用户名: 密码: 验证码:
shotgun蛋白质组学策略解决若干生物工程问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文尝试运用“shotgun蛋白质组学研究技术和策略解决生物工程中的问题。首先将蛋白质组学应用于抗生素代谢途径的研究;其次将蛋白质组学应用于肿瘤生物标志物和潜在药物靶标的寻找;在此基础上,引入18O同位素标记技术,定量地考察K562细胞调亡过程中蛋白质组的变化。结果如下:
     运用2D LC-MS/MS分析了藤黄灰链霉菌抗生素生产期菌株103和cnn1的总蛋白,分别得到726和809个蛋白。运用生物信息学手段,结合实验室研究结果,将所有可能的代谢途径关键酶在所构建的数据库中进行搜索,两个菌株中均发现有聚酮合成途径的关键酶聚酮合成酶和其它几个与该途径相关的酶,说明麦拓莱霉素通过聚酮合成途径合成。结合β-酮酯酰合酶的抑制剂实验结果,说明以上结论的正确性。展示了蛋白组学在寻找生物合成途径方面的价值。
     基于“shotgun”、一维凝胶电泳预分离策略,分离鉴定了K562细胞总蛋白提取物,得到1707个蛋白。运用生物信息学手段,对肿瘤生物标志物和药物靶标进行了预测,表明MLL3、SET、DEK、Stathmin、Nucleophosmin等蛋白可能为潜在的生物标志物或治疗肿瘤和白血病的药物作用靶点。通过亚细胞分级、一维凝胶电泳、串联质谱分析了K562细胞核蛋白质,共鉴定了334个蛋白。其中检测到了与肿瘤发生、发展、诊断相关的重要基因产物,包括NF45 protein、PIBF1、DDX48、IKAP等蛋白,提供了可深入研究的肿瘤相关分子靶标。
     采用18O同位素标记法定量比较了多烯紫杉醇诱导k562细胞凋亡过程中可溶性蛋白质组的变化,在所分析的86个蛋白中,46个蛋白表达量没有发生变化,15个蛋白表达量下调,包括SET蛋白、延长因子EEF1A1等;20个蛋白表达量上调,包括α-烯醇酶、过氧化物还原酶等。这些被抑制和被激活的蛋白可能为肿瘤生物标志物和药物作用靶点,为肿瘤的诊断和治疗提供了新的候选蛋白。
The“shotgun”proteomic technologies and strategies were introduced to solving the bioengineering problems. Firstly, it was used to investigate the antibiotic biosynthesis pathways. Secondly, it was used to seek candidate tumor biomarkers and developing of new drug targets. Thirdly, 18O stable isotope labeling technology was introduced to quantificationally investigate the proteome changes in process of apoptosis of k562 induced by docetaxel.
     For strain 103 and cnn1, a total of 726 and 809 proteins were identified respectively using 2D LC-MS/MS. By exploring the key enzymes of several probable antibiotic biosynthesis pathways in the identified proteins of strain 103, only polyketide synthase and other proteins associated with the polyketide pathways were found, indicating that Maituolaimysin might be synthesized through the polyketide pathway. Combining with the results of the inhibition experiments of beta-ketoacyl ACP synthase, the above conclusion was proved.
     SDS-PAGE and sub-cellular pre-fractionation were added to achieve a more comprehensive protein profile of k562 cell line. A total of 1707 non-redundant proteins were identified. Proteins like to be associated with cell cycle, apoptosis, tumor and leukemia were investigated. Many proteins that have the potential to be biomarkers or drug targets of leukemia therapy, including MLL3, SET, DEK, Stathmin and nucleophosmin were identified unambiguously to exist in k562 cell line. For the nuclear proteins of k562 cell line, a total of 334 proteins were identified. Proteins probably associated with tumor such as NF45 protein、PIBF1、DDX48、IKAP were found.
     A total of 86 proteins were analyzed in the experiment of 18O labeled quantitative proteomics. Forty-six proteins were equal-expressed. Fifteen proteins were down-expressed including SET, EEF1A1, etc. Twenty proteins were up-expressed including alpha enolase, Peroxiredoxin-2, etc. These repressed or activated proteins were the potential tumor biomarkers and drug targets, which would offer the candidate proteins for tumor diagnosis and treatments.
