former experimental and theoretical studies for ZnO. Beginning with the ZnO wurtzite bulk, we address the electronic structures、native defects and p-type defects. Then we focus on the electrical properties of the polar surfaces and nonpolar surfaces. At the end of the first chapter, many different kinds of low-dimensional nanostructures are reviewed, which might allow them to have potential in nanodevices. Owing to the properties mentioned above, in our dissertation we mainly focus on the p-type doping in ZnO thin films and how to tune the properties of ZnO low-dimensional structures.
     In the second chapter, we brifly introduce the density functional theory (DFT) method, which is widely used in our dissertation. Within the framework of the DFT, all properties of a system is the functional of the ground state charge density. According to the Kohn-Sham equation, the many-body problem is approximated as a single-particle problem. Finally, the simulation packages used in our dissertation are also introduced.
     From the third chapter, we begin to focus on our research.
     In the third chapter, we report the investigated stability and the thermal ionization energy of p-type defect LiZn、No and LiZn-No at different atomic layers in ZnO thin films. Our calculations show that the doped Lizn、No and Lizn-No prefer to locate in the outmost atomic layer of ZnO films, and the thermal ionization energy of the impurities in the surface region is much larger than that in the bulk region, which is mainly attributed to the different distributions of electrostatic potential between the surface and the bulk. Our results strongly suggest that the surface effect arising from ZnO surfaces significantly degrades the p-type conductivity of ZnO films. Furthermore, we investigate the adsorption behavior of Li、N on ZnO surface. Our results indicate that only the proper concentration of p-type defects can make the p-type conductivity of ZnO films stable.
     In the fourth chapter, we mainly handle several low-dimensional ZnO nanostructures. First we investigate the relative stabilities and electronic structures of various stacking configurations for ZnO bilayer, which reveals that only the electrostatic attraction and the dipole moment interaction exist between the two single ZnO layers. Moreover, based on the different electronegativity between Zn atoms and O atoms, the external electric field can efficiently modulate the electronic properties and optical absorption spectra of a ZnO bilayer. The good response of ZnO bilayers to the external electric field might allow them to have potential applications in nanodevices. Then, we investigate the adsorption behavior of hydrogen on the planar hexagonal ZnO sheet. Our calculations find that the planar ZnO monolayer preferably adsorbs hydrogen molecules, where a hydrogen molecule attaches to one oxygen atom with binding energy of-0.13eV. This implies that the interaction between a hydrogen molecule and the ZnO sheet is stronger than that between a hydrogen molecule and graphene. We predict that the gravimetric density for hydrogen storage on ZnO sheet is evaluated to be about4.7wt%at zero temperature. Furthermore, our calculations show that the gravimetric density for hydrogen storage on ZnO sheet reaches1.5-2.1wt%at298K and5MPa. This suggests that ZnO sheets may have potential applications in hydrogen storage. At the end of this chapter, we present that under the loaded strain along the periodic axis, the ZnO zigzag nanoribbons are transformed into new ground state featuring square lattice. We find that this new ground state is semiconducting, which is completely different from the initial zigzag nanoribbons having metallic behavior. Such a metallic-semiconducting phase transition might allow ZnO nanoribbons to have potential applications in nanoswitch.
引文
Ahn BD, Kang HS, Kim JH, et al.2006. Synthesis and analysis of Ag-doped ZnO[J]. J. Appl. Phys.,100:093701.
    Allenic A, Guo W, Chen Y, et al.2007. Amphoteric Phosphorus Doping for Stable p-Type ZnO[J]. Adv. Mater.,19:3333-3337.
    Bagnall DM, Chen YF, Zhu Z, et al.1997. Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett.,70:2230.
    Bang KH, Hwang DK, Park MC, et al.2003. Formation of p-type ZnO film on InP substrate by phosphor doping[J]. Appl. Sur. Sci.,210:177-182.
    Barnes TM, Olson K, Wolden CA.2005. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J]. Appl. Phys. Lett.,86:112112.
    Baruah S, Dutta J.2009. Hydrothermal growth of ZnO nanostructures[J]. Sci. Technol. Adv. Mater.,10:013001.
    Chambers SA,2007. Surface science opportunities in the electronic structure of ZnO[J]. Surface Science,601:5313-5314.
    Chen LL, He HP, Ye ZZ, et al.2006. Inuence of post-annealing temperature on properties of ZnO:Li thin films[J]. Chem. Phys. Lett.,420:358-361.
