用户名: 密码: 验证码:
四氧嘧啶和蛋白质硝化对胰岛素信号传导系统中PI(3)K通路的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于糖尿病对人类健康的严重威胁,相关科技工作者对糖尿病的病因学、病理学研究以及治疗糖尿病新药的开发给于了高度的关注。四氧嘧啶常常用来诱导I型糖尿病的动物模型来研究其病理并评价候选药物降血糖效果。在这些研究中,四氧嘧啶对动物胰腺损伤的研究已经有许多报道,但其对肝脏和肌肉组织糖代谢过程中胰岛素信号传导分子mRNA表达的影响尚不多见。
     蛋白质磷酸化在细胞信号传导中起着关键的作用。在胰岛素信号系统中,胰岛素受体在胰岛素作用下首先自磷酸化而激活酪氨酸激酶活性,从而向下游传导信号。蛋白质硝化是一种重要的蛋白质翻译后修饰,它与多种疾病有关。硝基酪氨酸的形成可能干扰胰岛素信号传导分子的磷酸化,因此进行酪氨酸硝化对酪氨酸磷酸化影响的研究对于了解蛋白质硝化在胰岛素抵抗型糖尿病中的作用具有重要的意义。
     本文以胰岛素信号传导系统中PI(3)K通路为对象,建立了体外测定胰岛素受体自磷酸化的~(31)P-NMR波谱法,研究了体外胰岛素受体和受体底物的酪氨酸磷酸化反应,探讨了酪氨酸硝化对酪氨酸磷酸化的影响,并研究了四氧嘧啶对大鼠肝和肌肉组织该通路信号传导分子mRNA表达的影响,取得了以下主要结果:
     (1)通过探索胰岛素受体自磷酸化的适宜反应条件和适宜测试条件,建立了体外测定胰岛素受体自磷酸化的~(31)P-NMR波谱法,并将此方法用于胰岛素受体自磷酸化的体外研究。结果表明:体外胰岛素受体自磷酸化反应进程能够用此方法实时检测并且可以作相对定量检测,所得到的胰岛素受体自磷酸化的结果与免疫印迹分析方法的结果相吻合,说明所建立的~(31)P-NMR波谱方法是可行的。此方法的最大优点在于避免了放射性。
     (2)用四氧嘧啶腹腔注射法对Wistar大鼠进行糖尿病造模,运用~(31)P-NMR波谱法和免疫印迹法发现四氧嘧啶诱导的糖尿病大鼠肝脏中胰岛素受体(IR)体外自磷酸化水平下降,研究还揭示酪氨酸残基的硝化对IR自磷酸的影响在体外是依赖于SIN-1浓度的,即在较低的SIN-1浓度下IR自磷酸水平上调,在较高的SIN-1浓度下IR自磷酸水平下调,这说明IR酪氨酸激酶在较低的过氧亚硝酸根离子浓度下活性增强,而在较高的过氧亚硝酸根离子浓度下IR酪氨酸激酶的活性受到抑制。并且运用所建立的~(31)P-NMR波谱法检测了模拟胰岛素受体底物1(IRS1)磷酸化部位的基序所合成多肽的酪氨酸磷酸化信号,实验数据表明模拟IRS1的硝化多肽中硝基酪氨酸的磷酸化完全被抑制,说明3-硝基酪氨酸的形成干扰了酪氨酸酚羟基上的磷酸化反应。上述磷酸化水平的削弱可能会干扰胰岛素信号的传导,进而导致糖尿病大鼠肝脏的胰岛素抵抗。
     (3)采用巯基测试法测定了正常及糖尿病模型大鼠和家兔肝脏的巯基含量,结果显示糖尿病大鼠和家兔肝脏存在氧化损伤。用~(125)I-胰岛素标记法测定了大鼠和家兔肝细胞膜中胰岛素受体与胰岛素的结合能力,实验结果表明胰岛素与胰岛素受体专一结合与pH明显相关,最适宜结合的pH值大约是7.5,与血液pH相当,而且发现糖尿病家兔肝细胞膜不论高亲和位点还是低亲和位点的IR,与胰岛素的解离都显著减弱。
     (4)采用RT-PCR和免疫印迹法揭示了四氧嘧啶对其诱导的糖尿病大鼠肝脏的胰岛素信号传导PI(3)K通路主要分子的表达有显著的影响,四氧嘧啶诱导的糖尿病大鼠肝脏的IR、IRS1、葡萄糖转运体2(GLUT2)和葡萄糖激酶(GK)的mRNA表达和IR蛋白质表达下调,而IRS2和胰岛素磷脂酰肌醇3激酶(PI(3)K)的mRNA表达上调。蒽酮比色测定发现胰岛素治疗没有使四氧嘧啶诱导的糖尿病大鼠恢复到正常大鼠的肝糖原水平,说明四氧嘧啶诱导的糖尿病大鼠肝脏存在一定的胰岛素抵抗。
     (5)运用荧光定量PCR研究了大鼠肌肉组织胰岛素信号传导PI(3)K通路中重要的信号传导分子的基因表达,结果表明四氧嘧啶诱导的糖尿病大鼠肌肉组织的IR、IRS1和GLUT4的mRNA的表达下调,PI(3)K的mRNA的表达上调。糖尿病大鼠骨骼肌GLUT4的mRNA含量下降可能会引起糖摄取能力下降,说明四氧嘧啶诱导的糖尿病大鼠肌肉组织也存在一定的胰岛素抵抗。
Because of the serious threat of diabetes mellitus to human health, some scientists pay attention to the aetiology and pathematology as well as the development of new medicine for diabetes. Animal models of Type 1 diabetes mellitus was induced by alloxan to research its pathematology and the effects of selected drugs on cutting down blood sugar. Although the investigation of the damage of alloxan to pancreaticβcells has been well reported, the effects of alloxan-induced diabetes on the mRNA expression levels of insulin signal transmission molecules in carbohydrate metabolism of rat liver and muscle have been little reported.
     Protein phosphorylation plays a crucial role in cellular signal transduction. In insulin signaling system, insulin transmits the signal downstream by means of autophosphorylation on tyrosine residues of insulin receptor (IR) and tyrosine phosphorylation of a family of insulin receptor substrate (IRS) proteins. Protein tyrosine nitration is an important posttranslational modification, and involves in a variety of diseases. The formation of nitrotyrosine may interfere with normal signal transduction pathways and the study of its effects on tyrosine phosphorylation is important to comprehend the function of tyrosine nitration in diabetes mellitus of insulin resistance type.