引文
[1] Wasinger VC, Cordwell SJ, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995, 16: 1090-1094
    [2] Service RF. High speed biologists search for gold in proteins. Science, 2001, 294: 2074-2077
    [3] Abbott A. And now for the proteome. Nature, 2001, 409: 747-747
    [4] Tyers M, Mann M. From genomics to proteomics. Nature,2003, 422:193-197
    [5] Check E. Proteomics and cancer: Running before we can walk? Nature, 2004, 429: 496-497
    [6] Lee K H, Reardon K F. Proteomics: An Exciting New Science, but Where are the Chemical Engineers. AIChE J., 2003, 49: 2682-2686
    [7] Birnbaum S, Bailey JE. Plasmid Presence Changes the Relative Levels of Many Host Cell Proteins and Ribosome Components in Recombinant Escherichia coli. Biotechnol. Bioeng., 1991,37:736-745
    [8] Dykstra KH, Wang HY. Feedback Regulation and the Intracellular Protein Profile of Streptomyces griseus in a Cycloheximide Fermentation. Appl. Microbiol. Biotechnol.,1990,34(2):191-197
    [9] Champion KM, Nishibara JC, Aldor IS, et al. Comparison of the Escherichia coli Proteomes for Recombinant Human Growth Hormone Producing and Nonproducing Fermentations. Proteomics, 2003, 3(7):1365-1373
    [10] Pferdeort VA, Wood TK, Reardon KF. Proteomic Changes in Escherichia coli TG1 after Metabolic Engineering for Enhanced Trichloroethene Biodegradation. Proteomics, 2003, 3(6):1066-1069
    [11] Reardon KF, Kim KH. Two-Dimensional Electrophoresis Analysis of Protein Production during Growth of Pseudomonas putida F1 on Toluene, Phenol, and their Mixture. Electrophoresis, 2002, 23(14):2233-2241
    [12] Dove A. Proteomics:translating genomics into products? Nat Biotechnol, 1999, l7(3): 233-236
    [13] O’Fearrel PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975, 250(10): 4007-4021
    [14] Bjellqvist B, Ek K, Righetti PG, et al. Isoelectric focusing immobilized pH gradients: principles, methodology and some applications. J Biochem Biophys Meth, 1982, 6(4): 317-339
    [15] Righetti PG, Castagna A, Herbert B, et al. How to Bring the ‘‘Unseen’’ Proteome to the Limelight via Electrophoretic Pre-Fractionation Techniques. Bioscience Reports, 2005, 25, 3-17
    [16] Xiao Z, Conrads TP, Lucas DA, et al. Direct ampholyte-free liquid-phase isoelectric peptide focusing: Application to the human serum proteome. Electrophoresis, 2004, 25: 128-133.
    [17] Bier M. Effective principle for scaleup of electrophoresis. In: Sikdar et al ed. Frontiers in bioprocessing, CRC Press, InC, 1988, 236-243
    [18] Ivory CF. Preparative isoelectric focusing of proteins using binary buffers in a vortex-stabilized, free-flow apparatus. Electrophoresis, 2004, 25:360-374
    [19] Manabe T. Capillary electrophoresis of proteins for proteomic studies. Electropho- resis, 20, 3116-3121
    [20] Simpson DC, Smith RD. Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis 2005, 26, 1291–1305
    [21] Hu S, Zhang L, Krylov S, Dovichi NJ. Cell Cycle-Dependent Protein Fingerprint from a Single Cancer Cell: Image Cytometry Coupled with Single-Cell Capillary Sieving Electrophoresis. Anal. Chem. 2003, 75, 3495-3501
    [22] Wang YJ, Balgley BM, Rudnick PA, et al. Integrated Capillary Isoelectric Focusing/Nano-reversed Phase Liquid Chromatography Coupled with ESI-MS for Characterization of Intact Yeast Proteins. J of Proteome Res, 2005, 4: 36-42
    [23] Hoffmann P, Ji H, Moritz R L, et al. Continuous free-flow electrophoresis separation of cytosolic proteins from the human colon carcinoma cell line LIM 1215: A non two-dimensional gel electrophoresis-based proteome analysis strategy. Proteomics, 2001, 1(7), 807-818
    [24] Sarka BG. Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations. Trends in Anal. Chem., 2003, 22, 273-281
    [25] Premstaller A, Oberacher H, Walcher W, et al. High-performance liquid chromatography-electrospray ionization mass spectrometry using monolithic capillary columns for proteomic studies. Anal Chem, 2001, 73(11):2390-2396
    [26] Blonder J, Goshe MB, Moore RJ, et al. Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. J Proteome Res, 2002, 1(4):351-360
    [27] Chaurand P, DaGue BB, Pearsall RS, et al. Profiling proteins from azoxymethane-induced colon tumors at the molecular level by matrix-assisted laser desorption/ionization mass spectrometry. Proteomics, 2001, 1(10): 1320-1326