    Erhart P, Klein A, Albe K.2005. First-principles study of the structure and stability of oxygen defects in znic oxide[J]. Phys. Rev. B,72:085213.
    Erhart P, Klein A, Albe K.2006. First-principles study of intrinsic point defects in ZnO:Role of band structure, volume relaxation, and finite-size effects[J]. Phys. Rev. B,73:205203.
    Feng XB.2004. Electronic structures and ferromagnetism of Cu-and Mn-doped ZnO[J]. J. Phys.: Condens. Matter,16:4251-4259.
    Garces NY, Giles NC, Halliburton LE, et al.2002. Production of nitrogen acceptors in ZnO by thermal annealing[J]. Appl. Phys. Lett,80:1334-1336.
    Gorelkinskii YV and Watkins GD.2004. Defects produced in ZnO by 2.5-MeV electron irradiation at 4.2 K:Study by optical detection of electron paramagnetic resonance[J]. Phys. Rev. B,60:115212.
    Halliburton LE, Giles NC, Garces NY, et al.2005. Production of native donors in ZnO by annealing at high temperature in Zn vapor[J]. Appl. Phys. Lett.,87:172108.
    Hamby DW, Lucca DA, Klopfstein MJ.2005. Photoluminescence of mechanically polished ZnO [J]. J. Appl. Phys.,97:043504.
    Hariharan C.2006. Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles:Revisited[J]. Appl. Catal. A,304:55-61.
    Heo YW, Park SJ, Ip K, et al.2003. Transport properties of phosphorus-doped ZnO thin films[J]. Appl. Phys. Lett.,83:1128-1130.
    Hsu YF, Xi YY, Tam KH, et al.2008. Undoped p-type ZnO nanorods synthesized by a hydrothermal method[J]. Adv. Funct. Mater.,18:1020-1030.
    Hu GX, Gong H, Chor EF, et al.2006. Properties of p-type and n-type ZnO influenced by P concentration[J]. Appl. Phys. Lett.,89:251102.
    Hung CH, Whang WT.2004. Low-temperature solution approach toward highly aligned ZnO nanotip arrays[J]. J. Cryst. Growth,268:242-248.
    Hwang DK, Oh MS, Lim, JH, et al.2007. Effect of annealing temperature and ambient gas on phosphorus doped p-type ZnO [J], Appl. Phys. Lett.,90:021106.
    Jang S, Chen JJ, Kang BS, et al.2005. Formation of p-n homojunctions in n-ZnO bulk single crystals by diffusion from a Zn3P2 source[J]. Appl. Phys. Lett.,87:222113.
    Janotti A and Van de Walle CG.2005. Oxygen vacancies in ZnO[J]. Appl. Phys. Lett,87:122102.
    Janotti A and Van de Walle CG.2007. Native point defects in ZnO[J]. Phys. Rev. B,76:165202.
    Kang HS, Ahn BD, Kim JH, et al.2006. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant [J]. Appl. Phys. Lett.,88:202108.
    Kim KK, Kim HS, Hwang DK, et al.2003. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant[J]. Appl. Phys. Lett.,83:63-65.
    Kohan AF, Ceder G, Morgan D, et al.2000. First-principles study of native point defects in ZnO[J]. Phys. Rev. B,61:15019-15027.
    Kuriyama K, Ooi M, Matsumoto K, et al.2006. Thermally stimulated current studies on deep levels in hydrothermally grown single crystal ZnO bulk[J]. Appl. Phys. Lett.,89:242113.
    Lee EC, Kim YS, Jin YG, et al.2001. Compensation mechanism for N acceptors in ZnO[J]. Phys. Rev. B,64:085120.
    Li X, Yan Y, Gessert TA, et al.2003. Chemical vapor deposition-formed p-type ZnO thin films[J]. J. Vac. Sci. Technol. A,21:1342-1346.
    Li XN, Keyes B, Asher S, et al.2005. Hydrogen passivation effect in nitrogen-doped ZnO thin films[J]. Appl. Phys. Lett,86:122107.
    Liang WJ, Yuhas BD, Yang PD.2009. Magnetotransport in Co-doped ZnO nanowires[J]. Nano Lett.,9:892-896.
    Liu W, Gu SL, Ye JD, et al.2008. High temperature dehydrogenation for realization of nitrogen-doped p-type ZnO[J]. J. Cryst. Growth,310:3448-3452.