     In this paper, A new method with ~(31)P-NMR spectroscopy has been set up to investigate in vitro phosphorylation of insulin receptor and its substrate in the PI(3)K pathway in insulin signaling transmission system.The tyrosine phosphorylation of insulin receptor and insulin receptor substrate and the effects of nitration on tyrosine phosphorylation were investigated in vitro. The effects of alloxan-induced diabetes on the mRNA expression levels of insulin signal transmission molecules in carbohydrate metabolism of rat liver and muscle were also studied. The main results obtained were as follows:
     (1) A new protocol with ~(31)P-NMR spectroscopy has been applied to investigate in vitro autophosphorylation of insulin receptor. The results of the present study demonstrated that the time-courses or quantitative reaction of in vitro autophosphorylation of insulin receptor could be monitored by the new method. Our data illustrated that the results determined by our developed ~(31)P-NMR protocol coincided with those in western-blotting analysis, which confirmed the feasibility of the established ~(31)P-NMR method, and the outstanding advantage of this method is non-radioactive.
     (2) Three consecutive intraperitoneal injections of alloxan in Wistar rats induced diabetic model. The results of the present study demonstrated that autophosphorylation level of IR in alloxan-induced diabetic rat livers was attenuated in vitro. This alteration in the early steps of insulin signaling might be one of many insulin resistance states. Our findings confirmed that the effect of the nitration of tyrosine residue on autophosphorylation of IR was concentration-dependent of SIN-1 in vitro, and autophosphorylation level of IR was up-regulated at relatively low concentration of SIN-1 and down-regulated at relatively high concentration of SIN-1, which suggested that IR tyrosine kinase was activated at lower concentration of peroxynitrite and inactivated at higher one. Moreover, our data proved that the nitrotyrosine in the nitrated peptides mimicking the nitration of IRS1 could inhibit their insulin-stimulated tyrosine phosphorylation in vitro. Because of the electronic and steric effects of nitrotyrosine on the tyrosine residue phosphorylation, the formation of 3-nitrotyrosine might interfere with the phosphorylation reaction on phenolic hydroxyl group of tyrosine. Then, the attenuation of phosphorylation level might lead to insulin resistance in insulin signal system.
     (3) The thiol group amounts in liver of rats and rabbits were determined by thiol group assay. The results revealed that oxidative damage existed in liver tissue of diabetic rats and rabbits. The properties of insulin receptor in liver membrane of rats and rabbits were assayed by ~(125)I-insulin marking method. The optimal pH was 7.5, and it corresponded to that of blood. The experiment showed that the dissociation of IR with insulin was obviously decreased at high and low affinity sites in the liver membrane of the diabetic rat and rabbit.