    [28] Opitock GJ, Lewis KC, Jorgenson JW. Comprehensive on-line LC-MS/MS of proteins. Anal Chem, 1997, 69:1518-1524
    [29] Forler D, K?cher T, Rode M, et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nature Biotechnology, 2002, 21, 89-92
    [30] Zhu H, Bilgin M, Bangham R, el a1.Global analysis of protein activities using proteome chips. Science, 2001, 293: 2101-2105
    [31] Ito T, Ota K, Kubota H, et al. Roles for the Two-hybrid System in Exploration of the Yeast Protein Interactome. Mol Cell Proteomics, 2002, 1: 561-566
    [32] Zozulya S, et a1.Mapping signal transduction pathways by phaqe display.Nature Bioteehno1.1999.17(12);1193
    [33] Cordwell SJ, Basseal D J, Biellqvist B, et al. Characterisation of basic proteins from Spiroplasma melliferum using novel immobilised pH gradients. Electrophoresis, 1997, 18(8):1393-1398
    [34] Whitehouse CM, Dreyer RN, Yamashita M, et a1.Electrospray interface for liquid chromatographs and mass spectrometers.Anal Chem,1985,57(3):675- 679
    [35] Beck JL, Colgrave ML, Ralph SF, et a1. Electrospray ionization mass spectrometry of oligonucleotide complexes with drugs, metals, and proteins. Mass Spectrom Rev, 2001, 20(2): 61-87
    [36] Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem, 1988, 60 (20): 2299-2301
    [37] Hutchens TW. Yip TT. New desorption strategies for the mass spectrometric analysis of macromolecules. Rapid Comm Mass Spectrum,1993, 7(7): 576-580
    [38] Yoshinari K. Theoretical and numerical analysis of the behavior of ions injected into a quadrupole ion trap mass spectrometer. Rapid Comm Mass Speetrom, 2000, 14(4): 21-223
    [39] Gygi SP, Corthals GL, Zhang YN, et al. Evaluation of two-dimensional gel electrophoresisbased proteome analysis technology. PNAS, 2000, 97(17), 9390-9395
    [40] Peng J, Gygi S P. Proteomics: the move to mixtures. J Mass Spectrom, 2001 36(10):1083-1091
    [41] Link AJ, Eng J, Schieltz DM, et al. Direct analysis of protein complexes using mass spectrometry. Nature Biotechnology, 1999, 17: 676-682
    [42] Collins FS, Lander ES, Rogers, et al. Finishing the euchromatic sequence of the human genome. International Human Genome Sequencing Consortium, Nature, 2004, 431, 931-945
    [43] Loscalzo J. Proteomics in cardiovascular biology and medicine. Circulation, 2003, 108(4): 380-383
    [44] An YM, Fu ZM, Gutierrez P, et al. Solution Isoelectric Focusing for Peptide Analysis: Comparative Investigation of an Insoluble Nuclear Protein Fraction. J. Proteome Res., 2005, 4(6): 2126-2132
    [45] Miller I, Gemeiner M, Gesslbauer B,et al. Proteome analysis of rat liver mitochondria reveals a possible compensatory response to endotoxic shock. FEBS Lett., 2006, 580(5): 1257-1262
    [46] Braschi S, Curwen RS, Ashton PD, et al. The tegument surface membranes of the human blood parasite Schistosoma mansoni: A proteomic analysis after differential extraction. Proteomics, 2006, 6(5): 1471-1482
    [47] Cantin GT, Venable JD, Cociorva D, et al. Quantitative Phosphoproteomic Analysis of the Tumor Necrosis Factor Pathway. J. Proteome Res., 2006, 5(1): 127-134
    [48] Comunale MA, Lowman M, Long RE, et al. Proteomic Analysis of Serum Associated Fucosylated Glycoproteins in the Development of Primary Hepatocellular Carcinoma. J. Proteome Res., 2006, 5(2): 308-315
    [49] Vasilescu J, Smith JC, Ethier M, et al. Proteomic Analysis of Ubiquitinated Proteins from Human MCF-7 Breast Cancer Cells by Immunoaffinity Purification and Mass Spectrometry. J. Proteome Res., 2005, 4(6): 2192-2200
    [50] Winnik WM. Continuous pH/Salt Gradient and Peptide Score for Strong Cation Exchange Chromatography in 2D-Nano-LC/MS/MS Peptide Identification for Proteomics. Anal Chem., 2005, 77(15): 4991-4998
    [51] Fandino AS, Rais I, Vollmer M, et al. LC-nanospray-MS/MS analysis of hydrophobic proteins from membrane protein complexes isolated by blue-native electrophoresis. J Mass Spectrom, 2005, 40(9): 1223-1231
    [52] Naka R, Kamoda S, Ishizuka A, et al. Analysis of Total N-Glycans in Cell Membrane Fractions of Cancer Cells Using a Combination of Serotonin Affinity Chromatography and Normal Phase Chromatography. Journal of Proteome Research, 2006, 5(1): 88-97
    [53] alplachta J, ehulka P, Chmelík J. Identification of proteins by combination of size-exclusion chromatography with matrix-assisted laser desorption/ioniza tion time-of-flight mass spectrometry and comparison of some desalting procedures for both intact proteins and their tryptic digests. Journal of Mass Spectrometry, 2004, 39(12): 1395-1401