    Look DC.2007. Quantitative analysis of surface donors in ZnO[J]. Surface Science, 601:5315-5319.
    Look DC, Reynolds, DC, Litton CW, et al.2002. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J]. Appl. Phys. Lett.,81:1830-1832.
    Look DC, Claflin B, Alivov YI.2004. The future of ZnO light emitters[J]. Phys. Stat. Sol. (a),201: 2203-2212.
    Look DC, Hemsky JW, Sizelove JR.1999. Residual Native Shallow Donor in ZnO[J]. Phys. Rev. Lett.,82:2552-2555.
    Lopatiuk-Tirpak O, Chernyak L, Osinsky A, et al.2005. Lithium-related states as deep electron traps in ZnO[J]. Appl. Phys. Lett.,87:214110.
    Lu JG, Zhang YZ, Ye ZZ, et al.2006. Control of p-and n-type conductivities in Li-doped ZnO thin films[J]. Appl. Phys. Lett.,89:112113.
    Matsui H, Saeki H, Kawai T, et al.2004. N doping using N2O and NO sources:From the viewpoint of ZnO[J]. J, Appl. Phys.,95:5882-5888.
    Meyer B, Marx D.2003. Density-functional study of the structure and stability of ZnO surfaces[J]. Phys. Rev. B,67:035403.
    Meyer B, Marx D.2003. Density-functional study of Cu atoms, monolayers, films, and coadsorbates on polar ZnO surfaces[J]. Phys. Rev. B,69:235420.
    Meyer BK, Alves H, Hofmann DM, et al.2004. Bound exciton and donor-acceptor pair recombinations in ZnO[J]. Phys. Stat. Sol. (B),241:231-260.
    Morkoc H, Strite S, Gao GB, et al.1994. Large-band-gap SiC,Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. J. Appl. Phys.,76:1363-1398.
    Oba F, Togo A, Tanaka I, et al.2008. Defect energetics in ZnO:A hybrid Hartree-Fock density functional study [J]. Phys. Rev. B,77:245202.
    Park CH, Zhang SB, Wei SH.2002. Origin of p-type doping difficulty in ZnO:The impurity perspective[J]. Phys. Rev. B,66:073202.
    Ozgur U, Alivov YI, Liu C, et al.2005. A comprehensive review of ZnO materials and devices[J]. J. Appl. Phys.,98:041301.
    Pearton SJ, Norton DP, Ip K, et al.2004. Recent advances in processing of ZnO[J]. J. Vac. Sci. Technol. B,22:932-948.
    Pearton, SJ, Norton DP, Ip K, et al.2005, Recent progress in processing and properties of ZnO[J]. Progress in Materials Science,50:293-340.
    Pfisterer D, Hofmann MD, Sann J, et al.2006. Intrinsic and extrinsic point-defects in vapor transport grown ZnO bulk crystals[J]. Physica B,376-377,767-770.
    Reynolds DC, Look DC, Jogai B.1996. Optically pumped ultraviolet lasing from ZnO[J]. Solid State communications,99:873-875.
    Sann J, Stehr J, Hofstaetter A, et al.2007. Zn interstitial related donors in ammonia-treated ZnO powders[J]. Phys. Rev. B,76:195203.
    Schmidt O, Geis A, Kiesel P, et al.2006. Analysis of a conducting channel at the native zinc oxide surface[J]. Superlattices and Microstructures,39:8-16.
    Tang ZK, Wong GKL, Yu P, et al.1998. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Appl. Phys. Lett.,72:3270-3272.
    Tasker PW.1979. Stability of ionic-crystal surfaces[J]. J. Phys. C:Solid State Phys.,12:4977.
    Teke A, Ozgur U, Dogan S, et al.2004. Excitonic fine structure and recombination dynamics in single-crystalline ZnO[J], Phys. Rev. B,70:195207.
    Thomas MA, Cui JB.2009. Electrochemical growth and characterization of Ag-doped ZnO nanostructures[J]. J. Vac Sci. Technol. B,27:1673-1677.
    Tsukazaki A, Ohtomo A, Onuma T, et al.2004. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature materials,4:42-46._
    Vanheusden K, Seager CH, Warren WL, et al.1996. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. J. Appl. Phys.,79:7983-7990.
    Vlasenko LS and Watkins GD.2005. Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO[J]. Phys. Rev. B,71:125210.
