用户名: 密码: 验证码:
以氮杂环化合物为模板的稀土配位聚合物的合成、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以氮杂环化合物作为模板,在水热条件下,成功合成了二十一个结构新颖的稀土配位聚合物,测定并解析了它们的单晶结构,对它们进行了元素分析、红外光谱、热重分析等表征,并对所合成的部分化合物的紫外-可见吸收光谱和发光性能进行研究。具体内容如下:
     1.以4,4′-联吡啶为模板合成了一系列结构新颖的稀土配位聚合物{(bpy)[Re(ip)1.5(H_2O)4]}n(Re=Pr(1)、Nd(2)、Sm(3)、Eu(4)和Gd(5),bpy=4,4′-联吡啶,ip=间苯二甲酸二价阴离子)。这一系列化合物是同构的。它们是由一维(1D)的梯形链通过氢键形成的三维(3D)框架结构。4,4′-联吡啶作为客体模板与配位水分子形成氢键,位于框架通道中间。在不同波长的紫外光激发下,化合物4发出纯度高的红色的强光。
     2.以咪唑阳离子为模板合成了一系列结构新颖的稀土配位聚合物{(Him)[Re(ip)_2(H_2O)]}n(Re=Sm(6)、Eu(7)、Gd(8)和Tb(9),Him=咪唑阳离子,ip=间苯二甲酸二价阴离子)和{[Re2(ip)_3(H_2O)_2]·H_2O}n(Re=Er(10),ip=间苯二甲酸二价阴离子)。化合物6、7和9是同构的,化合物8与它们的结构相似。在化合物6-9中,间苯二甲酸配体与金属离子连接成蜂窝状的三维(3D)结构。咪唑阳离子与间苯二甲酸离子形成氢键,位于通道中间。化合物10的三维(3D)的框架结构是由二维(2D)的层状结构通过氢键形成的。层状结构中存在左旋和右旋的双螺旋链。在不同波长的紫外光激发下,化合物7和9分别发出纯度高的红色和绿色强光。
     3.以2,2′-联吡啶为辅助配体和模板合成了一系列结构新颖的稀土配位聚合物{(bpy)[Re(ip)(Hip)(bpy)]}_n(Re=Eu(11)、Ho(13)、Er(14)和Yb(15),bpy=2,2′-联吡啶,ip=间苯二甲酸二价阴离子,Hip=间苯二甲酸一价阴离子)和{(bpy)0.5[Re(ip)(Hip)(bpy)]}n(Re=Tb(12),bpy=2,2′-联吡啶,ip=间苯二甲酸二价阴离子,Hip=间苯二甲酸一价阴离子)。在化合物11中,间苯二甲酸配体与金属离子连接成二维(2D)的层状结构。一部分2,2′-联吡啶参与配位,另一部分2,2′-联吡啶作为客体模板位于层与层之间。客体模板2,2′-联吡啶与配位的2,2′-联吡啶存在π-π堆积作用。二维层状结构通过π-π堆积作用进一步连接成三维的框架结构。化合物12的结构与化合物11相似。在化合物13-15中,间苯二甲酸配体与金属离子连接成一维(1D)的双链结构。一部分2,2′-联吡啶参与配位,另一部分2,2′-联吡啶作为客体模板位于双链结构周围。客体模板2,2′-联吡啶与间苯二甲酸配体存在π-π堆积作用。双链结构通过π-π堆积作用进一步连接成三维的框架结构。这是首次合成2,2′-联吡啶既是配体又是模板的稀土配位聚合物。在不同波长的紫外光激发下,化合物11和12分别发出纯度高的红色和绿色强光。
     4.以1,10-邻菲啰啉为辅助配体,由1,10-邻菲啰啉通过原位反应产生的2,2′-联吡啶作模板合成了一种结构新颖的稀土配位聚合物{(bpy)_(0.5)[Re_3(ip)_4(phen)_4(H_2O)]·2H_2O}n(Re=Dy(16),bpy=2,2′-联吡啶,ip=间苯二甲酸二价阴离子,phen=1,10-邻菲啰啉)。在化合物16中,间苯二甲酸配体与金属离子连接成层状结构,2,2′-联吡啶作为模板位于层与层之间。1,10-邻菲啰啉与金属离子螯合,2,2′-联吡啶与1,10-邻菲啰啉存在π-π堆积作用。层状结构通过π-π堆积作用进一步连接成三维的框架结构。这是首次在稀土配位聚合物中发现中心离子有混合化合价,首次发现1,10-邻菲啰啉在金属离子的存在下可生成2,2′-联吡啶。在不同波长的紫外光激发下,化合物16发出蓝色光。
     5.以间苯二甲酸和2-吡啶甲酸为混合配体,以2,2′-联吡啶或咪唑为模板合成了一系列结构新颖的稀土配位聚合物[Re_2(ip)_2(pic)_2]_n(Re=Pr(17)、Nd(18)、Eu(19)、Tb(20)和Ho(21),ip=间苯二甲酸二价阴离子,pic=2-吡啶甲酸阴离子)。这一系列化合物是同构的。间苯二甲酸配体与金属离子分别连接成单链和双链,2-吡啶甲酸将这些单链和双链分别连接成层状结构,两种层状结构通过共用金属离子进一步相互连接成三维(3D)的网状结构。在不同波长的紫外光激发下,化合物19和20分别发出纯度高的红色和绿色强光。
     本论文成功地将模板法用于间苯二甲酸配位聚合物的合成,对于合成含其它配体、结构新颖的配位聚合物,特别是合成配位聚合物同分异构体有重要的指导作用。
In this dissertation,21rare earth coordination polymers in different structures havebeen synthesized via hydrothermal method and using nitrogen heterocyclic compounds astemplates. Their single-crystal structures have been determinated and analyzed, and theyhave been characterized by using elemental analyses, infrared spectra and thermogravimetric(TG) analyses. The absorption spectra and luminescence spectra of some of the compoundshave also been studied. The details are summarized as following:
     1. A series of novel rare earth coordination polymers {(bpy)[Re(ip)1.5(H_2O)4]}n(Re=Pr(1), Nd(2), Sm(3), Eu(4) and Gd(5), bpy=4,4′-bipyridine, ip=isophthalate) have beensynthesized by using4,4′-bipyridine molecules as templates. This series of compounds areisostructural. Their three-dimensional (3D) networks are formed by one-dimensional (1D)ladder-shaped chains through hydrogen bonds. The channel regions of the networks are hostto4,4′-bipyridine molecules which serve as guest-templates. These4,4′-bipyridine moleculesshow hydrogen bond participation with metal-bound water molecules. The emission spectrashow that4emits intense sharp red light when it is excited by different wavelengthultraviolet light.
     2. A series of novel rare earth coordination polymers {(Him)[Re(ip)_2(H_2O)]}_n(Re=Sm(6), Eu(7), Gd(8) and Tb(9), Him=imdazole cation, ip=isophthalate) and{[Re_2(ip)_3(H_2O)_2]·H_2O}n(Re=Er(10), ip=isophthalate) have been synthesized by usingimdazole cations as templates. The compounds6,7and9are isostructural. The structure ofcompound8is similar to the structures of compounds6,7and9. In the compounds6-9, theisophthalate ligands link the metal ions to form three-dimensional (3D) honeycomb-likeframeworks. The channel regions of the frameworks are host to imdazole cations whichserve as guest-templates. These imdazole cations show hydrogen bond participation with theisophthalate ligands. The three-dimensional (3D) network of the compound10is formed bytwo-dimensional (2D) layers through hydrogen bonds. There are left-and right-handeddouble helical chains in the layers of the compound10. The emission spectra show that7emits intense sharp red light and9emits intense sharp green light when they are excited bydifferent wavelength ultraviolet light.