    [54] Li R X, Zhou H, Li S J, et al. Pre-fractionation of Proteome by Liquid Isoelectric Focusing Prior to Two-Dimensional Liquid Chromatography Mass Spectrometric Identification. J. Proteome Res., 2005, 4(4): 1256-1264
    [55] Ahmad QR, Nguyen DH, Wingerd MA, et al. Molecular weight assessment of proteins in total proteome profiles using 1D-PAGE and LC/MS/MS. Proteome Sci., 2005, 3: 6-12
    [56] Shi Y, Xiang R, Horváth C, et al. Quantitative Analysis of Membrane Proteins from Breast Cancer Cell Lines BT474 and MCF7 Using Multistep Solid Phase Mass Tagging and 2D LC/MS. J. Proteome Res., 2005, 4(4): 1427-1433
    [57] Kaveh S, Jill T. N, Leon G. F, et al. Proteomics profiling of nuclear proteins for kidney fibroblasts suggests hypoxia, meiosis, and cancer may meet in the nucleus. Proteomics, 2005, 5(11): 2819-2838
    [58] Hopper RK, Carroll S, Aponte AM, et al. Mitochondrial Matrix Phosphoproteo- me: Effect of Extra Mitochondrial Calcium. Biochemistry, 2006, 45(8): 2524- 2536
    [59] Schindler J, Lewandrowski U, Sickmann A, et al. Proteomic Analysis of Brain Plasma Membranes Isolated by Affinity Two-phase Partitioning. Mol Cell Proteomics, 2006, 5(2): 390-400
    [60] Castellanos-Serra L, Ramos Y, Huerta V. An in-gel digestion procedure that facilitates the identification of highly hydrophobic proteins by electrospray ionization-mass spectrometry analysis. Proteomics, 2005, 5(11): 2729-2738
    [61] Guerrero C, Tagwerker C, Kaiser P, et al. An Integrated Mass Spectrometry- based Proteomic Approach: Quantitative Analysis of Tandem Affinity-purified in vivo Cross-linked Protein Complexes (qtax) to Decipher the 26 s Proteasome interacting Network. Mol Cell Proteomics, 2006, 5(2): 366-378
    [62] Alvarez-Manilla G, Atwood J III, Guo Y, et al. Tools for Glycoproteomic Analysis: Size Exclusion Chromatography Facilitates Identification of Tryptic Glycopeptides with N-linked Glycosylation Sites. J. Proteome Res., 2006, 5(3):701-708
    [63] Guerrier L, Lomas L, Boschetti E. A simplified monobuffer multidimensional chromatography for high-throughput proteome fractionation. J Chromatogr A, 2005, 1073(1-2): 25-33
    [64] Krieg RC, Gaisa NT, Paweletz CP, et al. Proteomic analysis of human bladder tissue using SELDI approach following microdissection techniques. Methods Mol Biol, 2005, 293: 255-267
    [65] Schirle M, Heurtier M A, Kuster B. Profiling Core Proteomes of Human Cell Lines by One-dimensional PAGE and Liquid Chromatography-Tandem Mass Spectrometry. Mol. Cell. Proteomics, 2003, 2: 1297-1305.
    [66] Hayakawa M, Hosogi Y, Takiguchi H, et al. Further development of an electroosmotic medium pump system for preparative disk gel electrophoresis. Anal. Biochem. 2003, 313: 60-67
    [67] Farhoud M H, Wessels H J, Wevers R A, et al. Serial Isoelectric Focusing as an Effective and Economic Way to Obtain Maximal Resolution and High-Throughput in 2D-Based Comparative Proteomics of Scarce Samples: Proof-of-Principle. J. Proteome Res., 2005, 4(6): 2364-2368
    [68] Davidsson P, Paulson L, Hesse C, et al. Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electo- phoresis approach prior to mass spectrometry. Proteomics, 2001, 1: 444-452
    [69] Locke VL, Gibson TS, Thomas TM, et al. Gradiflow as a prefractionation tool for two-dimensional electrophoresis. Proteomics, 2002, 2:1254-1260
    [70] Lalwani S, Shave E, Fleisher HC, et al. Alkali-stable high-pI isoelectric membranes for isoelectric trapping separations. Electrophoresis, 2004, 25, 2128-2138
    [71] Fortis F, Girot P, Brieau O, et al. Isoelectric beads for proteome prefractionation. II: Experimental evaluation in a multicompartment electrolyzer. Proteomics, 2005, 5(3): 620-628
    [72] Zilberstein GV, Baskin EM, Bukshpan S. Parallel processing in the isoelectric focusing chip. Electrophoresis, 2003, 24, 3735-3744
    [73] G?rg A, Boguth G, K?pf A, et al. Sample prefractionation with Sephadex isoelectric focusing prior to narrow pH range two-dimensional gels. Proteomics, 2002, 2, 1652-1657
    [74] Tirumamali RS, Chan KC, Prieto DA, et al. Characterization of the Low Molecular Weight Human Serum Proteome. Mol. Cell Proteomics, 2003, 2, 1096-1103.