     (4) The present study revealed that alloxan-induced diabetes had significant effects on the expression of insulin signal transmission molecules in PI(3)K pathway in rat livers by RT-PCR. Alloxan-induced diabetes attenuated the mRNA expression levels of IR, IRS1, GK and GLUT2 and the protein expression of IR in rat liver tissue, and increased the mRNA expression levels of IRS2 and PI(3)K. The hepatic glycogen content of alloxan-diabetic rats treated with insulin did not restore to the levels of normal rats under above experimental conditions. These results implied that when alloxan was used to induce diabetes rats as model animals of Type 1 diabetes mellitus, the factor of insulin resistance should be considered.
     (5) The effects of alloxan-induced diabetes on the mRNA expression levels of important insulin signal molecules in PI(3)K pathway in rat muscle were also studied by Real-time Quantitative Polymerase Chain Reaction. The results demonstrated that alloxan-induced diabetes attenuated the mRNA expression levels of IR, IRS1 and GLUT4 in rat muscle tissues, and increased the mRNA expression levels of PI(3)K. The decrease in mRNA expression level of GLUT4 in rat muscle tissue implied that there might be insulin resistance in insulin signal system due to the decrease in its ability of uptake glucose.
引文
[1] Serrano R, Villar M, Martínez C, et al. Differential gene expression of insulin receptor isoforms A and B and insulin receptor substrates 1, 2 and 3 in rat tissues: modulation by aging and differentiation in rat adipose tissue. J Mol Endocrinol, 2005, 34: 153-161.
    [2] Yaoi T, Chamnongpol S, Jiang X, et al. Src homology 2 domain-based high throughput assays for profiling downstream molecules in receptor tyrosine kinase pathways. Mol Cell Proteomics, 2006, 5.5:959-968.
    [3] Machida K, Mayer BJ, Nollau P. Profiling the Global Tyrosine Phosphorylation State. Mol Cell Proteomics, 2003, 2(4):215-233.
    [4]翁孝钢主编.糖尿病饮食治疗学(第一版).北京:中国中医药出版社, 1995, P1.
    [5]薛洁,申立章,葛朝伦.糖尿病的中医辨证分型及中药治疗.新疆中医药, 2004, 22 (6): 62-64.
    [6]陈诗书主编.医学生物化学(第一版).北京:科学出版社, 2004, P89-121.
    [7]张珺辉.糖尿病与代谢综合征临床研究新概念.中国全科医学, 2006, 9(4):263-264.
    [8]荆芜.糖尿病诊断分类新指南.辽宁实用糖尿病杂志, 2004, 12(2):60.
    [9] Genuth S, Alberti KG, Bennett P, et al. Follow-up report on the diagnosis of diabetes mellitus. The expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 2003, 26 (11): 3160 -3167.
    [10] ADA. Standards of medical care in diabetes. Diabetes Care, 2005, 28(Suppl 1):S4-S36.
    [11]编辑部供稿.糖尿病诊疗标准(一).国外医学内分泌学分册, 2005 ,25(6):436-437.
    [12]田文英.糖尿病诊断新动态.中华中西医学杂志, 2004,2(12):100-102.
    [13]项坤三.糖尿病的病因异质性及分型.中华内分泌代谢杂志, 2005, 21:44S-3-44S-7.
    [14] Sadagurski M, Weingarten G, Rhodes CJ, et al. Insulin receptor substrate 2 plays diverse cell-specific roles in the regulation of glucose transport. J Biol Chem, 2005, 280(15): 14536 -14544.
    [15] Yi X, Schubert M, Peachey NS, et al. Insulin receptor substrate 2 is essential for maturation and survival of photoreceptor cells. J Neuroscience, 2005, 25(5):1240 -1248.
    [16] Ahmed Z, Pillay TS. Adapter protein with a pleckstrin homology (PH) and an Src homology 2(SH2) domain (APS) and SH2-B enhance insulin-receptor autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3-kinase-dependent signaling. Biochem J, 2003, 371: 405-412.
    [17] Lizcano JM, Alessi DR. The insulin signalling pathway. Curr Biol, 2002, 12: R236-R238.
    [18] Jessen N, Djurhuus CB, J?rgensen JOL, et al. Evidence against a role for insulin- signaling proteins PI 3-kinase and Akt in insulin resistance in human skeletal muscle induced by short-term GH infusion. Am J Physiol Endocrinol Metab, 2005, 288:194- 199.