     3. A series of novel rare earth coordination polymers {(bpy)[Re(ip)(Hip)(bpy)]}n(Re=Eu(11), Ho(13), Er(14) and Yb(15), bpy=2,2′-bipyridine, ip=isophthalic acid dianion,Hip=isophthalic acid monoanion) and {(bpy)0.5[Re(ip)(Hip)(bpy)]}n(Re=Tb(12),bpy=2,2′-bipyridine, ip=isophthalic acid dianion, Hip=isophthalic acid monoanion) havebeen synthesized by using2,2′-bipyridine molecules as auxiliary ligands and templates. Inthe compound11, the isophthalate ligands link the metal ions to form two-dimensional (2D)layer structures. A part of2,2′-bipyridine molecules serve as auxiliary ligands while theother serve as guest-templates which located between the layers. There are π-π stackinginteractions between coordinated2,2′-bipyridine molecules and guest-template2,2′-bipyridine molecules. The three-dimensional (3D) network of the compound11isformed by two-dimensional (2D) layers through π-π stacking interactions. The structure ofcompound12is similar to the structure of compounds11. In the compound13-15, theisophthalate ligands link the metal ions to form one-dimensional (1D) double chains. A partof2,2′-bipyridine molecules serve as auxiliary ligands while the other serve asguest-templates which located around the double chains. There are π-π stacking interactionsbetween guest-template2,2′-bipyridine molecules and isophthalate ligands. Thethree-dimensional (3D) networks of the compound13-15are formed by one-dimensional(1D) double chains through π-π stacking interactions. This is the first time to synthesize rareearth coordination polymers in which2,2′-bipyridine molecules serve as auxiliary ligandsand templates. The emission spectra show that11emits intense sharp red light and12emitsintense sharp green light when they are excited by different wavelength ultraviolet light.
     4. A novel rare earth coordination polymer {(bpy)0.5[Re3(ip)4(phen)4(H_2O)]·2H_2O}n(Re=Dy(16), bpy=2,2′-bipyridine, ip=isophthalate, phen=1,10-phenanthroline) have beensynthesized by using1,10-phenanthroline molecules as auxiliary ligands and2,2′-bipyridinemolecules formed in situ reaction as templates. In the compound16, the isophthalate ligandslink the metal ions to form two-dimensional (2D) layer structures. The2,2′-bipyridinemolecules serve as guest-templates which located between the layers.1,10-phenanthrolinemolecules chelate metal ions. There are π-π stacking interactions between guest-template2,2′-bipyridine molecules and1,10-phenanthroline molecules. The three-dimensional (3D)network of the compound16is formed by two-dimensional (2D) layers through π-π stacking interactions. This is the first time to synthesize mixed-valence rare earth coordinationpolymer, and the first time to find1,10-phenanthroline can be transformed into2,2′-bipyridine under hydrothermal conditions in the presence of metal ions. The emissionspectra show that16emits blue light when it is excited by different wavelength ultravioletlight.
     5. A series of novel rare earth coordination polymers [Re2(ip)2(pic)2]n(Re=Pr(17),Nd(18), Eu(19), Tb(20) and Ho(21), ip=isophthalate, pic=picolinate) have been synthesizedby using isophthalate ligands and picolinate ligands as mixed ligands, and2,2′-bipyridinemolecules or imdazole cations as templates. This series of compounds are isostructural. Theisophthalate ligands link the metal ions to form one-dimensional (1D) single chains anddouble chains, respectively. The picolinate ligands link these single chains and double chainsto form two kinds of layer structures, respectively. Two kinds of layer structures are furtherlinked by sharing metal ions to form the three-dimensional (3D) net structure. The emissionspectra show that19emits intense sharp red light and20emits intense sharp green lightwhen they are excited by different wavelength ultraviolet light.
     We have successfully used templates to synthesize coordination polymers withisophthalate ligands in this dissertation. We believe this dissertation has an importantguiding function for the syntheses of novel coordination polymers with other ligands,especially for the syntheses of isomers of coordination polymers.
引文
[1] Eddaoudi, M.; Moler, D. B.; Li, H.; Chen, B.; Reineke, T. M.; O’Keeffe, M.; Yaghi, O. M.Modular chemistry: Secondary building units as a basis for the design of highly porousand robust metal organic carboxylate frameworks [J]. Acc. Chem. Res.,2001,34,319-330.
    [2] Gatteschi, D. Molecular magnetism: A basis for new materials [J]. Adv. Mater.,1994,6,635-645.
    [3] Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. O.;Snurr, R. Q.; O'Keeffe, M.; Kim, J.; Yaghi, O. M. Ultrahigh porosity in metal-organicframeworks [J]. Science,2010,329,424-428.
    [4] Murray, L. J.; Dinc, M.; Long, J. Hydrogen storage in metal–organic frameworks [J].Chem. Soc. Rev.,2009,38,1294-1314.
    [5] Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. B. T.; Hupp, J. T.;Metal–organic framework materials as catalysts [J]. Chem. Soc. Rev.,2009,38,1450-1459.
    [6] Kurmoo, M.; Magnetic metal–organic frameworks [J]. Chem. Soc. Rev.,2009,38,1353-1379.
    [7] Sadakiyo, M.; Yamada, T.; Kitagawa, H. Rational designs for highly proton-conductivemetal organic frameworks [J]. J. Am. Chem. Soc.,2009,131,9906-9907.
    [8] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Luminescent metal–organicframeworks [J]. Chem. Soc. Rev.,2009,38,1330-1352.
    [9] Chen, B.; Yang, Y.; Zapata, F.; Lin, G.; Qian, G.; Lobkovsky, E. B. Luminescent openmetal sites within a metal-organic framework for sensing of small molecules [J]. Adv.Mater.,2007,19,1693-1696.
    [10] Graddon, D. P. An Introduction to Coordination Chemistry [M]. Oxford: Pergamon Press,1997,4127.
    [11] Bruser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. The crystal structure of PrussianBlue: Fe4[Fe(CN)6]3·xH2O [J]. Inorg. Chem.,1977,16,2704-2710.
    [12] Iwamoto, T. Comprehensive Supramolecular Chemistry [M]. Oxford: Pergamon Press,1996,6,643-690.
    [13] Wells, A. F. Structural Inorganic Chemistry (fifth Ed.)[M]. Oxford: Oxford UniversityPress,1984.
    [14] Hoskins, B. F.; Robson, R. Infinite polymeric frameworks consisting of threedimensionally linked rod-like segments [J]. J. Am. Chem. Soc.,1989,111,5962-5964.
    [15] Hoskins, B. F.; Robson, R. Design and construction of a new class of scaffolding-likematerials comprising infinite polymeric frameworks of3D-linked molecular rods. Areappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis andstructure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] andCuI[4,4',4'',4'''-tetracyanotetraphenylmethane] BF4.xC6H5NO2[J]. J. Am. Chem. Soc.,1990,112,1546-1554.
    [16] Fleischer, B.; Shachter, A. M. Coordination oligomers and a coordination polymer ofzinc tetraarylporphyrins [J]. Inorg. Chem.,1991,30,3763-3769.
    [17] Neels, A.; Neels, B. M.; Stoeckli-Evans, H.; Clearfield, A.; Poojary, D. M. Synthesis andX-ray powder structures of nickel (II) and copper (II) coordination polymers with2,5-bis(2-pyridyl) pyrazine [J]. Inorg. Chem.,1997,36,3402-3409.
    [18] Wang, Q. M.; Guo, G. C.; Mak, T. C. W. A coordination polymer based on twofoldinterpenetrating three-dimensional four-connected nets of42638topology,[CuSCN(bpa)]
    [bpa=1,2-bis(4-pyridyl)ethane][J]. Chem. Commun.,1999,1849-1850.
    [19] Withersby, M. A.; Blake, A. J.; Champness, N. R.; Cooke, P. A.; Hubberstey, P.;Schroder, M. Assembly of a three-dimensional polyknotted coordination polymer [J]. J.Am. Chem. Soc.,2000,122,4044-4046.
    [20] Zhao, Y.; Hong, M.; Sun, D.; Cao, R. A novel coordination polymer containing puckeredrhombus grids [J]. Dalton Trans.,2002,1354-1357.
    [21] Murugavel, R.; Bahet, K.; Anantharaman, G. Reactions of2-mercaptobenzoic acid withdivalent alkaline earth metal ions: synthesis, spectral studies, and single-crystal X-raystructures of calcium, strontium, and barium complexes of2,2'-dithiobis(benzoic acid)[J]. Inorg. Chem.,2001,40,6870-6878.
    [22] Platers, M. J.; Howie, R. A.; Robert, A. J. Hydrothermal synthesis and X-ray structuralcharacterisation of calcium benzene-1,3,5-tricarboxylate [J]. Chem. Commun.,1997,893-894.