    Wang ZL.2004. Nanostructures of zinc oxide[J], Materials Today,7:26-33.
    Wardle MG, Goss JP, Briddon PR.2005. Theory of Li in ZnO:A limitation for Li-based p-type doping[J]. Phys. Rev. B,71:155205.
    Xiu FX, Yang Z, Mandalapu LJ, et al.2006. Donor and acceptor competitions in phosphorus doped ZnO[J], Appl. Phys. Lett,88:152116.
    Yan YF, Zhang SB, Pantelides ST.2001. Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO[J]. Phys. Rev. Lett.,86:5723-5726.
    Yan YF, Al-Jassim MM, Wei SH.2006. Doping of ZnO by group-IB elements[J]. Appl. Phys. Lett., 89:181912.
    Yaron G, Many A, Goldstein Y.1985. Quantized electron accumulation layers on ZnO surfaces produced by low-energy hydrogen-ion implantation[J]. J. Appl. Phys.,58:3508.
    Yu ZG, Gong H, Wu P.2005. Dopant Sources Choice for Formation of p-Type ZnO:Phosphorus Compound Sources[J]. Chem. Mater.,17 (4):852-855.
    Yu ZG, Wu P, Gong H.2006. Control of p-and n-type conductivities in P doped ZnO thin films by using radio-frequency sputtering[J], Appl. Phys. Lett.,88:131114.
    Yuhas BD, Zitoun DO, Pauzauskie PJ, et al.2006. Transition-metal doped zinc oxide nanowires[J]. Angew Chem. Int. Ed.45:420-423.
    Yuhas BD, Fakra S, Marcus MA, et al.2007. Probing the local coordination environment for transition metal dopants in zinc oxide nanowires[J]. Nano Lett.,7:905-909.
    Zeng Y J, Ye ZZ, Xu WZ, et al.2005. Realization of p-type ZnO films via monodoping of Li acceptor[J]. J. Cryst. Growth,283:180-184.
    Zeng YJ, Ye ZZ, Xu WZ, et al.2006. Dopant source choice for formation of p-type ZnO:Li acceptor[J]. Appl. Phys. Lett.,88:062107.
    Zeng YJ, Ye ZZ, Lu JG, et al.2006. Identification of acceptor states in Li-doped p-type ZnO thin films[J]. Appl. Phys. Lett.,89:042106.
    Zhang SB, Wei SH, Zunger A.1998. A phenomenological model for systematization and prediction of doping limits in II-VI and I-III-VI2 compounds[J]. J. Appl. Phys.83:3192.
    Zhang SB, Wei SH, Zunger A.2001. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J]. Phys. Rev. B,63:075205.
    Zhou HJ, Wong SS.2008. A facile and mild synthesis of 1-D ZnO, CuO, and a-Fe2O3 nanostructures and nanostructured arrays[J]. ACS Nano,2:944-958.
    唐敖庆,杨忠志,李前树.1982.量子化学[M].北京:科学出版社.
    徐光宪,黎乐民,王德民.1985.量子化学[M].北京:科学出版社.
    谢希德,陆栋.1998.固体能带理论[M].上海:复旦大学出版社.
    肖慎修,工崇愚,陈天朗.1998.密度泛函理论的离散变分方法在化学和材料物理学中的应用[M].北京:科学出版社.
    曾谨言.2000.量子力学[M].第1版.北京:科学出版社.
    Anisimov VI, Aryasetiawan F, Lichtenstein AI.1997. First-principles calculations of the electronic structure and spectra of strongly correlated systems:the LDA+U method[J]. J. Phys.:Condens. Matter,9:767.
    Asada T, Terakura K.1992. Cohesive properties of iron obtained by use of the generalized gradient approximation[J]. Phys. Rev. B,46:13599-13602.
    Becke AD.1988. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A,38:3098-3100.
    Becke AD.1993. Anew mixing of Hartree-Fock and local density functional theories[J]. J. Chem. Phys.,98:1372.
    Becke AD.1993. Density functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys.,98:5648.
    Dirac PAM.1930. Note on the exchange phenomena in the Thomas-Fermi atom[J]. Proc. Cambridge Phil. Roy. Soc,26:376-385.
    Fermi E.1927. Un metodo statistico per la determinazione di alcune priorieta dell'atome[J]. Rend. Accad. Naz. Lincei,6:602-607.
