用户名: 密码: 验证码:
铁过载心、肾损伤及黄芩的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁是生命体内必须的微量元素,是许多蛋白质和酶的重要组成部分。然而随着生活水平的提高,肉类在日常生活膳食中的比重逐渐增加,体内铁过载(Iron overload)的现象越来越普遍。目前,已有许多文献报道了铁催化产生活性氧自由基,引起周围组织的氧化应激增加是铁过载造成危害性主要的主要来源。而肝脏、心脏以及肾脏是铁超载受损的主要靶器官。黄芩苷作为一种天然的抗氧化剂,已有许多研究表明其具有抗氧化、抗炎、抗菌及抗肿瘤等生物活性。本文着重研究了黄芩苷对铁过载引起的心脏和肾脏损伤的干预作用。实验结果表明,铁过载破坏体内抗氧化系统,并引起组织氧化损伤及硝化损伤,黄芩苷的加入能减缓铁过载造成的肾组织氧化损伤,而在心脏中能起到部分保护作用。本文主要研究内容如下:
     采用腹腔注射铁右旋糖酐(总铁量分别为150,300,500 mg Fe/kg bw)的方法造成大鼠慢性铁过载模型;与此同时,对总铁剂量为500 mg Fe/kg的大鼠喂以含1%黄芩苷的饲料。利用紫外可见分光光度法测定相关基本生化指标、原子吸收法测定组织总铁含量、免疫沉淀分析组织中蛋白质氧化和硝化等,来研究铁过载导致心、肾损伤的情况及黄芩苷的干预作用。结果显示:铁过载可以导致心脏和肾脏中总铁含量、脂质过氧化产物—丙二醛(MDA)含量、3-硝基酪氨酸含量及蛋白质氧化增加,并且肾脏中损伤程度与摄入铁剂量呈剂量依赖性,巯基含量、GPx活性、CAT活性及总抗氧化能力降低,但心脏中SOD活力增加。补充黄芩苷后没有显著降低两个组织中的总铁含量,但减少了肾脏中的氧化损伤,而在心脏中作用不明显,并且对不同抗氧化物酶活性的影响也不同,能明显增加总抗氧化能力和心脏中GPx活力,降低心脏SOD活力。
Iron is an essential trace element in organism. With the improving of living standards, the proportion of the meat in daily meal is increasing and the iron overload in our body happen more and more frequently. Iron overload was defined that a series of pathological changes in the body which induced by genetic factors or pathological conditions. In recent years, many studies have reported that the deleteriousness of iron overload caused organ damage through the generation of reactive oxygen species. Liver, heart and kidney are the main target organ to be injured in case of iron overload. Baicalin is an active antioxidant flavonoid, which have been researched in antioxidative and pharmacological effects for many years. In this thesis, the effect of baicalin on the iron-overload induced nephrotoxicity and cardiotoxic, have been studied in rats. The result indicated iron-overload reduces antioxidant status and enhance oxidative and nitrative damage. Supplementation of baicalin ameliorated iron-induced heart and kidney toxicity but is not completely protective. The main results are as follows:
     The male rats were prepared by peritoneal injection of iron-dextran five times in two weeks to induce chronic iron overload, and the another positive control group was supplemented with baicalin containing diet (1% w/w) at the same time. Compared with control group, Fe content of iron-overload rats was clearly increased in heart and kidney, with concomitant increasing protein tyrosine nitration and oxidation stress like lipid peroxidation and protein oxidation. In iron-overload group, the activity of glutathione peroxidase, catalase, thiol group content and the total antioxidation status almost dose-dependently declined in both heart and kidney, except cardiac superoxide dismutase activity increased. Supplementation of baicalin increased glutathione peroxidase activity in both two tissues as well as attenuated oxidation injury in kidney.