    [23] Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M. Kim, J.Reticular synthesis and the design of new materials [J]. Nature,2003,423,705-714.
    [24] James, S. L. Metal-organic frameworks [J]. Chem. Soc. Rev.,2003,32,276-288.
    [25] Brammer, L. Developments in inorganic crystal engineering [J]. Chem. Soc. Rev.,2004,33,476-489.
    [26] Batten, S. R. Topology of interpenetration [J]. CrystEngComm.,2001,3,67-72.
    [27] Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F. Crystallized frameworks withgiant pores: are there limits to the possible?[J]. Acc. Chem. Res.,2005,38,217-225.
    [28] Czaja, A. U.; Trukhan, N.; Müller, U. Industrial applications of metal–organicframeworks [J]. Chem. Soc. Rev.,2009,38,1284-1293.
    [29] Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation inmetal–organic frameworks [J]. Chem. Soc. Rev.,2009,38,1477-1504.
    [30] Ma, L.; Abney, C.; Lin, W. Enantioselective catalysis with homochiral metal-organicframeworks [J]. Chem. Soc. Rev.,2009,38,1248-1256.
    [31] Chizallet, C.; Lazare, S.; Bazer-Bachi, D.; Bonnier, F.; Lecocq, V.; Soyer, E.; Quoineaud,A.; Bats, N. Catalysis of transesterification by a nonfunctionalized metal organicframework: acido-basicity at the external surface of ZIF-8probed by FTIR and ab initiocalculations [J]. J. Am. Chem. Soc.,2010,132,12365-12377.
    [32] Nadeem, M. A.; Craig, D.; Bircher, R.; Stride, J. A. Magneto-structural correlations of athree-dimensional Mn based metal–organic framework [J]. Dalton Trans.,2010,39,4358-4362.
    [33] Fuma, Y.; Ebihara, M.; Kutsumizu, S.; Kawamura, T. A diamondoid network oftetrakis(acetamidato)dirhodium in mixed oxidation states linked by μ4-iodide having a105enhancement of its electrical conductivity by water molecules of hydration [J]. J. Am.Chem. Soc.,2004,126,12238-12239.
    [34] Beauvais, L. G.; Shores, M. P.; Long, J. R. Cyano-bridged Re6Q8(Q=S, Se)cluster-cobalt(II) framework materials: versatile solid chemical sensors [J]. J. Am. Chem.Soc.,2000,122,2763-2772.
    [35] Guillou, N.; Livage, C.; Beek, W.; Nogu, M.; Ferey, G. A layered nickel succinate withunprecedented hexanickel units: structure elucidation from powder-diffraction data, andmagnetic and sorption properties [J]. Angew. Chem. Int. Ed.,2003,42,643-647.
    [36] Abrahams, F.; Moylan, M.; Orchard, S. D.; Robson, R. Excess electron transport throughDNA: A single electron repairs more than one UV-induced lesion [J]. Angew. Chem. Int.Ed.,2003,42,1848-1851.
    [37] Forster, P. M.; Cheetha, A. K. Open-framework nickel succinate,
    [Ni7(C4H4O4)6(OH)2(H2O)2]·2H2O: A new hybrid material with three-dimensionalNi-O-Ni connectivity [J]. Angew. Chem. Int. Ed.,2002,41,457-459.
    [38] Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, L. D. Achemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science,1999,283,1148-1150.
    [39] Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of anexceptionally stable and highly porous metal-organic framework [J]. Nature,1999,402,276-279.
    [40] Chen, B.; Eddaoudi, M.; Hyde, S. T.; O'Keeffe, M.; Yaghi, O. M. Interwovenmetal-organic framework on a periodic minimal surface with extra-large pores [J].Science,2001,291,1021-1023.
    [41] Eddaoudi, M.; Kim, J.; Rosi, N. L.; Vodak, D. T.; Wachter, J.; O'Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular metal-organicframeworks and application in methane storage [J]. Science,2002,295,469-472.
    [42] Chae, H. K.; Siberio-perez, D. Y.; Kim. J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.;O’Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of largemolecules in crystals [J]. Nature,2004,427,323-527.
    [43] Férey, G.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surble, S.; Dutour, J.;Margiolaki, I. A hybrid solid with giant pores prepared by a combination of targetedchemistry, simulation, and powder diffraction [J]. Angew. Chem. Int. Ed.,2004,43,6296-6301.
    [44] Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.;Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumesand surface area [J]. Science,2005,309,2040-2042.
    [45] Sudik, A. C.; C té, A. P.; Wong-Foy, A. G.; O'Keeffe, M.; Yaghi, O. M. A metal-organicframework with a hierarchical system of pores and tetrahedral building blocks [J].Angew. Chem. Int. Ed.,2006,45,2528-2533.
    [46] Sonnauer, A.; Hoffmann, F.; Fr ba, M.; Kienle, L.; Duppel, V.; Thommes, M.; Serre, C.;Férey, G.; Stock, N. Giant pores in a chromium2,6-naphthalenedicarboxylateopen-framework structure with MIL-101topology [J]. Angew. Chem. Int. Ed.,2009,48,3791-3794.
    [47] Deng, H.; Doonan, C. J.; Furukawa, H.; Ferreira, R. B.; Towne, J.; Knobler, C. B.; Wang,B.; Yaghi, O. M. Multiple functional groups of varying ratios in metal-organicframeworks [J]. Science,2010,327,846-850.
    [48] Liang, Y. C.; Cao, R.; Su, W. P.; Hong, M. C.; Zhang, W. J. Syntheses, structures, andmagnetic properties of two gadolinium(III)-copper(II) coordination polymers by ahydrothermal reaction [J]. Angew. Chem. Int. Ed.,2000,39,3304-3307.
    [49] Zhao, B.; Cheng, P.; Dai, Y.; Cheng, C.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H.; Wang. G.L. A nanotubular3D coordination polymer based on a3d-4f heterometallic assembly [J].Angew. Chem. Int. Ed.,2003,42,934-936.
    [50] Zhao, B.; Cheng, P.; Chen, X. Y.; Cheng, C.; Shi, W.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H.Design and synthesis of3d-4f metal-based zeolite-type materials with a3D nanotubularstructure encapsulated "water" pipe [J]. J. Am. Chem. Soc.,2004,126,3012-3013.
    [51] Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang. Z. H. Coordinationpolymers containing1D channels as selective luminescent probes [J]. J. Am. Chem. Soc.,2004,126,15394-15395.
    [52] Sun, Y. Q.; Zhang, J.; Chen, Y. M.; Yang, G. Y. Porous lanthanide-organic openframeworks with helical tubes constructed from interweaving triple-helical anddouble-helical chains [J]. Angew. Chem. Int. Ed.,2005,44,5814-5817.
    [53] Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. Preparation, clathration ability, andcatalysis of a two-dimensional square network material composed of cadmium(ll) and4,4'-bipyridine [J]. J. Am. Chem. Soc.,1994,116,1151-1152.
    [54] Hagrman, P. J.; Hagrman, D.; Zubieta, J. Organic-inorganic hybrid materials: From"simple" coordination polymers to organodiamine-templated molybdenum oxides [J].Angew. Chem. Int. Ed.,1999,38,2638-2684.
    [55] Blake, A. J.; Hill, S. J.; Hubberstey, P.; Li, W. S. Rectangular grid two-dimensionalsheets of copper(II) bridged by both co-ordinated and hydrogen bonded4,4′-bipyridine(4,4′-bipy) in [Cu(μ-4,4′-bipy)(H2O)2(FBF3)2]·4,4′-bipy [J]. Dalton Trans.,1997,913-914.
    [56] Li, M. X.; Xie, G. Y.; Gu, Y. D.; Chen, J.; Zheng, P. J. Synthesis, characterization andmagnetic properties of one-dimensional4,4′-bipyridine-bridged manganese(II) complex:Crystal structure of [Mn(μ-4,4′-bipy)(4,4′-bipy)(NCS)2(H2O)2]n[J]. Polyhedron,1995,14,1235-1239.