    Foresman JB, Frisch E.1996. Exploring chemistry with electronic structure methods[M]. Pittsburgh:Gaussian Inc.
    Gorling A.1996. Density-functional theory for excited states[J]. Phys. Rev. A,54:3912-3915.
    Hartree DR.1928. The Wave Mechanics of an Atom with a Non-Coulomb Central Field[J]. Proc. Cambridge Phil. Roy. Soc.,24:111.
    Hohenberg P, Kohn W.1964. Inhomogeneous Electron Gas[J]. Phys. Rev.,136:B864-B871.
    Imada M, Fujimori A, Tokura Y.1998. Metal-insulator transitions[J]. Rev. Mod. Phys., 70:1039-1263.
    Kohn W, Sham LJ.1965. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Phys. Rev.,140:Al 133-A1138.
    Martin RM.2004. Electronic structure:Basic theory and practical methods[M]. London: Cambridge Press.
    Mcweeny R.1989. Methods of molecular quantum mechanics[M]. London:Academic Press.
    Moller C, Plesset M S.1934. Note on an Approximation Treatment for Many-Electron Systems[J]. Phys. Rev.,46:618-622.
    Perdew JP, Burke K.1996. Comparison shopping for a gradient-corrected density functional[J]. Int. J. Quant. Chem.,57:309-319.
    Perdew JP, Wang Y.1992. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys. Rev. B,45:13244-13249.
    Perdew JP, Zunger A.1981. Self-interaction correction to density-functional approximations for many-electron systems[J]. Phys. Rev. B,23:5048-5079.
    Runge E, Gross EKU.1984. Density-Functional Theory for Time-Dependent Systems[J]. Phys. Rev. Lett.,52:997-1000.
    Thomas LH.1927. The calculation of atomic fields[J]. Proc. Cambridge Phil. Soc,23:542-548.
    Vignale G, Rasolt M.1987. Density-functional theory in strong magnetic fields[J]. Phys. Rev. Lett., 59:2360-2363.
    Allen MW, Swartz CH, Myers TH, et al.2010. Bulk transport measurements in ZnO:the effect of surface electron layers[J]. Phys. Rev. B,81 (7):075211.
    Baldereschi A, Baroni S, Resta R.1988. Band Offsets in Lattice-Matched Heterojunctions:A Model and First-Principles Calculations for GaAs/AlAs[J]. Phys. Rev. Lett.,61:734-737.
    Bylander DM, Kleinman L.1990.4f resonances with norm-conserving pseudopotentials[J]. Phys. Rev. B,41(2):907-912.
    Chadid J.1987. Atomic structure of GaAs(100)-(2×1) and (2×4) reconstructed surfaces[J]. J. Vac. Sci. Technol. A,5(4):834.
    Chambers SA.2007. Surface science opportunities in the electronic structure of ZnO[J]. Surf. Sci., 601(23):5313-5314.
    Cui Y, Bruneval F.2010. p-type doping and codoping of ZnO based on nitrogen is ineffective:An ab initio clue[J]. Appl. Phys. Lett.,97:042108.
    Duke CB.1996. The structural chemistry of two dimensional surface compounds[J]. Chem. Rev., 96(4):1237-1260.
    Huang MH, Mao S, Feick H, et al.2001. Room-temperature ultraviolet nanowire nanolasers[J]. Science,292(5523):1897-1899.
    Janotti A, Vandewalle CG.2007. Native points defect in ZnO[J]. Phys. Rev. B,76(16):165202.
    Kin YS, Park CH.2009. Rich variety of defects in ZnO via an attractive interaction between O vacancies and Zn interstitials:origin of n-type doping[J]. Phys. Rev. Lett.,102(8):086403.
    Kleinman L, Bylander DM.1982. Efficacious form for model pseudopotentials[J]. Phys. Rev. Lett.,48(20):1425-1428.
    Komatsu M, Ohashi N, Sakaguchi I, et al.2002. Ga,N solubility limit in co-implanted ZnO measured by secondary ion mass spectrometry[J]. Appl. Surf. Sci.,189(3-4):349-352
    Law M, Greene LE, Johnson JC, et al.2005. Nanowire dye-sensitized solar cells[J]. Nature materials,4:455-459.
    Look DC.2007. Quantitative analysis of surface donors in ZnO[J]. Surf. Sci.,601 (23):5315-5319.
    Look DC.2001. Recent advances in ZnO materials and devices[J]. Mater. Sci. Eng. B, 80(1-3):383-387.