    [19] Saltiel, AR, Kahn, CR, Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 2001, 414, 799-806.
    [20] Zhande R, Zhang W, Zheng Y, et al. Dephosphorylation by Default, a Potential Mechanism for Regulation of Insulin Receptor Substrate-1/2, Akt, and ERK1/2. J Biol Chem, 2006, 281(51): 39071-39080.
    [21] Storgaard H, Song XM, Jensen CB, et al. Insulin signal transduction in skeletal muscle from glucose-intolerant relatives with type 2 diabetes. Diabetes, 2001, 50: 2770-2778.
    [22] Patti ME, Kahn CR. The insulin receptor-a critical link in glucose homeostasis andinsulin action. J Basic Clin Physiol Pharmacol, 1998, 9: 89-109.
    [23]杜欣和唐建国.胰岛素受体介导的信号传导.生物化学与生物物理进展,1999, 26(1):12-15.
    [24]沈稚舟.胰岛素受体及信号传导通路与胰岛素抵抗.第二军医大学学报, 2001, 22(11):1062-1063.
    [25]侯志敏,刘玉杰.胰岛素受体底物活性调控的分子机制.生命的化学, 2004, 24 (5):379-381.
    [26] Cai D, Dhe-Paganon S, Melendez PA, et al. Two New Substrates in Insulin Signaling, IRS5/DOK4 and IRS6/DOK5. J Biol Chem, 2003, 278 (28): 25323-25330
    [27] Kido Y, Burks DJ , Withers D, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1 and IRS-2. J Clin Invest, 2000, 105: 199 - 205.
    [28] White MF. IRS protein and the common path to diabetes. Am J Physiol Endocrinol Metab, 2002, 283: E413-E422.
    [29] Kubota N, Tobe K, Terauchi Y. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatoryβ-cell hyperplasia. Diabetes, 2000, 49: 1880-1889.
    [30] Dong X, Park S, Lin X, et al. Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J Clin Invest, 2006, 116:101-114.
    [31] Whites MF, Kahn CR. The Insulin Signaling System. J Biol Chem, 1994, 269: 1-4.
    [32]陈家伦.胰岛素信号传导及临床意义[上].国外医学内分泌分册,2002, 2: 1-4.
    [33]唐伟,朱剑武,晓泓.胰岛素信号传导及其调节机制.实用糖尿病杂志,2005, 1(3): 43-49.
    [34] Nawano M, Ueta K, Oku A, et al. Hyperglycemia impairs the insulin signaling step between PI 3-kinase and Akt/PKB activations in ZDF rat liver. Biochem Bioph Res Co, 1999, 266(1): 252-256.
    [35] Bevan P. Insulin signaling. J. Cell Sci, 2001, 114: 1429-1430.
    [36]王军,姜宏卫,董砚虎.磷脂酰肌醇3激酶与2型糖尿病.国外医学内分泌学分册, 2001, 21(6):294-296.
    [37] Kitamura T, Kahn CR, Accili D. Insulin receptor knockout mice. Annu Rev Physiol, 2003, 65: 313-332.
    [38] Lizcano JM, Alessi DR. The insulin signaling pathway. Curr Biol, 2002, 12: 236-238.
    [39] Klover PJ, Mooney RA. Hepatocytes: critical for glucose homeostasis. Int J. Biochem Cell B, 2004, 36: 753-758.
    [40] Valverde AM, Burks DJ, Fabregat I, et al. Molecular mechanisms of insulin resistance in IRS-2-deficient hepatocytes. Diabetes. 2003, 52: 2239-2248.
    [41] Lachaal M, Rampal AL, Ryu J, et al. Characterization and partial purification of liver glucose transporter GLUT2. Biochimica et Biophysica Acta, 2000, 1466: 379-389.
    [42] Carrillo MC, Favre C, Monti JA, et al. Insulin hyperresponsiveness in partially hepatectomized diabetic rats. Life Sci, 2001, 68: 1417-1426.
    [43] Caseras A, Met?n I, Fernández F, et al. Glucokinase gene expression is nutritionally regulated in liver of gilthead sea bream (Sparus aurata). Biochimica et Biophysica Acta, 2000, 1493: 135-141.
    [44] Wei Y, Sowers JR, Nistala R, et al. Angiotensin II-induced NADPH Oxidase Activation Impairs Insulin Signaling in Skeletal Muscle Cells. J Biol Chem, 2006, 281(46): 35137-35146.
    [45] Stephens L, Anderson K, Stokoe D, et al. Protein kinase B kinases that mediate phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B. Science, 1998, 279 (5351): 710–714.