引文
[1] Galleano M, Simontacchi M, Puntarulo S. Nitric oxide and iron: effect of iron overload on nitric oxide production in endotoxemia. Mol Aspects Med, 2004, 25(1-2): 141~154
    [2] Bennett M J, Lebron J A, Bjorkman P J. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature, 2000, 403(6765): 46~53
    [3] Cederbaum A I. Iron and CYP2E1-dependent oxidative stress and toxicity. Alcohol, 2003, 30(2): 115~120
    [4] Swanson C A. Iron intake and regulation: implications for iron deficiency and iron overload. Alcohol, 2003, 30(2): 99~102
    [5] Kohgo Y, Ikuta K, Ohtake T, et al. Body iron metabolism and pathophysiology of iron overload. Int J Hematol, 2008, 88(1): 7~15
    [6]冯星.儿茶素和漆黄素对机体铁超载的药理学研究.中山大学博士学位论文, 2003
    [7] Masson R, Roome N O. Spontaneous iron overload in Sprague-Dawley rats. Toxicol Pathol, 1997, 25(3): 308~316
    [8] Cable E E, Connor J R, Isom H C. Accumulation of iron by primary rat hepatocytes in long-term culture: changes in nuclear shape mediated by non-transferrin-bound forms of iron. Am J Pathol, 1998, 152(3): 781~792
    [9] Zhang Y, Li H, Zhao Y, et al. Dietary supplementation of baicalin and quercetin attenuates iron overload induced mouse liver injury. Eur J Pharmacol, 2006, 535(1-3): 263~269
    [10] Zhao Y, Li H, Gao Z, et al. Effects of dietary baicalin supplementation on iron overload-induced mouse liver oxidative injury. Eur J Pharmacol, 2005, 509(2-3): 195~200
    [11] Lee K S, Buck M, Houglum K, et al. Activation of hepatic stellate cells by TGF alphaand collagen type I is mediated by oxidative stress through c-myb expression. J Clin Invest, 1995, 96(5): 2461~2468
    [12] Hu F B. The iron-heart hypothesis: search for the ironclad evidence. JAMA-J Am Med Assoc, 2007, 297(6): 639~641
    [13] Auer J, Berent R, Weber T, et al. Coronary atherosclerosis and body iron stores. J Am Coll Cardiol, 2003, 41(10): 1848~1849
    [14] Gaenzer H, Marschang P, Sturm W, et al. Association between increased iron stores and impaired endothelial function in patients with hereditary hemochromatosis. J Am Coll Cardiol, 2002, 40(12): 2189~2194
    [15] Salonen J T, Nyyssonen K, Korpela H, et al. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation, 1992, 86(3): 803~811
    [16] Vaziri N D. Roles of oxidative stress and antioxidant therapy in chronic kidney disease and hypertension. Curr Opin Nephrol Hypertens, 2004, 13(1): 93~99
    [17] Zhou X J, Laszik Z, Wang X Q, et al. Association of renal injury with increased oxygen free radical activity and altered nitric oxide metabolism in chronic experimental hemosiderosis. Lab Invest, 2000, 80(12): 1905~1914
    [18] Ong-Ajyooth L, Malasit P, Ong-Ajyooth S, et al. Renal function in adult beta-thalassemia/Hb E disease. Nephron, 1998, 78(2): 156~161
    [19] Michelakakis H, Dimitriou E, Georgakis H, et al. Iron overload and urinary lysosomal enzyme levels in beta-thalassaemia major. Eur J Pediatr, 1997, 156(8): 602~604
    [20] Ponka P. Hereditary causes of disturbed iron homeostasis in the central nervous system. Ann N Y Acad Sci, 2004, 1012: 267~281
    [21] Radi R, Beckman J S, Bush K M, et al. Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys, 1991, 288(2): 481~487
    [22] Beckman K B, Ames B N. The free radical theory of aging matures. Physiol Rev, 1998, 78(2): 547~581
    [23] Swallow A J, Velandia J A. Oxygen effect as an explanation of differences between the action of alpha-particles and x- or gamma-rays on aqueous solutions of amino-acids and proteins. Nature, 1962, 195: 798~800