    [57] Chen, X. M.; Tong, M. L.; Luo, Y. J.; Chen, Z. N. Inclusion of4,4'-bipyridine (bpy) inits copper(II) aqua perchlorato complex [J], Aust. J. Chem.,1996,49,835-838.
    [58] Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. Extended networks via hydrogenbond cross-linkages of [M(bipy)](M=Zn2+or Fe2+; bipy=4,4′-bipyridyl) linearco-ordination polymers [J]. Dalton Trans.,1997,1801-1804.
    [59] Batsanov, A. S.; Begley, M. J.; Hubberstey, P.; Stroud, J. Discrete dinuclear andpolymeric copper(I) cations bridged by4,4′-bipyridine, trans-1,2-bis(4-pyridyl)ethene orbis(4-pyridyl) disulfide [J]. Dalton Trans.,1996,1947-1957.
    [60] Losier, P.; Zaworotko, M. J. A noninterpenetrated molecular ladder with hydrophobiccavities, Angew. Chem. Int. Ed.,1996,35,2779-2782.
    [61] Yaghi, O. M.; Li, H.; Groy, T. L. Molecular railroad with large pores: synthesis andstructure of Ni(4,4'-bpy)2.5(H2O)2(ClO4)21.5(4,4'-bpy)2(H2O)[J]. Inorg. Chem.,1997,36,4292-4293.
    [62] Masciocchi, N.; Cairati, P.; Carlucci, L.; Mezza, G.; Ciani, G.; Sironi, A. Ab-initio X-raypowder diffraction structural characterization of co-ordination compounds: polymeric
    [{MX2(bipy)}n] complexes (M=Ni or Cu; X=Cl or Br; bipy=4,4′-bipyridyl)[J].Dalton Trans.,1996,2739-2746.
    [63] Yaghi, O. M.; Li, H.; T-shaped molecular building units in the porous structure ofAg(4,4'-bpy)NO3[J]. J. Am. Chem. Soc.,1996,118,295-296.
    [64] Hagrman, D.; Hammond, R. P.; Haushalter, R. C.; Zubieta, J. Organic/inorganiccomposite materials: hydrothermal syntheses and structures of the one-, two-, andthree-dimensional copper(II) sulfate-organodiamine phases
    [Cu(H2O)3(4,4'-bipyridine)(SO4)]2H2O,[Cu(bpe)2][Cu(bpe)(H2O)2(SO4)2]2H2O, and
    [Cu(bpe)(H2O)(SO4)](bpe=trans-1,2-bis(4-pyridyl)ethylene)[J]. Chem. Mater.,1998,10,2091-2100.
    [65] Blake, A. J.; Hill, S. J.; Hubberstey, P.; Li, W. S. Copper(I) chelated by2,9-dimethyl-1,10-phenanthroline and bridged by4,4′-bipyridineor trans-1,2-bis(pyridin-4-yl)ethene to give discrete dinuclear and polymeric cations [J].Dalton Trans.,1998,909-916.
    [66] Fujita, M.; Kwon, Y. J.; Washizu, S.; Ogura, K. Preparation, clathration ability, andcatalysis of a two-dimensional square network material composed of cadmium(ll) and4,4'-bipyridine [J]. J. Am. Chem. Soc.,1994,116,1151-1152.
    [67] Gable, R. W.; Hoskins, B. F.; Robson, R. A new type of interpenetration involvingenmeshed independent square grid sheets. The structure ofdiaquabis-(4,4′-bipyridine)zinc hexafluorosilicate [J]. Chem. Commun.,1990,1677-1678.
    [68] Subramanian, S.; Zaworotko, M. J. Porous solids by design:
    [Zn(4,4′-bpy)2(SiF6)]n·xDMF, a single framework octahedral coordination polymer withlarge square channels [J]. Angew. Chem. Int. Ed.,1995,34,2127-2129.
    [69] Li, J.; Zeng, H.; Chen, J.; Wang, Q.; Wu, X. Crystal structure of a flexible self-assembledtwo-dimensional square network complex [Cu2(C3H2O4)2(H2O)2(4,4′-bpy)]·H2O [J].Chem. Commun.,1997,1213-1214.
    [70] Kondo, M.; Yoshitomi, T.; Seki, K.; Matsuzaka, H.; Kitagawa, S. Three-dimensionalframework with channeling cavities for small molecules:{[M2(4,4′-bpy)3(NO3)4]·xH2O}n(M=Co, Ni, Zn)[J]. Angew. Chem. Int. Ed.,1997,36,1725-1727.
    [71] Yaghi, O. M.; Li, G. Presence of mutually interpenetrating sheets and channels in theextended structure of Cu(4,4'-Bipyridine)Cl [J]. Angew. Chem. Int. Ed.,1995,34,207-209.
    [72] Tong, M. L.; Ye, B. H.; Cai, J. W.; Chen, X. M.; Ng, S. W. Clathration oftwo-dimensional coordination polymers: Synthesis and structures of
    [M(4,4'-bpy)2(H2O)2](ClO4)2·(2,4'-bpy)2·H2O and
    [Cu(4,4'-bpy)2(H2O)2]](ClO4)4·(4,4'-H2bpy)(M=CdII, ZnIIand bpy=bipyridine)[J].Inorg. Chem.,1998,37,2645-2650.
    [73] Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. Interpenetrating diamondoidframeworks of silver(I) cations linked by N,N′-bidentate molecular rods [J]. Chem.Commun.,1994,2755-2756.
    [74] MacGillivray, L. R.; Subramamian, S.; Zaworotko, M. J. Interwoven two-andthree-dimensional coordination polymers through self-assembly of CuIcations withlinear bidentate ligands [J]. Chem. Commun.,1994,1325-1326.
    [75] Lopez, S.; Kahraman, M.; Harmata, M.; Keller, S. W. Novel2-fold interpenetratingdiamondoid coordination polymers:[Cu(3,3'-bipyridine)2]X (X=BF4-, PF6-)[J]. Inorg.Chem.,1997,36,6138-6140.
    [76] Yaghi, O. M.; Li, H. Hydrothermal synthesis of a metal-organic framework containinglarge rectangular channels [J]. J. Am. Chem. Soc.,1995,117,10401-10402.
    [77] Shi, Z.; Feng, S.; Gao, S.; Zhang, L.; Yang, G.; Hua, J. Inorganic–organic hybridmaterials constructed from [(VO2)(HPO4)]∞helical chains and [M(4,4′-bpy)2]2+(M=Co,Ni) fragments [J], Angew. Chem. Int. Ed.,2000,39,2325-2327.
    [78] Huang, L. H.; Kao, H. M.; Lii, K. H. Novel vanadium(V) compounds with a layerstructure: Synthesis, crystal structures, and solid state NMR spectroscopy of
    [(VO2)2(4,4′-bpy)0.5(4,4′-Hbpy)(XO4)]·H2O (X=P and As)[J]. Inorg. Chem.,2002,41,2936-2940.
    [79] Tian, Y. Q.; Cai, C. X.; Ji, Y.; You, X. Z.; Peng, S. M.; Lee, G. H.[Co5(im)10·2MB]∞: Ametal-organic open-framework with zeolite-like topology [J]. Angew. Chem. Int. Ed.,2002,41,1384-1386.
    [80] Fang Q. R.; Zhu G. S.; Xue M.; Sun J. Y.; Wei Y.; Qiu S. L.; Xu R. R. A metal-organicframework with the zeolite MTN topology containing large cages of volume2.5nm3[J].Angew. Chem. Int. Ed.,2005,44,3845-3848.
    [81] Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Ligand-directed strategy forzeolite-type metal–organic frameworks: Zinc(II) imidazolates with unusual zeolitictopologies [J]. Angew. Chem. Int. Ed.,2006,45,1557-1559.
    [82] Park, K. S.; Ni, Z.; C té, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H.K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeoliticimidazolate frameworks [J]. Proc. Natl. Acad. Sci. USA,2006,103,10186-10191.
    [83] Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O'Keeffe, M.; Yaghi, O.M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2capture [J]. Science,2008,319,939-943.
    [84] Kitagawa, S.; Noro, S. Coordination polymers: Infinite systems [J]. Compreh. Coord.Chem.,2004,7,231-261.
    [85] Robin, A. Y.; Fromm, K. M. Coordination polymer networks with O-and N-donors:What they are, why and how they are made [J]. Coord. Chem. Rev.,2006,250,2127-2157.