    [46] Sowers JR. Insulin resistance and hypertension. Am J Physiol Heart Circ Physiol, 2004, 286:H1597-H1602.
    [47] Sloniger JA, SaengsirisuwanV, Diehl CJ, et al. Defective insulin signaling in skeletal muscle of the hypertensive TG(mREN2)27 rat. Am J Physiol Endocrinol Metab,2005, 288: E1074-E1081.
    [48] Pirola L, Johnston AM, Van Obberghen E. Modulation of insulin action. Diabetologia, 2004, 47:170-184.
    [49] Draznin B. Molecular Mechanisms of Insulin Resistance: Serine Phosphorylation of Insulin Receptor Substrate-1 and Increased Expression of p85α. Diabetes, 2006, 55: 2392-2397.
    [50] Ginsberg H. Insulin resistance and cardiovascular disease. J Clin Invest, 2000, 106: 453-458.
    [51] White MF. Insulin signaling in health and disease. Science, 2003, 302:1710 -1711.
    [52] Cornier MA, Bessesen DH, Gurevich I, et al. Nutritional up - regulation of p85αexpression is an early molecular manifestation of insulin resistance. Diabetologia, 2006, 49:748 -754.
    [53] Valverde AM, Burks DJ, Fabregat I, et al. Molecular Mechanisms of Insulin Resistance in IRS-2–Deficient Hepatocytes. Diabetes, 2003, 52:2239-2248.
    [54] Abel ED, Peroni O, Kim JK, et al. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature, 2001, 409:729.
    [55] Hotamisligil GS, Peraldi P, Budavari A, et al. IRS-1–mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha– and obesity-induced insulin resistance. Science, 1996, 271:665- 668.
    [56] Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6–dependent insulin resistance in hepatocytes. J Biol Chem, 2003, 278:13740 -13746.
    [57] Rui L, Yuan M, Frantz D, et al. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol Chem, 2002, 277: 42394 - 42398.
    [58] Ozaki M, Haga S, Zhang HQ, et al. Inhibition of hypoxia/reoxygenation-induced oxidative stress in HGF-stimulated antiapoptotic signaling: role of PI3-K and Aktkinase upon rac1. Cell Death Differ, 2003, 10:508 -515.
    [59] Du K, Herzig S, Kulkarni RN, et al. a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science, 2003, 300: 1574-1577.
    [60] Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science, 2001, 292:1728-1731.
    [61] Dandona P, Aljada A, Chaudhuri A et al. Metabolic Syndrome: A Comprehensive Perspective Based on Interactions Between Obesity, Diabetes, and Inflammation. Circulation, 2005, 111:1448-1454.
    [62] Blendea MC, Jacobs D, Stump CS, et al. Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression. Am J Physiol Endocrinol Metab, 2005, 288(2): E353-E359.
    [63] Taniyama Y, Hitomi H, Shah A, et al. Mechanisms of reactive oxygen species - dependent downregulation of insulin receptor substrate-1 by angiotensin II. Arterioscler Thromb Vasc Biol, 2005, 25(6): 1142-1147.
    [64] Que Rakatzi I, Stosik M, Gromke T, et al. Differential phosphorylation of IRS-1 and IRS-2 by insulin and IGF-I receptors. Arch Biochem Physiol, 2006, 112(1): 37 -47.
    [65] Chibalin AV, Yu M, Ryder JW, et a1.Exercise-induced changes in expression and activity of proteins involved in insulin signal transduction in skeletal muscle difierential effects on insulin receptor substrates 1 and 2.Proc Natl Acad Sci, 2000, 97(1):38.
    [66]胡瑞萍,吴毅,胡永善.运动对糖尿病骨骼肌胰岛素信号传导的影响.中国康复医学杂志, 2004, 19(9):716-718.
    [67] Krook A, Bjrnholm M, Galuska D, et al. Characterization of signal transduction and glucose transport in skeletal muscle from type2 diabetic patients. Diabetes, 2000, 49:284.
    [68] Kim YB, Peroni OD, Aschenbach WG, et a1. Muscle-Specific Deletion of the Glut4 Glucose Transporter Alters Multiple Regulatory Steps in Glycogen Metabolism. MolCell Biol, 2005, 25(21): 9713-9723.
    [69]黄松,冼苏.糖尿病动物模型研究现状及进展.广西医学,2002, 24(1):46-48.
    [70]李聪然,游雪甫,蒋建东.糖尿病动物模型及研究进展.中国比较医学杂志, 2005, 15(1):59-63.
    [71] Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabetic Med, 2005, 22: 359-370.