    Look DC, Claflin B, Alivov Yl, et al.2004. The future of ZnO light emitters[J]. Phys. Stat. Sol.(A), 201(10):2203-2212.
    Look DC, Farlow GC, Reunchan P, et al.2005. Evidence for native-defect donors in n-type ZnO[J]. Phys. Rev. Lett.,95(22):225502.
    Look DC, Mosbacker HL, Strzhemechny YM, et al.2005. Effects of surface conduction on Hall-effect measurements in ZnO[J]. Superlattices and Microstructures,38(4-6):406-412.
    Meyer B, Marx D.2003. Density-functional study of the structure and stability of ZnO surfaces[J]. Phys. Rev. B,67:035403.
    Meyer B, Marx D.2003. Density-functional study of Cu atoms, monolayers, films, and coadsorbates on polar ZnO surfaces[J]. Phys. Rev. B,69:235420.
    Oba F, Togo A, Tanaka I, et al.2008. Defect energetics in ZnO:a hybrid hartree-fock density functional study[J]. Phys. Rev. B,77(24):245202.
    Ordejon P, Artacho E, Soler JM.1996. Self-consistent order-N density-functional calculations for verylarge systems[J]. Phys. Rev. B,53(16):10441-10444.
    Park CH, Zhang SB, Wwi SH.2002. Origin of p-type doping difficulty in ZnO:The impurity perspective[J]. Phys. Rev. B,66(7):073202.
    Pashley MD.1989. Electron counting model and its application to island structures on molecular beam epitaxy grown GaAs(001) and ZnSe(001)[J]. Phys. Rev. B,40(15):10481-10487.
    Perdew JP, Zunger A.1981. Self-interaction correction to density-functional approximations formany-electron systems[J]. Phys. Rev. B,23(10):5048-5079.
    Sanchez-Portal D, Ordejon P, Artacho E, et al.1997. Density-functional method for very large systems with LCAO basis sets[J]. International Journal of Quantum Chemistry,65(5):453-461.
    Schmidt O, Kiesel P, Ehrentrayt D, et al.2007. Electrical characterization of ZnO, including analysis of surface conductivity[J]. Applied Physics A:Materials Science&Processing 88(1):71-75.
    Soler JM, Artacho E, Gale JD, et al.2002. The siesta method for ab initio order-N materials simulation[J]. J. Phys.:Condens. Matter.,14(11):2745.
    Troullier N, Martins JL.1991. Efficient pseudopotentials for plane-wave calculations[J]. Phys. Rev. B,43(3):1993-2006.
    Vandewalle CG.2000. Hydrogen as a cause of doping in zinc oxide[J]. Phys. Rev. Lett., 85(5):1012-1015.
    Vandewalle CG, Neugebauer J.2004. First-principles calculations for defects and impurities: applicationsto III-nitrides[J]. J. Appl. Phys.,95(8):3851.
    Wardle MG, Goss JP, Biddon PR.2005. Theory of Li in ZnO:A limitation for Li-based p-type doping[J]. Phys. Rev. B,71(15):155205
    Zhang LX, Wang EG, Xue QK et al.2006. Generalized electron counting in determination of metal-induced reconstruction of compound semiconductor surfaces[J]. Phys. Rev. Lett.,97(12): 126103.
    Zhang SB, Wei SH, Zunger A.2001. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J]. Phys. Rev. B.,63(7):075205.
    司杭,何海燕,潘必才.2011-11-24.表面效应对Li掺杂的ZnO薄膜材料p型电导的影响[J].中国科技论文在线
    Aga RS, Fu CL, Krcmar M, et al.2007. Theoretical investigation of the effect of graphite interlayer spacing on hydrogen absorption[J]. Phys. Rev. B,76:165404.
    Albertsson J, Abrahams SC, Kvick A.1989. Atomic displacement, anharmonic thermal vibration, expansivity and pyroelectric coefficient thermal dependences in ZnO[J]. Acta Crystallogr, Sect. B:Struct. Sci.,45:34-40.
    Bhatia SK, Myers AL.2006. Optimum Conditions for Adsorptive Storage[J]. Langmuir, 22:1688-1700.
    Boys SF, Bernardi F.1970. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors[J]. Mol. Phys.,19:553-566.
    Bylander DM, Kleinman L.1990.4f resonances with norm-conserving pseudopotentials[J]. Phys. Rev. B,41(2):907-912.