    [86] Natarajan, S.; Mahata, P. Metal–organic framework structures–how closely are theyrelated to classical inorganic structures [J]. Chem. Soc. Rev.,2009,38,2304-2318.
    [87] Moerner, W. E.; Silence, S. M. Polymeric photorefractive materials [J]. Chem. Rev.,1994,94,127-155.
    [88] Burland, D. M.; Miller, R. D.; Walsh, C. A. Second-order nonlinearity in poled-polymersystems [J]. Chem. Rev.,1994,94,31-75.
    [89] Marks, T. J.; Ratner, M. A. Design, synthesis, and properties of molecule-basedassemblies with large second-order optical nonlinearities [J]. Angew. Chem., Int. Ed.,1995,34,155-173.
    [90] Bossi, D. E.; Ade, R. W. Integrated-optic modulators benefit high-speed fiber links [J].Laser Focus World,1992,28,135-142.
    [91] Higgins, T. V. Fiberoptic network growth drives optical technology [J]. Laser FocusWorld,1992,28,125-133.
    [92] Zyss, J. Molecular nonlinear optics: Materials, physics and devices [M]. New York:Academic Press,1993.
    [93] Agulló-López, F.; Cabrera, J. M.; Agulló-Rueda, F. Electrooptics: Phenomena, Materialsand Applications [M]. New York: Academic Press,1994.
    [94] G. J. Ashwell, P. D. Jackson, W. A. Crossland, Non-centrosymmetry andsecond-harmonic generation in Z-type Langmuir–Blodgett films [J]. Nature,1994,368,438-440.
    [95] Penner, T. L.; Matschmann, H. R.; Armstrong, N. J.; Ezenyilimba, M. C.; Williams, D. J.Efficient phase-matched second-harmonic generation of blue light in an organicwaveguide, Nature [J].1994,367,49-51.
    [96] Lin, W.; Wong, G. K.; Marks, T. J. Supramolecular approaches to second-ordernonlinear optical materials. Self-assembly and microstructural characterization ofintrinsically acentric [(aminophenyl)azo]pyridinium superlattices [J]. J. Am. Chem. Soc.,1996,118,8034-8042.
    [97] Katz, H. E.; Wilson, W. L.; Scheller, G. Chromophore structure, second harmonicgeneration, and orientational order in zirconium phosphonate/phosphate self-assembledmultilayers [J]. J. Am. Chem. Soc.,1994,116,6636-6640.
    [98] Moulton, B.; Lu, J. J.; Hajndl, R.; Harkkharan, S.; Zaworotko, M. J. Crystal engineeringof a nanoscale kagomélattice [J]. Angew. Chem. Int. Ed.,2002,41,2821-2824.
    [99] Wang, X. Y.; Wang, L.; Wang, Z. M.; Gao, S. Solvent-tuned azido-bridged Co2+layers:Square, honeycomb, and Kagomé[J]. J. Am. Chem. Soc.,2006,128,674-675.
    [100] Zhang, J.; Ensling, J.; Ksenofontov, V.; Gütlich, P.; Epstein, A. J.; Miller, J. S.MII(tcne)2] x·CH2Cl2(M=Mn, Fe, Co, Ni) molecule-based magnets with Tcvalues above100K and coercive fields up to6500Oe [J]. Angew. Chem. Int. Ed.,1998,37,657-660.
    [101] Dunbar, K. R. Organocyanide acceptor molecules as novel ligands [J]. Angew. Chem.Int. Ed.,1996,35,1659-1661.
    [102] Zhao, H.; Heintz, R. A.; Dunbar, K. R.; Rogers, R. D. Unprecedented two-dimensionalpolymers of Mn(II) with TCNQ-(TCNQ=7,7,8,8-tetracyanoquinodimethane)[J]. J.Am. Chem. Soc.,1996,118,12844-12845.
    [103]林国强,陈耀全等著,手性合成—不对称反应及其应用[M].北京:科学出版社,2000.
    [104] Lee, S. J.; Lin, W. A chiral molecular square with metallo-corners for enantioselectivesensing [J]. J. Am. Chem. Soc.,2002,124,4554-4555.
    [105] Kumaiga, H.; Inoue, K. A chiral molecular based metamagnet prepared frommanganese ions and a chiral triplet organic radical as a bridging ligand [J]. Angew.Chem. Int. Ed.,1999,38,1601-1603.
    [106] Andrés, R.; Brissard, M.; Gruselle, M.; Train, C.; Vaissermann, J.; Malézieux, B.; Jamet,J. P.; Verdaguer, M. Rational design of three-dimensional (3D) optically activemolecule-based magnets: Synthesis, structure, optical and magnetic properties of{[Ru(bpy)3]2+, ClO4-,[MnIICrIII(ox)3]-}nand {[Ru(bpy)2ppy]+,[MIICrIII(ox)3]-}n, withMII=MnII, NiII. X-ray Structure of {[ΔRu(bpy)3]2+, ClO4-,[ΔMnIIΔCrIII(ox)3]-}nand{[ΛRu(bpy)2ppy]+,[ΛMnIIΛCrIII(ox)3]-}n[J]. Inorg. Chem.,2001,40,4633-4640.
    [107] Seeber, G.; Pickering, A. L.; Long, D.; Cronin, L. Controlling dimensionality of silver(I)coordination networks with rigid aliphatic amino ligands: from a2D to a3D network ofunprecedented topology comprising helical channels [J]. Chem. Commun.,2003,2002-2003.
    [108] Inoue, K.; Imai, H.; Ghalsasi, P. S.; Kikuchi, K.; Ohab, M.; Okawa, H.; Yakhmi, J. V.A three-dimensional ferrimagnet with a high magnetic transition temperature (TC) of53K based on a chiral molecule [J]. Angew. Chem. Int. Ed.,2001,40,4242-4245.
    [109] Parlsen. C.; Amabilino. B. B.; Veciana, J. An enantiopure molecular ferromagnet [J].Angew. Chem. Int. Ed.,2002,41,586-589.
    [110] Siemeling, U.; Scheppelmann, I.; Neumann, B.; Stammler, A.; Stammler, H. G.; Frelek,J. Spontaneous chiral resolution of a coordination polymer with distorted helicalstructure consisting of achiral building blocks [J]. Chem. Commun.,2003,2236-2237.
    [111] Hernéndez-Molina, M.; Lloret, F.; Ruiz-Pérez, C.; Julve, M. Weak ferromagnetism inchiral3-dimensional oxalato-bridged cobalt(II) compounds. Crystal structure of
    [Co(bpy)3][Co2(ox)3]ClO4[J]. Inorg. Chem.,1998,37,4131-4135.
    [112] Romero, F. M.; Rusanov, E.; Stoeckli-Evans, H. Ferromagnetism and chirality intwo-dimensional cyanide-bridged bimetallic compounds [J]. Inorg. Chem.,2002,42,4615-4617.
    [113] Inoue, K.; Kikuchi, K.; Ohba, M.; Okawa, H. Structure and magnetic properties of achiral two-dimensional ferrimagnet with TCof38K [J]. Angew. Chem. Int. Ed.,2003,42,4810-4813.
    [114] Cui, Y.; Evans, O. W.; Ngo, H. L.; White, P. S.; Lin, W. Rational design of homochiralsolids based on two-dimensional metal carboxylates [J]. Angew. Chem. Int. Ed.,2002,41,1159-1160.
    [115] Grosshans, P.; Jouaiti, A.; Bulach, V.; Planeix, J. M.; Hosseini, M. W.; Nicoud, J. F.Molecular tectonics: from enantiomerically pure sugars to enantiomerically pure triplestranded helical coordination network [J]. Chem. Commun.,2003,1336-1337.
    [116] Wu, C.; Lu, C.; Lu, S.; Zhuang, H.; Huang, J. Synthesis, structures and properties of aseries of novel left-and right-handed metal coordination double helicates with chiralchannels [J]. Dalton Trans.,2003,3192-3198.
    [117] Xiong, R.; You, X.; Abrahams, B. F.; Xue, Z.; Che, C. Enantioseparation of racemicorganic Molecules by a Zeolite Analogue [J]. Angew. Chem. Int. Ed.,2001,40,4422-4425.