    [72] Reiter CEN, Wu X, Sandirasegarane L, et al. Diabetes Reduces Basal Retinal Insulin Receptor Signaling. Diabetes, 2006, 55:1148-1156.
    [73] Szkudelski T. The Mechanism of Alloxan and Streptozotocin Action in B Cells of the Rat Pancreas. Physiol Res, 2001, 50: 536-546.
    [74] McLetchie NGB. Alloxan diabetes a discovery, albeit a minor one. J R Coll. Physicians Edinb, 2002, 32: 134-142.
    [75]盛希群.硒与糖尿病关系的研究。博士学位论文,华中科技大学,2006.
    [76]谢建明,孙啸,陆祖宏等.蛋白质的可逆磷酸化及其对基因表达的调控.现代生命科学导论课件, 2002.
    [77]北京大学生命科学学院编写组.生命科学导论(面向21世纪课程教材),北京:高等教育出版社,2000.
    [78]邢述,付学奇,李青山.用蛋白质组学方法研究蛋白质酪氨酸磷酸化.生命的化学, 2003, 23 (4): 304-306.
    [79] Hitto K, James EB, Martin F. Use of antibodiesnfor detection of phosphorylated proteins separated by two-dimensional gel electrophosphresis. Proteomics, 2001, 1:194-199.
    [80] McLachlin DT, Chait BT, Analysis of phosphorylated proteins and peptides by mass Spectrometry. Curr Opin Chem Biol, 2001, 5(5):591-602.
    [81] Machida K, Mayer BJ, Nollau P. Profiling the Global Tyrosine Phosphorylation State. Mol Cell Proteomics, 2003, 2(4):215-233.
    [82] Cohen P. The origins of protein phosphorylation. Nat Cell Biol, 2002, 4: E 127-130.
    [83] Ahmed Z, Pillay TS. Adapter protein with a pleckstrin homology (PH) and an Src homology 2 (SH2) domain (APS) and SH2-B enhance insulin-receptor autophosphorylation, extracellular-signal-regulated kinase and phosphoinositide 3-kinase-dependent signalling. Biochem J, 2003, 371(Pt 2): 405–412.
    [84] Sesti G, Federici M, Hribal ML. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J, 2001, 15:2099-2111.
    [85] Li Y, Soos TJ, Li X, et a1. Protein Kinase CθInhibits Insulin Signaling by Phosphorylating IRS1 at Ser1101. J Biol Chem, 2004, 279(44), 45304-45307.
    [86] Yammamoto T. H2O2-Induced Tyrosine Phosphorylation of Kinase Cδby a Mechanism Independent of Inhibition of Protein-Tyrosine Phosphatase in CHO and COS-7 Cells. Biochem Biophys Res Commun, 2000, 273:960-966.
    [87]池泉.硝化对胰岛素结构、功能影响的研究博士学位论文,华中科技大学,2006.
    [88] Venema VJ. Bradykinin-Stimulated Protein Tyrosine Phosphorylation Promotes Endothelial Nitric Oxide Synthase Translocation to the Cytoskeleton. Biochem Biophys Res Commun, 1996, 226:703-710.
    [89] Bechman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol, 1996, 271(cell Physiol 40): C1 424 - 437.
    [90] Sharpe MA, Cooper CE. Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanismfor the formation of nitroxyl anion and peroxynitrite. Biochem J, 1998, 332 (Pt1): 9-19.
    [91] Sampson JB, Rosen H, Beckman JS. Peroxynitrite dependent tyrosine nitration catalyzed by superoxide dismutase , myeloperoxidase and horseradish peroxidase. Methods Enzymol, 1996, 269: 210 -218.
    [92] Becker BF, Kupatt C, Massoudy P, et al. Reactive oxygen species and nitric oxide in myocardial ischemia and reperfusion. Z Kardiol, 2000, 89 (4): IXP88-91.
    [93] Low SY, Sabetkar M, Bruckdofer KR, et al. The role of protein nitration in the inhibition of platelet activation by peroxynitrite FEBS Lett, 2002, 511:59-64.
    [94]周玫,陈瑗.体内一氧化氮和过氧亚硝酸的生成及其生物学效应.中国动脉硬化杂志, 1998, 6: 178 - 181.
    [95] Seo HG, Tannenbaum SR. Identification of a stress - inducible protein containing nitrotyrosine in RAW264. 7 cells activated by IFN -γand LPS. Proceedings of the 5th international meeting on the biology of nitric oxide. Jpn J Pharmacol, 1997, 75 (Suppl 1): 105.