    [75] Lam KS, Salmon SE, Hersh EM, et al. A new type of synthetic peptide library for identifying ligand-binding activity. Nature 1991, 354, 82–84
    [76] Zheng H Y, Hu P, Quinn D F, et al. Phosphotyrosine Proteomic Study of Interferon {alpha} Signaling Pathway Using a Combination of Immunoprecipi- tation and Immobilized Metal Affinity Chromatography. Mol Cell Proteomics, 2005, 4(6): 721-730
    [77] Pasquali C, Fialka I, Huber L A. Subcellular fractionation,electromigration analysis and mapping of organelles.J Chromatogr B, Biomed Sci Appl, 1999, 722(1-2): 89-102
    [78] Murayama K, Fujimura T, Morita M, et al. One-step subcellular fractionation of rat liver tissue using a Nycodenz density gradient prepared by freezing-thawing and two-dimensional sodium dodecyl sulfate electrophoresis profiles of the main fraction of organelles. Electrophoresis, 2001, 22(14): 2872-2880
    [79] Malmstr¨oma J, archeseb J, Juhaszb P, et al. Quantitative proteomic analysis of fibroblast nuclear proteins after stimulation with mitogen activated protein kinase inhibiting heparan sulfate. Journal of Chromatography B, 2005, 815, 333-342
    [80] Pendle AF, Clark GP, Boon R, et al. Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell, 2005, 16(1): 260-269
    [81] Schirmer EC, Gerace L. The nuclear membrane proteome: extending the envelope. Trends Biochem Sci., 2005, 30(10): 551-558
    [82] Verhoeckx KCM, Gaspari M, Bijlsma S,et al. In Search of Secreted Protein Biomarkers for the Anti-inflammatory Effect of 2-Adrenergic Receptor Agonists: Application of DIGE Technology in Combination with Multivariate and Univariate Data Analysis Tools. J. Proteome Res., 2005, 4(6): 2015-2023
    [83] Old W M, Meyer-Arendt K, Aveline-Wolf L, et al. Comparison of Label-free Methods for Quantifying Human Proteins by Shotgun Proteomics. Mol Cell Proteomics, 2005, 4(10): 1487-1502
    [84] Silva J C, Gorenstein M V, Li G Z, et al. Absolute Quantification of Proteins by LCMSE: A Virtue of Parallel ms Acquisition. Mol Cell Proteomics, 2006, 5(1): 144-156
    [85] Conrads TP, Alving K, Veenstra TD, et al. Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. Anal. Chem, 2001, 73, 2132-2139
    [86] Foster L J, Rudich A, Talior I, et al. Insulin-dependent Interactions of Proteins with GLUT4 Revealed through Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). J. Proteome Res., 2006, 5(1): 64-75
    [87] Wang S, Zhang X, Regnier FE. Quantitative proteomics strategy involving the selection of peptides containing both cysteine and histidine from tryptic digests of cell lysates. J Chromatography A, 2002, 949(1): 153-162
    [88] Goodlett D R, Keller A, Watts J D, et al. Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. Rapid Communica- tions in Mass Spectrometry, 2001, 15(14): 1214-1221
    [89] Rao KCS, Palamalai V, Dunlevy JR, et al. Catalyzed 18O Labeling for Comparative Proteomics: Application to Cytokine/Lipolysaccharide-treated Human Retinal Pigment Epithelium Cell Line. Mol Cell Proteomics, 2005, 4(10): 1550-1557
    [90] Ramus C, Peredo A G, Dahout C, et al. An Optimized Strategy for ICAT Quantification of Membrane Proteins. Mol Cell Proteomics, 2006, 5(1): 68-78
    [91] Shadforth I P, Dunkley T P, Lilley K S, et al. i-Tracker: For quantitative proteomics using iTRAQ. BMC Genomics, 2005, 6(1): 145-150
    [92] Schnolzer M, Jedrzejewski P, Lehmann W D. Protease-catalyzed incorpora- tion of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis, 1996, 17(5), 945-953
    [93] Yao X D, Amy F, Javier R, et al. Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of Adenovirus. Anal Chem, 2001, 73(13): 2836-2842
    [94] Li C, Hong Y, Tan YX, et a1. Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinomausing laser capture microdissec- tion coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol cel1 Proteomics, 2004,3(4): 399-409
    [95] Chen J, He Q Y, Yuen A P, et al. Proteomics of buccal squamous cell carcinoma: The involvement of multiple pathways in tumorigenesis. Proteomics, 2004, 4(8): 2465 - 2475
    [96] Ricolleau G, Charbonnel C, Lodé L, et al. Surface-enhanced laser desorption/ionization time of flight mass spectrometry protein profiling identifies ubiquitin and ferritin light chain as prognostic biomarkers in node-negative breast cancer tumors. Proteomics, 2006, 6(6), 1963-1975
    [97] Hooda BL, Lucasa DA, Kima G, et al. Quantitative Analysis of the Low Molecular Weight Serum Proteome Using 18O Stable Isotope Labeling in a Lung Tumor Xenograft Mouse Model, Journal of the American Society for Mass Spectrometry, 2005,16(8 ),1221-1230
    [98] Verrills NM ,Walsh BJ, Cobon GS, et a1. Proteome analysis of vinca alkaloid response and resistance in acute lymphoblastie leukemia reveals novel cytoskeletal alterations. J Biol Chem, 2003, 278(46): 45082-45093
    [99] Wolters DA, Washburn M P, Yates JR III. An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem., 2001, 73, 5683-5690
    [100] Wu CC, MacCoss MJ, Howell KE, et al. A method for the comprehensive proteomic analysis of membrane proteins. Nat. Biotechnol., 2003,21, 532-538
    [101] 李建武,余瑞元,袁明秀等. 生物化学试验原理与方法,北京:北京大学出版社,1994,174-176