    [118] Evans, O. R.; Ngo, H. L.; Lin, W. Chiral porous solids based on lamellar lanthanidephosphonates [J]. J. Am. Chem. Soc.,2001,123,10395-10396.
    [119] Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. A homochiralmetal-organic porous material for enantioselective separation and catalysis [J]. Nature,2000,404,982-986.
    [120] Gao, E.; Bai, S.; Wang, Z.; Yan, C. Two-dimensional homochiral manganese(II)-azidoframeworks incorporating an achiral ligand: Partial spontaneous resolution and weakferromagnetism [J]. J. Am. Chem. Soc.2003,125,4984-4985.
    [121] Serre, C.; Millange, F.; Thouvenot, C.; Noguès, M.; Marsolier, G.; Lou r, D.; Férey, G.Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53or CrIII(OH)·{O2C C6H4CO2}·{HO2C C6H4CO2H}x·H2Oy[J]. J. Am. Chem. Soc.2002,124,13519-13526.
    [122] Halder, G. J.; Kepert, C. J.; Moubaraki, B.; Murray, K. S.; Cashion, J. D.Guest-dependent spin crossover in a nanoporous molecular framework material [J].Science,2002,298,1762-1765.
    [123]黄春辉.稀土配位化学[M].北京:科学出版社,1997.
    [124]郑德,黄锐.稳定剂[M].北京:国防工业出版社,2011.
    [125]张希艳.稀土发光材料[M].北京:国防工业出版社,2005.
    [126] Dickson, E. F. G.; Pollak, A.; Diamandis, E. P. Ultrasensitive bioanalytical assays usingtime-resolved fluorescence detection [J]. Pharmac. Ther.,1995,66,207-235.
    [127] Yuan, J.; Wang, G.; Matsumoto, K. Lanthanide fluorescence chelates and theirapplications in bioassays [J]. Trends in Inorganic Chemistry,2001,7,109-118.
    [128]陈小明,蔡继文,单晶结构分析原理与实践[M].北京:科学出版社,2007.
    [129]徐如人,庞文琴,霍启升.无机合成与制备化学[M].北京:高等教育出版社,2009.
    [130]胡亚微.由柔性双功能配体构筑的配位聚合物[D].吉林:吉林大学,2008.
    [131] Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A. Polymeric networks of silver(I) andcopper(I) ions linked by an anionic acetonyl derivative of tetracyanoethylene [J]. Angew.Chem. Int. Ed.,1996,35,1088-1090.
    [132] Ma, J. F.; Liu, J. F.; Yan, X.; Jia, H. Q.; Lin, Y. H. Networks with hexagonal circuits inco-ordination polymers of metal ions (ZnII, CdII) with1,1-(1,4-butanediyl)bis(imidazole)[J]. Dalton Trans.,14,2403-2407.
    [133] Murry S. G.; Hartley F. R. Coordination chemistry of thioethers, selenoethers, andtelluroethers in transition-metal complexes [J]. Chem. Rev.,1981,81,365-414.
    [134] Carlucci L.; Ciani G.; Macchi P.; Proserpio D. M.; Rizaato S. Complex interwovenpolymeric frames from the self-assembly of silver(I) cations and sebaconitrile [J]. Chem.Eur. J.,1999,5,237-243.
    [135] Yaghi, O. M.; Li, H.; Davis, C.; Richardson, D.; Groy, T. L. Synthetic strategies,structure patterns, and emerging properties in the chemistry of modular porous solids [J],Acc. Chem. Res.,1998,31,474-484.
    [136] Carlucci, L.; Ciani, G.; Proserpio, D. M.; Sironi, A.1-,2-, and3-dimensional polymericframes in the coordination chemistry of AgBF4with pyrazine. The first example of threeinterpenetrating3-dimensional triconnected nets [J]. J. Am. Chem. Soc.,1995,117,4562-4569.
    [137] He J. H.; Yu J. H.; Zhang Y. T.; Pan Q. H.; Xu R. R. Synthesis, structure, andluminescent property of a heterometallic metal-organic framework constructed fromrod-shaped secondary building blocks [J]. Inorg. Chem.,2005,44,9279-9282.
    [138] Livage C.; Egger C.; Ferey G. Hydrothermal versus nonhydrothermal synthesis for thepreparation of organic-inorganic solids: The example of cobalt(II) succinate [J]. Chem.Mater.,2001,13,410-414.
    [139] Du M.; Chen S. T.; Bu X. H.{[Cd(bpo)(SCN)2]·CH3CN}n: A novel three dimensional(3D) noninterpenetrated channel-like open framework with porousproperties [J]. Cryst.Growth Des.,2002,2,625-629.
    [140] Zhang, L. P.; Wan, Y. H.; Jin, L. P. Hydrothermal synthesis and crystal structure ofneodymium(III) coordination polymers with isophthalic acid and1,10-phenanthroline [J].Polyhedron,2003,22,981-987.
    [141] Norquist, A. J.; Thomas, P. M.; Doran M. B.; O’Hare, D. Synthesis of cyclical diaminetemplated uranium sulfates [J]. Chem. Mater.,2002,14,5179-5184.
    [142] Norquist, A. J.; Doran M. B.; Thomas, P. M.; O’Hare, D. Controlled structuralvariations in templated uranium sulfates [J]. Inorg. Chem.,2003,42,5949-5953.
    [143] Cundy, C. S.; Cox, P. A. The hydrothermal synthesis of zeolites: history anddevelopment from the earliest days to the present time [J]. Chem. Rev.,2003,103,663-702.
    [144] Zheng, N.; Bu, X.; Feng, P. Nonaqueous synthesis and selective crystallization ofgallium sulfide clusters into three-dimensional photoluminescent superlattices [J]. J. Am.Chem. Soc.,2003,125,1138-1139.
    [145] Rao, C. N. R.; Natarajan, S.; Neeraj, S. Exploration of a simple universal route to themyriad of open-framework metal phosphates [J]. J. Am. Chem. Soc.,2000,122,2810-2817.
    [146] Shi, Z.; Li, G.; Wang, L.; Gao, L.; Chen, X.; Hua, J.; Feng, S. Two three-dimensionalmetal-organic frameworks from secondary building units of Zn8(OH)4(O2C-)12andZn2((OH)(O2C-)3,[Zn2(OH)(btc)]2(4,4'-bipy) and Zn2(OH)(btc)(pipe)[J]. Cryst. GrowthDes.,2004,4,25-27.
    [147] Sun, Z. G.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S. Guest controlledcoordination framework: syntheses, crystal structures and thermal properties of twothree-dimensional structures of [Ce2(adipate)3(OH2)4]·6H2Oand [Ce2(adipate)3(OH2)4]·4H2O·(adipic acid)[J]. Inorg. Chem. Commun.,2002,5,629-632.
    [148] Tong, M. L.; Ru, J.; Wu, Y. M.; Chen, X. M.; Chang, H. C.; Mochizuki, K.; Kitagawa,S. Cation-templated construction of three-dimensional α-Po cubic-type [M(dca)3]networks. syntheses, structures and magnetic properties of A[M(dca)3](dca=dicyanamide; for A=benzyltributylammonium, M=Mn2+, Co2+; for A=benzyltriethylammonium, M=Mn2+, Fe2+)[J]. New J. Chem.,2003,27,779-782.
    [149] Anderson, S.; Anderson, H. L.; Sanders, J. K. M. Expanding roles for templates insynthesis [J]. Acc. Chem. Res.,1993,26,469-475.
    [150] R. Vilar, Anion-templated synthesis [J]. Angew. Chem. Int. Ed.,2003,42,1460-1477.
    [151] Hoss, R.; Vogtle, F. Templatsynthesen [J]. Angew. Chem.,1994,106,389-398.
    [152] Doran, M. B.; Cockbain, B. E.; O’Hare, D. Structural variation in organically templateduranium sulfate fluorides [J]. Dalton. Trans.,2005,1774-1780.
    [153] De Lill, D. T.; Guning, N. S.; Cahill, C. L. Toward templated metal organicframeworks: synthesis, structures, thermal properties, and luminescence of three novellanthanide adipate frameworks [J]. Inorg. Chem.,2005,44,258-266.