    [96] Shah AM, MacCarthy PA. Paracrine and autocrine effects of nitric oxide on myocardial function. Pharmacol Ther, 2000, 86: 49-86.
    [97] Ferdinandy P, Danial H, Ambrus I, et al .Peroxynitrite is a major contributor to cytokine - induced myocardial contractile failure. Circ Res, 2000, 87: 241-247.
    [98] Nakazawa H, Fukuyama N, Takizawa S, et al. Nitrotyrosine formation and its role in various pathological conditions. Free Radic Res, 2000, 33: 771-784.
    [99] Schopfer FJ, Baker PR, Freeman BA. NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci, 2003, 28(12): 646-654.
    [100] Ischiropoulos H. Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun, 2003, 305(3): 776-783.
    [101] Greenacre SA, Ischiropoulos H. Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res, 2001, 34(6): 541-581.
    [102] Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev, 2002, 54(4): 619-634.
    [103]张慧娟,刘晓民,杜柏岩等.糖尿病患者硝化酪氨酸水平与年龄、体质量指数等相关因素的关系.中国临床康复, 2006, 36:92-94.
    [104] Nomiyama T, Igarashi Y, Taka H, et al. Reduction of insulin-stimulated glucose uptake by peroxynitrite is concurrent with tyrosine nitration of insulin receptor substrate-1.Biochem Biophys Res Commun, 2004, 320(3):639-647.
    [105] Kim J, Yeh DC, Ver M, et al. Phosphorylation of Ser24 in the Pleckstrin Homology Domain of Insulin Receptor Substrate-1 by Mouse Pelle-like Kinase/Interleukin-1 Receptor-associated Kinase. J Biol Chem, 2005, 280(24): 23173-23183.
    [106] Greene MW, Morrice N, Garofalo RS, et al. Modulation of human insulin receptor substrate-1 tyrosine phosphorylation by protein kinase Cδ. Biochem J, 2004, 378: 105-116.
    [107] Fiory F, Alberobello AT, Miele C, et al. Tyrosine Phosphorylation of Phosphoinositide - Dependent Kinase 1 by the Insulin Receptor Is Necessary for Insulin Metabolic Signaling. Mol Cell Biol, 2005, 25(24):10803-10814.
    [108] McGettrick AJ, Feener EP, Kahn CR. Human Insulin Receptor Substrate-1 (IRS-1) Polymorphism G972R Causes IRS-1 to Associate with the Insulin Receptor and Inhibit Receptor Autophosphorylation. J Biol Chem, 2005, 280(8):6441-6446.
    [109] Nomiyama T, Igarashi Y, Taka H, et al. Biochem Biophy Res Co, 2004, 320: 639-647.
    [110] Minetti M, Mallozzi C, DI Stasi AMM. Serial Review: Reactive Nitrogen Species, Tyrosine Nitration and Cell Signaling. Free Radical Bio Med, 2002, 33: 744-754.
    [111] Monteiro HP. Signal transduction by protein tyrosine nitration: competition or cooperation with tyrosine phosphorylation-dependent signaling events? Free Radic Biol Med, 2002, 33(6): 765-773.
    [112] MacMillan-Crow LA, Greendorfer JS, Vickers SM, et al. Tyrosine nitration of c-SRC tyrosine kinase in human pancreatic ductal adenocarcinoma. Arch Biochem Biophys, 2000, 377(2): 350-356.
    [113] Mallozzi C, Di Stasi AMM, Minetti M. Nitrotyrosine mimics phosphotyrosine binding to the SH2 domain of the src family tyrosine kinase lyn. FEBS Lett, 2001, 503:189-195.
    [114] Di Stasi AMM, Mallozzi C, Macchia G, et al. Peroxynitrite Induces Tyrosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J Neurochem,1999, 73:727-735.
    [115] Jope RS, Zhang L, Song L. Peroxynitrite modulates the activation of p38 and extracellular regulated kinases in PC12 cells. Arch Biochem Biophys, 2000, 376(2): 365-370.
    [116] Cole PA, Courtney AD, Shen K. Chemical Approaches to Reversible Protein Phosphorylation. Acc Chem Res, 2003, 36(6): 444-452.
    [117] Conrads TP, Issaq HJ, Veenstra TD. New Tools for Quantitative Phosphoproteome Analysis. Biochem Biophys Res Commun, 2002, 290(3): 885-890.
    [118] Yan JX, Devenish AT, Wait R, et al. Fluorescence two-dimensional difference gel electrophoresis and mass spectrometry based proteomic analysis of Escherichia coli. Proteomics, 2002, 2(12):1682-1698.