    Cabria I, Lopez MJ, Alonso JA.2005. Enhancement of hydrogen physisorption on graphene and carbon nanotubes by Li doping[J]. J. Chem. Phys.,123:204721.
    Castro Neto AH, Guinea F, Peres NMR, et al.2009. The electronic properties of grapheme[J]. Rev. Mod. Phys.,81:109-162.
    Claeyssens F, Freeman CL, Allan NL, et al.2005. Growth of ZnO thin films-experiment and theory[J]. J. Mater. Chem.,15:139-148.
    Coontz R, Hanson B.2004. Not So Simple[J]. Science,305:957.
    Ding Y, Yang X, Ni J.2008. Electronic structures of boron nanoribbons[J]. Appl. Phys. Lett. 93:043107.
    Dion M, Rydberg H, Schroder E, et al.2004. Van der Waals Density Functional for General Geometries[J]. Phys. Rev. Lett.,92:246401.
    Ehrenreich H, Philps HR.1962. Optical Properties of Ag and Cu[J]. Phys. Rev.,128:1622.
    Freeman CL, Claeyssens F, Allan NL, et al.2006. Graphitic Nanofilms as Precursors to Wurtzite Films:Theory [J]. Phys. Rev. Lett.,96:066102.
    Guay P, Stansfield BL, Rochefort A.2004. On the control of carbon nanostructures for hydrogen storage applications[J]. Carbon,42:2187.
    Han MY, Ozyilmaz B, Zhang YB, et al.2007. Energy Band-Gap Engineering of Graphene Nanoribbons[J]. Phys. Rev. Lett,98:206805.
    Hasegawa M, Nishidate K, Iyetomi H.2007. Energetics of interlayer binding in graphite:The semiempirical approach revisited[J]. Phys. Rev. B,76:115424.
    Henwood D, David Carey J.2007. Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes[J]. Phys. Rev. B,75:245413.
    Huang MH, Mao S, Feick H, et al.2001. Room-Temperature Ultraviolet Nanowire Nanolasers[J]. Science.292:1897-1899.
    Jansen HJF, Freeman AJ.1987. Structural and electronic properties of graphite via an all-electron total-energy local-density approach[J]. Phys. Rev. B,35:8207-8214.
    Kleinman L, Bylander DM.1982. Efficacious form for model pseudopotentials[J]. Phys. Rev. Lett.,48(20):1425-1428.
    Kojima Y, Kawai Y, Haga T.2006. Magnesium-based nano-composite materials for hydrogen storage[J]. J. Alloys Compd.,424:294-298.
    Kresse G, Furthmuller J.1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B,54:11169-11186.
    Law M, Greene LE, Johnson JC, et al.2005. Nanowire dye-sensitized solar cells[J]. Nature Materials.4:455-459.
    Look DC.2001. Recent advances in ZnO materials and devices[J]. Mater. Sci. Eng., B, 80:383-387.
    Look DC, Claflin B, Alivov YI.2004. The future of ZnO light emitters[J]. Phys. Stat. Sol. (a),201: 2203-2212.
    Marlid B, Larsson K, Carlsson JO.1999. Hydrogen and Fluorine Adsorption on the h-BN (001) Plane[J]. J. Phys. Chem. B,103:7637-7642.
    Mills RL, Liebenberg DH, Branson JC.1977. Equation of state of fluid n-H2 from P-V-T and sound velocity measurements to 20 kbar[J]. J. Chem. Phys.,66:3076.
    Novoselov KS, Geim AK, Morozov SV, et al.2004. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,306:666-669.
    Novoselov KS, Geim AK, Morozov SV, et al.2005. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature 2005,438:197-200.
    Ordejon P, Artacho E, Soler JM.1996. Self-consistent order-N density-functional calculations for verylarge systems[J]. Phys. Rev. B,53(16):10441-10444.
    Pan H, Luo JZ, Sun H, et al.2006. Hydrogen storage of ZnO and Mg doped ZnO nanowires[J]. Nanotechnology,17:2963-2967.
    Park CH, Louie SG.2008. Energy Gaps and Stark Effect in Boron Nitride Nanoribbons[J]. Nano Lett.,8(8):2200-2203.
    Patchkovskii S, Tse JS, Yurchenko SN, et al.2005. Graphene nanostructures as tunable storage media for molecular hydrogen[J]. Proc. Natl. Acad. Sci. U.S.A.,102:10439-10444.