    [154] De Lill, D. T.; Bozzutoa, D. J.; Cahill, C. L. Templated metal–organic frameworks:synthesis, structures, thermal properties and solid-state transformation of two novelcalcium–adipate frameworks [J]. Dalton. Trans.,2005,2111-2115.
    [155] Tynan, E.; Jensen, P.; Kruger, P. E.; Lees, A. C. Solvent templated synthesis ofmetal–organic frameworks: structural characterisation and properties of the3D networkisomers {[Mn(dcbp)]· DMF}nand {[Mn(dcbp)]·2H2O}n[J]. Chem. Commun.,2004,776-777.
    [156] Choi, E.Y.; Park, K.; Yang, C. M.; Kim, H.; Son, J. H.; Lee, S. W.; Lee, Y. H.; Min, D.;Kwon Y. U. Benzene-templated hydrothermal synthesis of metal-organic frameworkswith selective sorption properties [J]. Chem. Eur. J.,2004,10,5535-5540.
    [157] Wang, Z. M.; Zhang, B.; Otsuka, T.; Inoue, K.; Kobayashi, H.; Kurmood, M. AnionicNaCl-type frameworks of [MnII(HCOO)3], templated by alkylammonium, exhibit weakferromagnetism [J]. Dalton Trans.,2004,2209-2216.
    [158] Dai, J. C.; Wu, X. T.; Fu, Z. Y.; Hu, S. M.; Du, W. X.; Cui, C. P.; Wu, L. M.; Zhang, H.H.; Sun, R. Q. A novel ribbon-candy-like supramolecular architecture ofcadmium(II)-terephthalate polymer with giant rhombic channels: two-foldinterpenetration of the3D8210-a net. Chem. Commun.,2002,12-13.
    [159] Jung, O. S.; Kim, Y. J.; Lee, Y. A.; Park, J. K.; Chae, H. K. Smart molecular helicalsprings as tunable receptors [J]. J. Am. Chem. Soc.,2000,122,9921-9925.
    [160] Zheng, L. M.; Wang, Y. S.; Wang, X. Q.; Korp, J. D.; Jacobson, A. J. Anion-directedcrystallization of coordination polymers: syntheses and characterization ofCu4(2-pzc)4(H2O)8(Mo8O26)·2H2O and Cu3(2-pzc)4(H2O)2(V10O28H4)·6.5H2O (2-pzc=2-Pyrazinecarboxylate)[J]. Inorg. Chem.,2001,40,1380-1385.
    [161] Zhang, X. M.; Hydro(solvo)thermal in situ ligand syntheses [J]. Coord. Chem. Rev.,2005,249,1201-1219.
    [162] Liu, C. M.; Gao, S.; Kou, H. Z. Dehydrogenative coupling of phenanthroline underhydrothermal conditions: crystal structure of a novel layered vanadate complexconstructed of4,8,10-net sheets:[(2,2′-biphen)Co]V3O8[J]. Chem.Commun.,2001,1670-1671.
    [163] Hu, X. X.; Xu, J. Q.; Cheng, P.; Chen, X. Y.; Cui, X. B.; Song, J. F.; Yang, G. D.;Wang, T. G. A new route for preparing coordination polymers from hydrothermalreactions involving in situ ligand synthesis [J]. Inorg. Chem.,2004,43,2261-2266.
    [164] Xiong, R. G.; Xue, X.; Zhao, H.; You, X. Z.; Abrahams, B. F.; Xue, Z. Novel, acentricmetal-organic coordiantion polymers from hydrothermal reactions invovlving in situsynthesis [J]. Angew. Chem. Int. Ed.,2002,41,3800-3803.
    [165] Xiong, R. G.; Zhang, J.; Chen, Z. F.; You, X. Z.; Che, C. M.; Fun, H. K. In situ ligandsynthesis and the first crystallographically characterized lanthanide3-D pillarednetworks containing benzene-1,4-disulfonate as a building block [J]. Dalton Trans.,2001,780-782.
    [166] Zhang, J. P.; Zheng, S. L.; Huang, X. C.; Chen, X. M. Two unprecedented3-connectedthree-dimensional networks of copper(I) triazolates: in situ formation of ligands bycycloaddition of nitriles and ammonia [J]. Angew. Chem. Int. Ed.,2004,43,206-209.
    [167] Tong, M. L.; Li, L. J.; Mochizuki, K.; Chang, H. C.; Chen, X. M.; Li, Y.; Kitagawa, S.A novel three-dimensional coordiantion polyer constructed with mixed-valence dimericcoppor(I, II) unit [J]. Chem. Commun.,2003,428-429.
    [168] Lin, W.; Wang, Z.; Ma, L. A novel octupolar metal-organic NLO material based on achiral2D coordination network [J]. J. Am. Chem. Soc.,1999,121,11249-11250.
    [169] Tao, J.; Zhang, Y.; Tong, M. L.; Chen, X. M.; Yuen, T.; Lin, C. L.; Huang, X.; Li, J. Amixed-valence copper coordiantion polymer generated by hydrothermal metal/ligandredox reactions [J]. Chem. Commun.,2002,1342-1343.
    [170] Zhang, X. M.; Tong, M. L.; Chen, X. M. Hydroxylation of N-heterocycle ligandsobserved in two unusual mixed-valence CuI/CuIIcomplexes [J]. Angew. Chem. Int. Ed.,2002,41,1029-1031.
    [171] Zhang, X. M.; Wu, H. S.; Chen, X. M.; Linear and helical chains in hydrothermallysynthesized coordination polymers [Co(bpdc)(H2O)2] and [Ni(bpdc)(H2O)3]·H2Oinvovlving in situ ligand synthesis [J]. Eur. J. Inorg. Chem.,2003,2959-2964.
    [172] Ye, Q.; Li, Y. H.; Song, Y. M.; Huang, X. F.; Xiong, R. G.; Xue, Z.; Li, Y. H.; Song, Y.M.; Huang, X. F.; Xiong, R. G.; Xue, Z. A second-order nonlinear optical materialprepared through in situ hydrothermal ligand sunthesis [J]. Inorg. Chem.,2005,44,3618-3625.
    [173] Van Albada, G. A.; Mutikainen, I.; Roubeau, O. S.; Turpeinen, U.; Reedijk, J. A noveltriangular trinuclear μ3-CO3ferromagnetic CuIIcompound prepared in situ from CO2uptake in air. X-ray structure, spectroscopy and magnetism [J]. Eur. J. Inorg. Chem.,2000,2179-2184.
    [174] Li, D.; Wu, T. Transformation of inorganic sulfur into organic sulfur: a novelphotoluminesecent3-D polymeric complex involving ligands in situ formation [J]. Inorg.Chem.,2005,44,1175-1177.
    [175] Cheng, J. K.; Chen, Y. B.; Wu, L.; Zhang, J.; Wen, Y. H.; Li, Z. J.; Yao, Y. G. A3-Dnoninterpenetrating diamondiod network of a decanuclear copper(I) complex [J]. Inorg.Chem.,2005,44,3386-3388.
    [176] Verhagen, J. A. W.; Ellis, D. D.; Lutz, M.; Spek, A. L.; Bouwman, E. Synthesis,characterization and crystal structures of new nickel complexes in S4coordiantionspheres; an unprecedented rearrangement during ligand synthesis [J]. Dalton Trans.,2002,1275-1280.
    [177] Knaust, J. M.; Keller, S. W. A mixed-ligand coordination polymer from the in situCu(I)-mediated isomerization of bis(4-pyridyl)ethylene [J]. Inorg. Chem.,2002,41,5650-5652.
    [178] Zhang, X. M.; Hou, J. J.; Wu, H. S. In situ formation of meso-2,2′-oxydisuccinate viaintermolecular dehydration coupling of D, L-malic acid: first coordination polymer of2,2′-oxydiscuccinate involving ether oxygen coordiantion:[Cd2(meso-odsc)(H2O)][J].Dalton Trans.,2004,3437-3439.
    [179] Li, D.; Wu, T.; Zhou, X. P.; Zhou, R.; Huang, X. C. Twelve-connected net withface-centered cubic topology: A coordination polymer based on [Cu12(μ4-SCH3)6]6+clusters and CN-linkers [J]. Angew. Chem. Int. Ed.,2005,44,4175-4178.