    [24] Witko-Sarsat V, Gausson V, Descamps-Latscha B. Are advanced oxidation protein products potential uremic toxins? Kidney Int Suppl, 2003, (84): 11~14
    [25] Stadtman E R. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem, 1993, 62: 797~821
    [26] Halliwell B, Gutteridge J M. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol, 1990, 186: 1~85
    [27] Karowicz-Bilinska A, Marszalek M, Kowalska-Koprek U, et al. Plasma carbonyl group concentration in pregnant women with IUGR treated by L-arginine and acetylsalicylic acid. Ginekol Pol, 2004, 75(1): 15~20
    [28] Alam Z I, Halliwell B, Jenner P. No evidence for increased oxidative damage to lipids, proteins, or DNA in Huntington's disease. J Neurochem, 2000, 75(2): 840~846
    [29] Shacter E. Protein oxidative damage. Methods Enzymol, 2000, 319: 428~436
    [30] Stadtman E R. Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med, 1990, 9(4): 315~325
    [31] Stadtman E R, Oliver C N, Starke-Reed P E, et al. Age-related oxidation reaction in proteins. Toxicol Ind Health, 1993, 9(1-2): 187~196
    [32] Sims N R. Energy metabolism, oxidative stress and neuronal degeneration in Alzheimer's disease. Neurodegeneration, 1996, 5(4): 435~440
    [33] Tanaka M, Kondo S, Hirai S, et al. Cerebral blood flow and oxygen metabolism in progressive dementia associated with amyotrophic lateral sclerosis. J Neurol Sci, 1993, 120(1): 22~28
    [34] Navarro A, Boveris A, Bandez M J, et al. Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies. Free Radic Biol Med, 2009, 46(12): 1574~1580
    [35] Markesbery W R. Oxidative stress hypothesis in Alzheimer's disease. Free Radic BiolMed, 1997, 23(1): 134~147
    [36] Burton K P. Superoxide dismutase enhances recovery following myocardial ischemia. Am J Physiol, 1985, 248(5 Pt 2): 637~643
    [37] Bredt D S. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radic Res, 1999, 31(6): 577~596
    [38] Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun, 2003, 305(3): 776~783
    [39] Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A, 2004, 101(12): 4003~4008
    [40] Schopfer F J, Baker P R, Freeman B A. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci, 2003, 28(12): 646~654
    [41] Turko I V, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev, 2002, 54(4): 619~634
    [42]李海玲,徐辉碧,高中洪.微量元素铁与蛋白质酪氨酸硝化.化学进展, 2006, 18(5): 622~626
    [43] Cornejo P, Varela P, Videla L A, et al. Chronic iron overload enhances inducible nitric oxide synthase expression in rat liver. Nitric Oxide, 2005, 13(1): 54~61
    [44] Goldstein S, Merenyi G, Samuni A. Kinetics and mechanism of·NO2 reacting with various oxidation states of myoglobin. J Am Chem Soc, 2004, 126(48): 15694~15701
    [45] Daiber A, Bachschmid M, Beckman J S, et al. The impact of metal catalysis on protein tyrosine nitration by peroxynitrite. Biochem Biophys Res Commun, 2004, 317(3): 873~881
    [46] Zhang H, Bhargava K, Keszler A, et al. Transmembrane nitration of hydrophobic tyrosyl peptides. Localization, characterization, mechanism of nitration, and biological implications. J Biol Chem, 2003, 278(11): 8969~8978
    [47] Gunther M R, Hsi L C, Curtis J F, et al. Nitric oxide trapping of the tyrosyl radical of prostaglandin H synthase-2 leads to tyrosine iminoxyl radical and nitrotyrosineformation. J Biol Chem, 1997, 272(27): 17086~17090
    [48] Greenacre S A, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res, 2001, 34(6): 541~581