    [102] Eng JK, McCormack AL, Yates JR III. An approach to correlate tandem mass-spectral data of peptides with amino-acid sequences in a protein database. J. Am. Soc. Mass Spectrum, 1994, 5, 976-989
    [103] 王志平,抗 HIV PR,CVB6 麦拓来霉素的分离、鉴定、活性及生物合成研究:[博士学位论文],天津:天津大学,2004
    [104] 陈贵斌,抗生素 AGPM 生物合成和调控机制的研究:[博士学位论文],天津:天津大学,2003
    [105] Novotna J, Vohradsky J, Berndt P, et al. Proteomic studies of diauxic lag in the differentiating prokaryote Stryptomyces coelicolor reveal a regulatory network of stress-induced proteins and central metabolic enzymes. Mol. Microbiol., 2003, 48:1289-1303
    [106] Washburn MP, Wolters D, Yates JR III. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. biotechnol. 2001, 19: 242-247
    [107] Wang JQ, Xue YF, Feng XL, et al. An analysis of the proteomic profile for Thermoanaerobacter tengcongensis under optimal culture conditions. Proteomics. 2004, 4: 136-150
    [108] Zhu WH, Reich CI, Olsen GJ, et al. Shotgun Proteomics of Methanococcus jannaschii and Insights into Methanogenesis. J. Proteome Res., 2004, 3: 538- 548
    [109] Orsaria L, Paoletti L, Gramajo HC. Characterization of stationary- phase proteins in Stryptomyces coelicolor A3(2). FEMS Microbiol. Lett., 1998, 162: 275-281
    [110] Li XM, Novotna J, Weiser VJ. Major proteins related to chlortetracyline biosynthesis in a Stryptomyce aureofaciens production strain studied by quantitative proteomics. Appl. Microbiol. Biotechnol., 2001, 57: 717-724
    [111] Hesketh AR, Chandra G, Shaw AD, et al. Primary and secondary metabolism, and post-translational protein modifications as potrayed by proteomic analysis of Stryptomyces coelicolor. Mol. Microbiol., 2002, 46: 917-932
    [112] Hesketh AR, Chater KF. Evidence from proteomics that some of the enzymes of actinorhodin biosynthesis have more than one form and may occupy distinctive cellular locations. J Ind Microbiol Biotechnol., 2003, 30: 523-529
    [113] Novotna J, Vohradsky J, Berndt P, et al. Proteomic studies of diauxic lag in the differentiating prokaryote Stryptomyces coelicolor reveal a regulatory network of stress-induced proteins and central metabolic enzymes. Mol. Microbiol., 2003, 48: 1289-1303
    [114] Wilkins MR, Gasteiger E, Bairoch A, et al. Protein Identification and Analysis Tools in the ExPASy Server in: 2-D Proteome Analysis Protocols. 1998, Editor A.J. Link. Humana Press, New Jersey
    [115] Krogh A, Larsson B, Heijne GV, et al. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. J. Mol. Biol., 2001, 305: 567-580
    [116] Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci., 1999, 24: 34-35
    [117] Emanuelsson O, Heijne GV. Prediction of organellar targeting signals. Biochim. Biophys. Acta, 2001, 1541: 114-119
    [118] Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet., 2000, 25: 25-29
    [119] Schwartz R, Ting CS, King J. Whole Proteome pI Values Correlate with Subcellular Localizations of Proteins for Organisms within the Three Domains of Life. Genome Research, 2001, 11(5): 703-709
    [120] Chang Z, Sun Y, He J, et al. p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxy chorismate synthase. Microbiology. 2001, 147: 2113-2126
    [121] Yu JH, Leonard TJ. Sterigmatocystin biosynthesis in aspergillus nidulans requires a novel type I polyketide synthase. Journal of Bacteriology. 1995, 177: 4792-4800
    [122] Stachelhans T, Schneider A, Marahiel MAA. Engineered biosynthesis of peptide antibiotics. Biochem Pharm, 1996, 52:177-186
    [123] Gould S J. Biosynthesis of the Kanamycin.Chem. Rev.,1997,97: 2499-2510
    [124] Wilding EI, Brown JR, Bryant AP, et al. Identification, Evolution, and Essentiality of the Mevalonate Pathway for Isopentenyl Diphosphate Biosynthesis in Gram-Positive Cocci. Journal of Bacteriology. 2000,182: 4319-4327
    [125] 石炳兴,新型抗生素的筛选、发酵、分离、纯化与结构鉴定:[博士学位论文],天津:天津大学,2001
    [126] Lombo F, Brana AF, Salas JA, et al. Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. Chem. biochem., 2004, 5: 1181-1187
    [127] LopezLara IM, Geiger O. The nodulation protein NodG shows the enzymatic activity of an 3-oxoacyl-acyl carrier protein reductase. Mol. Plant Microbe Interact., 2001, 14: 349-357
    [128] Fisher M, Kroon JT, Martindale W, et al. The X-ray structure of Brassica napus beta-ketoacyl carrier protein reductase and its implications for substrate binding and catalysis. Structure Fold Des., 2000, 8:339-347
    [129] Anzai YJ, Saito N, Tanaka M, et al. Organization of the biosynthetic gene cluster for the polyketide macrolide mycinamicin in Micromonospora griseorubida. FEMS Microbiol. Lett., 2003, 218: 135-141
    [130] Lozzio CB, Lozzio BB. Human chronic myelogenous leukemia cell line with positive Philadelphia choromosome. Blood, 1975, 45: 321-34
    [131] Naumann S, Reutzel D, Speicher M,et al. Complete karyotype characterize- ation of the K562 cell line by combined application of G-banding, multiplex- fluorescence in situ hybridization, fluorescence in situ hybridization, and comparative genomic hybridization . Leukemia Res., 2001, 25: 313-322
    [132] Deininger MWN, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood, 2000, 15: 3343-3356
    [133] Capdeville R, Buchdunger E, Zimmermann J, et al. Glivec (STI-571, imatinib), a rationally developed, targeted anticancer drug. Nat Rev Drug Discov, 2002, 1:493-502.