    [180] Wu, T.; Yi, B. H.; Li, D. Two novel nanoporous supramolecular architectures based oncopper(I) coordiantion polymers with uniform (8,3) and (8210) nets: in situ formation oftetrazolate ligands [J]. Inorg. Chem.,2005,44,4130-4132.
    [181] Sheldrick G M. SHELX-97, Program for X-ray crystal structure solution and refinement.University of Gottingen, Germany,1997.
    [182] Kirby, A. F.; Foster, D.; Richardson, F. S. Comparison of7FJ←5D0emission spectra forEu(III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry[J]. Chem. Phys. Lett.,1983,95,507-512.
    [183] Bauer, H.; Blanc, J.; Ross, D. L. Octacoordinate chelates of lanthanides. Two series ofcompounds [J]. J. Am. Chem. Soc.,1964,86,5125-5131.
    [184] Bünzli, J. C. G.; Piguet, C. Taking advantage of luminescent lanthanide ions [J]. Chem.Soc. Rev.,2005,34,1048-1077.
    [185] Wang, X. L.; Guo, Y. Q.; Li, Y. G.; Wang, E. B.; Hu, C. W.; Hu, N. H. Novelpolyoxometalate-templated,3-D supramolecular networks based on lanthanide dimers:synthesis, structure, and fluorescent properties of [Ln2(DNBA)4(DMF)8][Mo6O19](DNBA=3,5-dinitrobenzoate)[J]. Inorg. Chem.,2003,42,4135-4140.
    [186] Xu, Q. H.; Li, L. S.; Liu, X. S.; Xu, R. R. Incorporation of rare-earth complexEu(TTA)4C5H5NC16H33into surface-modified Si MCM-41and its photophysicalproperties [J]. Chem. Mater.,2002,14,549-555.
    [187] Cheng, J. W.; Zheng, S. T.; Ma, E.; Yang, G. Y.{LnIII[μ5-κ2,κ1,κ1,κ1,κ1-1,2-(CO2)2C6H4][isonicotine][H2O]}2CuI·X (Ln=Eu, Sm, Nd; X=ClO4-, Cl-): a new pillared-layer approach to heterobimetallic3d4f3D-network solids[J]. Inorg. Chem.,2007,46,10534-10538.
    [188] Zhao, B.; Chen, X. Y.; Cheng, P.; Liao, D. Z.; Yan, S. P.; Jiang, Z. H. Coordinationpolymers containing1D channels as selective luminescent probes [J]. J. Am. Chem. Soc.,2004,126,15394-15395.
    [189] Carlos, L. D.; Ferreira, R. A. S.; De Zea Bermudez, V.; Ribeiro, S. J. L. Full-colorphosphors from europium (III)-based organosilicates [J]. Adv. Mater.,2000,12,594-598.
    [190] Huang, Y. G.; Jiang, F. L.; Yuan, D. Q.; Wu, M. Y.; Gao, Q.; Wei, W.; Hong, M. C. Aprototypical zeolitic lanthanide organic framework with nanotubular structure [J]. Cryst.Growth Des.,2008,8,167-168.
    [191] B. Cai, P. Yang, J. W. Dai, J. Z. Wu, Tuning the porosity of lanthanide MOFs with2,5-pyrazinedicarboxylate and the first in situ hydrothermal carboxyl transfer [J].CrystEngComm.13(2011)985-991.
    [192] Feng, X.; Liu, B.; Wang, L. Y.; Zhao, J. S.; Wang, J. G.; Weng, N. S.; Shi, X. G. Aseries of lanthanide–organic polymers incorporating nitrogen-heterocyclic and aliphaticcarboxylate mixed-ligands: structures, luminescent and magnetic properties [J]. DaltonTrans.,2010,39,8038-8049.
    [193] Quan, Y. P.; Zhao, L. H.; Yang, A. H.; Cui, J. Z.; Gao, H. L.; Lu, F. L.; Shi, W.; Cheng,P. Novel lanthanide coordination polymers based on bis-tridentatechelatorpyrazine-2,3,5,6-tetracarboxylate with nano-channels and waterclusters [J].CrystEngComm.,2009,11,1679-1685.
    [194] Feng, R.; Chen, L.; Chen, Q. H.; Shan, X. C.; Gai, Y. L.; Jiang, F. L.; Hong, M. C.Novel luminescent three-dimensional heterometallic complexes with2-foldinterpenetrating (3,6)-connected nets [J]. Cryst. Growth Des.,2011,11,1705-1712.
    [195] De Bettencourt-Dias, A. Isophthalato-based2D coordination polymers of Eu(III),Gd(III), and Tb(III): enhancement of the terbium-centered luminescence throughthiophene derivatization [J]. Inorg. Chem.,2005,44,2734-2741.
    [196] Yang, Q. F.; Yu, Y.; Song, T. Y.; Yu, J. H.; Zhang, X.; Xu, J. Q.; Wang, T. G.2D and3D networks of lanthanide with mixed dicarboxylate ligands: syntheses, crystalstructures and photoluminescent properties [J]. CrystEngComm.,2009,11,1642-1649.
    [197] Zhou, Y. F.; Jiang, F. L.; Yuan, D. Q.; Wu, B. L.; Wang, R. H.; Lin, Z. Z.; Hong, M. C.Copper complex cation templated gadolinium(iii)–isophthalate frameworks [J]. Angew.Chem. Int. Ed.,2004,43,5665-5668.
    [198] Wan, Y. H.; Zhang, L. P.; Jin, L. P.; Gao, S.; Lu, S. Z. High-dimensional architecturesfrom the self-assembly of lanthanide ions with benzenedicarboxylates and1,10-phenanthroline [J]. Inorg. Chem.,2003,42,4985-4994.
    [199] Zhou, R. S.; Cui, X. B.; Song, J. F.; Xu, X. Y.; Xu, J. Q.; Wang, T. G. Syntheses,structures and luminescence properties of lanthanide coordination polymers with helicalcharacter [J]. J. Solid State Chem.,2008,181,2099-2107.
    [200] Zhang, X. M.; Tong, M. L.; Gong, M. L.; Chen, X. M. Supramolecular organisation ofpolymeric coordination chains into a three-dimensional network with nanosized channelsthat clathrate large organic molecules [J]. Eur. J. Inorg. Chem.,2003,138-142.
    [201] Vaidhyanathan, R.; Natarajan, S.; Rao, C. N. R. A chiral mixed carboxylate,
    [Nd4(H2O)2(OOC(CH2)3COO)4(C2O4)2], exhibiting NLO properties [J]. J. Solid StateChem.,2004,177,1444-1448.
    [202] Zhu, W. H.; Wang, Z. M.; Gao, S. Two3D porous lanthanide-fumarate-oxalateframeworks exhibiting framework dynamics and luminescent change upon reversible de-and rehydration [J]. Inorg. Chem.,2007,46,1337-1342.
    [203] Hu, D. X.; Luo, F.; Che, Y. X.; Zheng, J. M. Construction of lanthanide metal-organicframeworks by flexible aliphatic dicarboxylate ligands plus a rigid m-phthalic acidligand [J]. Cryst. Growth Des.,2007,7,1733-1737.
    [204] Zhang, X.; Xing, Y.; Sun, Z.; Han, J.; Zhang, Y.; Ge, M..; Niu, S. A series oftwo-dimensional metal-organic frameworks based on the assembly of rigid and flexiblecarboxylate-containing mixed ligands with lanthanide metal salts [J]. Cryst. Growth Des.,2007,7,2041-2046.
    [205] Zhang, X.; Xing, Y.; Han, J.; Zeng, X.; Ge, M..; Niu, S. A series of novelLn-succinate-oxalate coordination polymers: synthesis, structure, thermal stability, andfluorescent properties [J]. Cryst. Growth Des.,2008,8,3680-3688.
    [206] Wang C.; Xing, Y.; Li Z.; Li J.; Zeng, X.; Ge, M..; Niu, S. A series ofthree-dimensional lanthanide-rigid-flexible frameworks: synthesis, structure, andluminescent properties of coordination polymers with2,5-pyridine dicarboxylic acid andadipic acid [J]. Cryst. Growth Des.,2009,9,1525-1530.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700