    [49] Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res, 2000, 87(12): 1123~1132
    [50] Lokuta A J, Maertz N A, Meethal S V, et al. Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation, 2005, 111(8): 988~995
    [51] Macmillan-Crow L A, Crow J P, Kerby J D, et al. Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci U S A, 1996, 93(21): 11853~11858
    [52] Leeuwenburgh C, Hardy M M, Hazen S L, et al. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem, 1997, 272(3): 1433~1436
    [53] Ara J, Przedborski S, Naini A B, et al. Inactivation of tyrosine hydroxylase by nitration following exposure to peroxynitrite and 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP). Proc Natl Acad Sci U S A, 1998, 95(13): 7659~7663
    [54] Przedborski S, Chen Q, Vila M, et al. Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine (MPTP) mouse model of Parkinson's disease. J Neurochem, 2001, 76(2): 637~640
    [55] Mills G C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem, 1957, 229(1): 189~197
    [56] Noor R, Mittal S, Iqbal J. Superoxide dismutase--applications and relevance to human diseases. Med Sci Monit, 2002, 8(9): 210~215
    [57] Kowald A, Klipp E. Alternative pathways might mediate toxicity of high concentrations of superoxide dismutase. Ann N Y Acad Sci, 2004, 1019: 370~374
    [58]宋立人.现代中药学大辞典.人民卫生出版社, 2001
    [59] Gabrielska J, Oszmianski J, Zylka R, et al. Antioxidant activity of flavones fromScutellaria baicalensis in lecithin liposomes. Z Naturforsch C, 1997, 52(11-12): 817~823
    [60] Gao D, Sakurai K, Chen J, et al. Protection by baicalein against ascorbic acid-induced lipid peroxidation of rat liver microsomes. Res Commun Mol Pathol Pharmacol, 1995, 90(1): 103~114
    [61] Shi H, Zhao B, Xin W. Scavenging effects of baicalin on free radicals and its protection on erythrocyte membrane from free radical injury. Biochem Mol Biol Int, 1995, 35(5): 981~994
    [62] Kimura Y, Yokoi K, Matsushita N, et al. Effects of flavonoids isolated from scutellariae radix on the production of tissue-type plasminogen activator and plasminogen activator inhibitor-1 induced by thrombin and thrombin receptor agonist peptide in cultured human umbilical vein endothelial cells. J Pharm Pharmacol, 1997, 49(8): 816~822
    [63] Nagai T, Suzuki Y, Tomimori T, et al. Antiviral activity of plant flavonoid, 5,7,4'-trihydroxy-8-methoxyflavone, from the roots of Scutellaria baicalensis against influenza A (H3N2) and B viruses. Biol Pharm Bull, 1995, 18(2): 295~299
    [64] Kitamura K, Honda M, Yoshizaki H, et al. Baicalin, an inhibitor of HIV-1 production in vitro. Antiviral Res, 1998, 37(2): 131~140
    [65]高中洪,黄开勋,徐辉碧.黄芩黄酮对自由基的清除作用的ESR研究.华中理工大学学报, 1999, 27(1): 97~99
    [66] Gao Z, Huang K, Xu H. Protective effects of flavonoids in the roots of Scutellaria baicalensis Georgi against hydrogen peroxide-induced oxidative stress in HS-SY5Y cells. Pharmacol Res, 2001, 43(2): 173~178
    [67]程国强,冯年平,唐琦文,等.黄芩苷对眼科常见病原菌的体外抗菌作用.中国医院药学杂志, 2001, 21(6): 347~348
    [68]侯艳宁,朱秀缓.黄芩苷的抗炎机理.药学学报, 2000, 35(3): 161~164
    [69] Himeji M, Ohtsuki T, Fukazawa H, et al. Difference of growth-inhibitory effect of Scutellaria baicalensis-producing flavonoid wogonin among human cancer cells and normal diploid cell. Cancer Lett, 2007, 245(1-2): 269~274
    [70]孙吉平,贾延劼,宋健辉,等,黄芩苷抑制大鼠胰岛细胞瘤细胞株增殖的分子机制研究.中国中西医结合杂志, 2006, 26(4): 337~340
    [71]王殿洪,岳武,杜智敏,等.黄苓甙诱导C6胶质瘤细胞凋亡的实验研究.中国肿瘤, 2005, 14(7): 468~471