    [134] Katheryn A R, Karen M A, Alex MM, et al. Improving Reproducibility and Sensitivity in Identifying Human Proteins by Shotgun Proteomics. Anal. Chem., 2004, 76: 3556-3568
    [135] William MO, Karen MA, Lauren AW, et al. Comparison of label free methods for quantifying human proteins by shotgun proteomics. Mol. Cell. proteomics. 2005, Jun, online manuscript
    [136] Thierry LB, Mark DR, Ian IS, et al. Definition and Characterization of a “Trypsinosome” from Specific Peptide Characteristics by Nano-HPLC- MS/MS and in Silico Analysis of Complex Protein Mixtures. J Proteome Res, 2004, 3: 1138-1148
    [137] Timothy SL, John BH, Lauren DA, et al. Identification of Novel MAP Kinase Pathway Signaling Targets by Functional Proteomics and Mass Spectrometry. Molecular Cell, 2000, 6, 1343-1354
    [138] Dana G, Katerina K, Ota F, et al. Interferon-alpha suppresses proliferation of chronic myelogenous leukemia cells K562 by extending cell cycle S-phase without inducing apoptosis. Blood Cells, Molecules, and Diseases., 2004, 32: 262-269
    [139] Dhiman G, Oleg K, Mihaela A, et al. Lectin Affinity as an Approach to the Proteomic Analysis of Membrane Glycoproteins. J Proteome Res., 2004, 3, 841-850
    [140] Masaaki O, Chiharu I, Hiroko H, et al. Analysis of Small Human Proteins Reveals the Translation of Upstream Open Reading Frames of mRNAs. Genome Research. 2004,14: 2048-2052
    [141] Florence P, Naima I , Michel P , et al. The BPP (protein biochemistry and proteomics) two-dimensional electrophoresis database. J Chromatography B., 2001, 753: 23-28
    [142] Gasteiger E, Hoogland C, Gattiker A, et al., Protein Identification and Analysis Tools on the ExPASy Server. 571-607
    [143] Kanda A, Kawai H, Suto S, et al. Aurora-B/AIM-1 kinase activity is involved in Ras-mediated cell transformation. Oncogene, 2005, 24(49):7266-7272
    [144] Adams RR, Eckley DM, Vagnarelli P, et ai. Human INCENP colocalizes with the Aurora-B/AIRK2 kinase on chromosomes and is overexpressed in tumour cells. Chromosoma., 2001, 110(2): 65-74
    [145] Nagakubo D, Taira T, Kitaura H, et al. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem Biophys Res Commun., 1997, 231(2): 509-513
    [146] Kim RH, Peters M, Jang Y, et al. DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell, 2005, 7(3): 263-273
    [147] Hermeking H. The 14-3-3 cancer connection. Nature Reviews Cancer, 2003, 3: 931-943
    [148] Liu Y, Lisa JE, Schickwann T, et al. Oncoprotein TLS Interacts with Serine-Arginine Proteins Involved in RNA Splicing. The J. of Biological Chemistry, 1998, 273(43): 27761-27764
    [149] Liu Y, Lisa JE, Dennis DH. TLS-ERG Leukemia Fusion Protein Inhibits RNA Splicing Mediated by Serine-Arginine Proteins. Molecular and Cellular Biology, 2000, 20: 3345-3354
    [150] Myriam R, Marie EB, Mario V, et al. MLL3, a new human member of the TRX/MLL gene family, maps to 7q36, a chromosome region frequently deleted in myeloid leukaemia. Gene, 2002, 284(1-2): 73-81
    [151] Adachi Y, Pavlakis GN, Copeland TD. Identification and characterization of SET, a nuclear phosphoprotein encoded by the translocation break point in acute undifferentiated leukemia. J Biol Chem., 1994, 269(3), 2258-2262
    [152] Devany M, Kotharu NP, Matsuo H. Expression and isotopic labeling of structural domains of the human protein DEK. Protein Expr Purif. 2005, 40(2), 244-247
    [153] Camelia IR, George FA. The Role of Stathmin in the Regulation of the Cell Cycle. Journal of Cellular Biochemistry. 2004, 93: 242-250
    [154] Luo XN, Mookerjee B, Ferrari A, et al. Regulation of phosphoprotein p18 in leukemic cells. 1994, J Biol. Chem. 269, 10312-10318
    [155] Hanash SM, Strahler JR, Kuick R, et al. Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem, 1988, 263:12813-12815
    [156] Rosell R, Monzo M, O’Brate A, et al. Translational oncogenomics: toward rational therapeutic decision-making. Curr Opin Oncol, 2002, 14:171-179
    [157] Subong EN, Shue MJ, Epstein JI, et al. Monoclonal antibody to prostate cancer nuclear matrix protein (PRO:4-216) recognizes nucleophosmin/B23. Prostate, 1999,39: 298-304
    [158] Shields LB, Gercel-Taylor C, Yashar CM, et al. Induction of immune responses to ovarian tumor antigens by multiparity. J Soc Gynecol Invest., 1997, 4: 298-304
    [159] Redner RL. Variations on a theme: the alternate translocations in APL. Leukemia, 2002,16:1927-32
    [160] Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med., 2005, 352: 254-266
    [161] Van Belzen N, Diesveld MP, van der Made AC, et al. Identification of mRNAs that show modulated expression during colon carcinoma cell differentiation. Eur J Biochem., 1995, 234:843-848
    [162] Grisendi S, Bernardi R, Rossi M, et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature, 2005, 437(7055): 147-153
    [163] Li J, Zhang X L, Sejas D P, et al. Negative regulation of p53 by nucleophosmin antagonizes stress-induced apoptosis in human normal and malignant hematopoietic cells. Leuk Res., 2005, 29(12):1415-1423
    [164] Miller BA, Zhang MY, Gocke CD, et al. A homolog of the fungal nuclear migration gene nudC is involved in normal and malignant human hematopoiesis. Experimental Hematology, 1999, 27: 742-750
    [165] Gocke C D, Reaman G H, Stine C, Zhang M Y, Osmani S A, Miller B A. The nuclear migration gene NudC and human hematopoiesis. Leuk Lymphoma., 2000, 39: 447-454
    [166] Rout MP, Jesen ON, Suprato A, et al. The yeast nuclear pore complex:composition, architecture and transport mechanism. The Journal of Cell Biology, 2000,148: 635-652
    [167] Yates J R 3rd, Gilchrist A, Howell KE,. Proteomics of organelles and large cellular structures. Nat Rev Mol Cell Biol., 2005,6(9): 702-714
    [168] Alberts B, Bray D, Johnson A, et al. Essential Cell Biology: An Introduction to the Molecular Biology of the Cell. New York & London: Garland Publishing Inc, 1998, 245-260
    [169] Zhao G, Shi L, Qiu D, et al. NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function. Experimental Cell Research, 2005, 305: 312-323.