    Peng LJ, Morris JR.2010. Prediction of hydrogen adsorption properties in expanded graphite model and in nanoporous carbon[J]. J. Phys. Chem. C,114:15522-15529.
    Perdew JP, Burke K, Ernzerhof M.1996. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett.,77:3865-3868.
    Perdew JP, Zunger A.1981. Self-interaction correction to density-functional approximations formany-electron systems[J]. Phys. Rev. B,23(10):5048-5079.
    Ramshaw JD.1995. Fugacity and Activity in a Nutshell[J]. J. Chem. Educ,72:601.
    Roman-Perez G, Soler JM.2009. Efficient Implementation of a van der Waals Density Functional: Application to Double-Wall Carbon Nanotubes[J]. Phys. Rev. Lett.,103:096102.
    Rydberg H, Dion M, Jacobson N, et al.2003. Van der Waals Density Functional for Layered Structures[J]. Phys. Rev. Lett.,91:126402.
    Sanchez-Portal D, Ordejon P, Artacho E, et al.1997. Density-functional method for very large systems with LCAO basis sets[J]. International Journal of Quantum Chemistry,65(5):453-461.
    Schlapbach L, Zuttel A.2001. Hydrogen-storage materials for mobile applications[J]. Nature.,414: 353-358.
    Shevlin SA, Guo ZX.2007. Hydrogen sorption in defective hexagonal BN sheets and BN nanotubes[J]. Phys. Rev. B,76:024014.
    Shevlin SA, Guo ZX.2009. Density functional theory simulations of complex hydride and carbon-based hydrogen storage materials[J]. Chem. Soc. Rev.,38,211-225.
    Soler JM, Artacho E, Gale JD, et al.2002. The siesta method for ab initio order-N materials simulation[J]. J. Phys.:Condens. Matter.,14(11):2745.
    Son YW, Cohen ML, Louie SG.2006. Half-metallic graphene nanoribbons[J]. Nature, 444:347-349.
    Son YW, Cohen ML, Louie SG.2006. Energy Gaps in Graphene Nanoribbons[J]. Phys. Rev. Lett., 97:216803.
    Sun L, Li Y, Li Z, et al.2008. Electronic structures of SiC nanoribbons[J]. J. Chem. Phys. 129:174114.
    Topsakal M, Cahangirov, Bekaroglu E, et al.2009. First-principles study of zinc oxide honeycomb structures[J]. Phys. Rev. B,80:235119.
    Tournus F, Charlier JC.2005. Ab initio study of benzene adsorption on carbon nanotubes[J]. Phys. Rev. B,71:165421.
    Tournus F, Latil S, Heggie MI, et al.2005.π-stacking interaction between carbon nanotubes and organic molecules[J]. Phys. Rev. B,72:075431.
    Troullier N, Martins JL.1991. Efficient pseudopotentials for plane-wave calculations[J]. Phys. Rev. B,43(3):1993-2006.
    Tu ZC, Hu X.2006. Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes[J]. Phys. Rev. B,74:035434.
    Tusche C, Meyerheim HL, Kirschner J.2007. Observation of Depolarized ZnO(0001) Monolayers: Formation of Unreconstructed Planar Sheets[J]. Phys. Rev. Lett.,99:026102.
    Wang Q, Johnson JK.1999. Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores[J]. J. Chem. Phys.,110:577.
    Yadav SK, Sadowski T, Ramprasad R.2010. Density functional theory study of ZnX (X=O, S, Se, Te) under uniaxial strain[J], Phys. Rev. B,81:144120.
    Zhang Z, Guo W.2008. Energy-gap modulation of BN ribbons by transverse electric fields: First-principles calculations[J]. Phys. Rev. B,77:075403.
    Zheng FW, Liu ZR, Wu J, et al.2008. Scaling law of the giant Stark effect in boron nitride nanoribbons and nanotubes[J]. Phys. Rev. B,78:085423.
    Zhou J, Wang Q, Sun Q, et al.2010. Electric field enhanced hydrogen storage on polarizable materials substrates [J]. Proc. Natl. Acad. Sci. U.S.A.107:2801-2806.
    Zhou L, Zhou YP.2001. Determination of compressibility factor and fugacity coefficient of hydrogen in studies of adsorptive storage[J]. Int. J. Hydrogen Energy,26:597.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700