    [72]顾正勤,孙颖浩,许传亮,等.黄芩苷诱导前列腺癌细胞株DU145凋亡的体外研究.中国中药杂志, 2005, 30(1): 63~66
    [73]袁榴娣,徐红.黄芩甙对艾氏腹水瘤细胞影响的初步探讨.南京铁道医学院学报, 1997, 16(4): 231~233
    [74]蔡仙德,穆维同.黄芩甙对小鼠细胞免疫功能的影响.南京铁道医学院学报, 1994, 13(2): 65~68
    [75] Mccord J M. Iron, free radicals, and oxidative injury. Semin Hematol, 1998, 35(1): 5~12
    [76] Halliwell B, Gutteridge J. Role of free-radicals and catalytic metal-ions in human-disease - an overview. Methods Enzymol, 1990, 186: 1~85
    [77] Girotti A W. Photodynamic lipid-peroxidation in biological-systems. Photochem Photobiol, 1990, 51(4): 497~509
    [78] Bors W, Saran M. Radical scavenging by flavonoid antioxidants. Free Radic Res Commun, 1987, 2(4-6): 289~294
    [79] Negresalvayre A, Salvayre R. Quercetin prevents the cytotoxicity of oxidized ldl on lymphoid-cell lines. Free Radic Biol Med, 1992, 12(2): 101~106
    [80] Gao Z H, Huang K X, Yang X L, et al. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta-Gen Subj, 1999, 1472(3): 643~650
    [81] Yoshino M, Murakami K. Interaction of iron with polyphenolic compounds: Application to antioxidant characterization. Anal Biochem, 1998, 257(1): 40~44
    [82] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248~254
    [83] Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem, 1979, 95(2): 351~358
    [84] Ellman G L. Tissue sulfhydryl groups. Arch Biochem Biophys, 1959, 82(1): 70~77
    [85] Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med, 1999, 26(9-10): 1231~1237
    [86] Pardo-Andreu G L, Barrios M F, Curti C, et al. Protective effects of Mangifera indica L extract (Vimang), and its major component mangiferin, on iron-induced oxidative damage to rat serum and liver. Pharmacol Res, 2008, 57(1): 79~86
    [87] Zhao Y L, Li H L, Gao Z H, et al. Effects of flavonoids extracted from Scutellaria baicalensis Georgi on hemin-nitrite-H2O2 induced liver injury. Eur J Pharmacol, 2006, 536(1-2): 192~199
    [88] Akao T, Kawabata K, Yanagisawa E, et al. Balicalin, the predominant flavone glucuronide of scutellariae radix, is absorbed from the rat gastrointestinal tract as the aglycone and restored to its original form. J Pharm Pharmacol, 2000, 52(12): 1563~1568
    [89] Brittenham G M, Griffith P M, Nienhuis A W, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. New Engl J Med, 1994, 331(9): 567~573
    [90] Zurlo M G, Destefano P, Borgnapignatti C, et al. Survival and causes of death in thalassemia major. Lancet, 1989, 2(8653): 27~30
    [91] Valerio L J, Petersen D R. Formation of liver microsomal MDA-protein adducts in mice with chronic dietary iron overload. Toxicol Lett, 1998, 98(1-2): 31~39
    [92] Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med, 1991, 11(1): 81~128
    [93] Fischer J G, Glauert H P, Yin T F, et al. Moderate iron overload enhances lipid peroxidation in livers of rats, but does not affect NF-kappa B activation induced by the peroxisome proliferator, Wy-14,643. J Nutr, 2002, 132(9): 2525~2531
    [94] Galleano M, Puntarulo S. Dietary alpha-tocopherol supplementation on antioxidant defenses after in vivo iron overload in rats. Toxicology, 1997, 124(1): 73~81
    [95] Sochaski M A, Bartfay W J, Thorpe S R, et al. Lipid peroxidation and protein modificationin a mouse model of chronic iron overload. Metab -Clin Exp, 2002, 51(5): 645~651
    [96] Oliver C N, Starkereed P E, Stadtman E R, et al. Oxidative damage to brain proteins, loss of glutamine-synthetase activity, and production of free-radicals during ischemia reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci U S A, 1990, 87(13): 5144~5147