    [170] Tang J, Kao PN, Herschman HR. Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. The Journal of Cell Biology, 2000, 275: 19866-19876.
    [171] Lopez-Fernandez LA, Parraga M, del Mazo J. Ilf2 is regulated during meiosis and associated to transcriptionally active chromatin. Mechnism of Development, 2002, 111: 153-157.
    [172] Zhou Z, Licklider LJ, Gygi SP, et al. Comprehensive proteomic analysis of the human spliceosome, Nature, 2002, 419: 182-185.
    [173] Patel RC, Vestal DJ, Xu Z, et al. DRBP76, a double-stranded RNA binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. The Journal of Cell Biology, 1999, 274: 20432-20437.
    [174] Ting NSY, Kao PN, Chan DW, et al. DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45. The Journal of Cell Biology, 1998, 273: 2136-2145.
    [175] Polgar P, Kispal G, Lachmann M, et al. Molecular cloning and immunological characterization of a novel cDNA coding for PIBF. The Journal of Immunology, 2003, 171: 5956-5963.
    [176] Rozenblum E, Vahteristo P, Sandberg T, et al. A genomic map of a 6-Mb region at 13q21–q22 implicated in cancer development: identication and characterization of candidate genes. Human Genetics, 2002, 110: 111-121.
    [177] Harhaj EW, Sun SC, et al. IKKg Serves as a DockingSubunit of the IkB Kinase (IKK)and Mediates Interaction of IKK with the Human T-cell LeukemiaVirus Tax Protein. The Journal of Cell Biology, 1999, 274:22911-22914.
    [178] Dong YJ, Vincenzo G, Karen V, et al. Kibler Role of Adapter Function in Oncoprotein-mediated Activation of NF-kB. The Journal of Cell Biology, 1999, 274: 17402-17405.
    [179] Xia Q, Kong XT , Zhang GA, et al. Proteomics-based identi.cation of DEAD-box protein 48 as anovel autoantigen, a prospective serum marker for pancreatic cancer. Biochemical and Biophysical Research Communications, 2005, 330: 526-532.
    [180] Stewart II, Thomson T, Figeys D. 18O labeling: a tool for proteomics. Rapid Commun Mass Spectrom, 2001, 15(24):2456-2465
    [181] Sakai J, Kojima S, Yanagi K, et al. 18O-labeling quantitative proteomics using an ion trap mass spectrometer. Proteomics, 2005, 5(1):16-23
    [182] Yamao F. Ubiquitin system: selectivity and timing of protein destruction. J Biochem, 1999, 125(2):223-229
    [183] Sun Y. Targeting E3 ubiquitin ligases for cancer therapy. Cancer Biol Ther., 2003, ,2(6):623-629
    [184] Taguchi F, Kusaba H, Asai A, et. hnRNP L enhances sensitivity of the cells to KW-2189. Int J Cancer. 2004,108 (5): 679-685
    [185] Chaib H, Rubin MA, Mucci NR,et al. A PDZ Domain-containing Protein Highly Expressed in Human Primary Prostate Tumors. Cancer Research, 2001,61: 2390-2394
    [186] Lin H, Juang JL, Wang PS. Involvement of Cdk5/p25 in digoxin-triggered prostate cancer cell apoptosis. J Biol Chem. 2004,279(28):29302-29307
    [187] Feo S, Arcuri D, Piddini E, et al. ENO1 gene product binds to the c-myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). FEBS Lett., 2000, 473(1):47-52
    [188] Lopez-Pedrera C, Villalba JM, Siendones E, et al. Proteomic analysis of acute myeloid leukemia: Identification of potential early biomarkers and therapeutic targets. Proteomics, 2006, Suppl 1:S293-299

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700