    [97] Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A, 2004, 101(12): 4003~4008
    [98] Turko I V, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev, 2002, 54(4): 619~634
    [99] Greenacre S, Ischiropoulos H. Tyrosine nitration: Localisation, quantification, consequences for protein function and signal transduction. Free Radic Res, 2001, 34(6): 541~581
    [100] Marnett L J, Riggins J N, West J D. Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J Clin Invest, 2003, 111(5): 583~593
    [101] Greenacre S A, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res, 2001, 34(6): 541~581
    [102] Tyther R, Ahmeda A, Johns E, et al. Proteomic identification of tyrosine nitration targets in kidney of spontaneously hypertensive rats. Proteomics, 2007, 7(24): 4555~4564
    [103] Cornejo P, Varela P, Videla L A, et al. Chronic iron overload enhances inducible nitric oxide synthase expression in rat liver. Nitric Oxide, 2005, 13(1): 54~61
    [104] Bian K, Gao Z, Weisbrodt N, et al. The nature of heme/iron-induced protein tyrosine nitration. Proc Natl Acad Sci U S A, 2003, 100(10): 5712~5717
    [105] Thomas D D, Espey M G, Vitek M P, et al. Protein nitration is mediated by heme and free metals through Fenton-type chemistry: an alternative to the NO/O2- reaction. Proc Natl Acad Sci U S A, 2002, 99(20): 12691~12696
    [106] Gonzalez D, Drapier J C, Bouton C. Endogenous nitration of iron regulatory protein-1 (IRP-1) in nitric oxide-producing murine macrophages: further insight into the mechanism of nitration in vivo and its impact on IRP-1 functions. J Biol Chem, 2004, 279(41): 43345~43351
    [107] Zelko I N, Mariani T J, Folz R J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med, 2002, 33(3): 337~349
    [108] Guo W, Adachi T, Matsui R, et al. Quantitative assessment of tyrosine nitration of manganese superoxide dismutase in angiotensin II-infused rat kidney. Am J Physiol Heart Circ Physiol, 2003, 285(4): 1396~1403
    [109] Lucesoli F, Fraga C G. Oxidative stress in testes of rats subjected to chronic iron intoxication and alpha-tocopherol supplementation. Toxicology, 1999, 132(2-3): 179~186
    [110] Turoczi T, Jun L, Cordis G, et al. HFE mutation and dietary iron content interact to increase ischemia/reperfusion injury of the heart in mice. Circ Res, 2003, 92(11): 1240~1246
    [111] Levin W, Lu A, Jacobson M, et al. Lipid peroxidation and degradation of cytochrome-p-450 heme. Arch Biochem Biophys, 1973, 158(2): 842~852
    [112] Bosch-Morell F, Flohe L, Marin N, et al. 4-hydroxynonenal inhibits glutathione peroxidase: Protection by glutathione. Free Radic Biol Med, 1999, 26(11-12): 1383~1387
    [113] Dabbagh A J, Mannion T, Lynch S M, et al. The effect of iron overload on rat plasma and liver oxidant status in-vivo. Biochem J, 1994, 300(3): 799~803
    [114] Young I S, Trouton T G, Torney J J, et al. Antioxidant status and lipid-peroxidation in hereditary hemochromatosis. Free Radic Biol Med, 1994, 16(3): 393~397
    [115] Livrea M A, Tesoriere L, Pintaudi A M, et al. Oxidative stress and antioxidant status in beta-thalassemia major: Iron overload and depletion of lipid-soluble antioxidants. Blood, 1996, 88(9): 3608~3614
    [116] Perez C A, Wei Y, Guo M. Iron-binding and anti-Fenton properties of baicalein and baicalin. J Inorg Biochem, 2009, 103(3): 326~332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700