    [119] Yan JX, Harry RA, Wait R, et al. Separation and identification of rat skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics, 2001, 1(3):424-434.
    [120]利布莱尔DC.蛋白质组学导论(第一版).张继仁译.北京:科学出版社. 2005,P1-120.
    [121]钱小红,贺福初.蛋白质组学:理论与方法(第一版).北京:科学出版社, 2003, P130-144.
    [122] Haystead TAJ, Garrison JC. Study of protein phosphorylation in intact cells. In Protein Phosphorylation: a Practical Approach, edn 2. Edited by Hardie DG. Oxford: Oxford University Press, 1999:1-31
    [123] Yan JX, Packer NH, Gooley AA, Williams KL. Protein phosphorylation: technologies for the identification of phosphoamino acids. J Chromatogr A, 1998, 808: 182-189.
    [124] Reiter CEN, Wu X, Sandirasegarane L, Diabetes Reduces Basal Retinal Insulin Receptor Signaling. Diabetes. 2006, 55:1148-1156.
    [125]奥斯伯FM等著.精编分子生物学实验指南(第四版).马学军等译.北京:科学出版社. 2005, P798-827.
    [126]王京兰、钱小红.磷酸化蛋白质分析技术在蛋白质组研究中的应用.分析化学,2005, 33(7):1029-1035.
    [127] Westbrook JA, Yan JX, Wait R, et al. A combined radiolabelling and silver staining technique for improved visualisation, localisation, and identification of proteins separated by two-dimensional gel electrophoresis. Proteomics, 2001, 1(3): 370-376.
    [128] Luo M, Reyna S, Wang L, et al. Identification of Insulin Receptor Substrate 1 Serine/Threonine Phosphorylation Sites Using Mass Spectrometry Analysis: Regulatory Role of Serine 1223. Endocrinology, 2005, 146(10):4410-4416.
    [129] Hinsby AM, Olsen JV, Mann M. Tyrosine Phosphoproteomics of Fibroblast Growth Factor Signaling. J Biol Chem, 2004, 279(45), 46438-46447.
    [130]望天志,毛希安.生物体内能量物质代谢动力学的31P-NMR亚基进展.波谱学杂志,1999, 16:469-474.
    [131] Hirokazu H, Keitaro Y, Kazuhiro Y. A simple method using 31P-NMR spectroscopy for protein phophorylation. Brain Res Protoc, 2000, 5:182-189.
    [132] Cateau H, Tanakaw S. Kinetic Analysis of Multisite Phosphorylation Using Analytic Solutions to Michaelis–Menten Equations. J Theor Biol, 2002, 217: 1-14.
    [133] Wu CC, Maccoss MJ. Shotgun proteomics: tools for the analysis of complex biological systems. Curr Opin Mol Ther, 2002, 4(3):242-250.
    [134]封顺.磷酸化蛋白的分离与鉴别.化学物理通讯, 2006, 7(4):27-34.
    [135] Maguire PB, Wynne KJ, Harney DF, et al. Identification of the phosphotyrosine
    [136] proteome from thrombin activated platelets. Proteomics, 2002, 2(6): 642-648.
    [137] Goshe MB, Conrads TP, Panisko EA, et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal Chem, 2001, 73(11): 2578-2586.
    [138] Oda Y, Nagasu T, Chait B T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol, 2001, 19(4):379-382.
    [139] Zhou H, Watts JD, Aebersold R, A Systematic Approach to the Analysis of Protein Phosphorylation, Nat. Biotechnol, 2001, 19: 375- 378.
    [140] Bossenmaier B, Strack V, Stoyanov B, et al. Serine Residues 1177/78/82 of the Insulin Receptor Are Required for Substrate Phosphorylation but Not Autophosphorylation. Diabetes, 2000, 49: 889-895.
    [141] Zhang Y, Wolf-Yadlin A , Ross PL, Time-resolved Mass Spectrometry of Tyrosine Phosphorylation Sites in the Epidermal Growth Factor Receptor Signaling Network Reveals Dynamic Modules. Mol Cell Proteomics, 2005, 4.9:1240-1250.
    [142] Wang H, Hanash S. Intact-protein based sample preparation strategies for proteome analysis in combination with mass spectrometry. Mass Spectrometry Reviews, 2004, 24(3):413-426.
    [143]张丽华,周晓军.蛋白质组学研究的分离技术及其进展.医学研究生学报, 2004, 17(10):916-918.
    [144] Zhou G, Li H, DeCamp D, et al. 2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers. Mol Cell Proteomics, 2002, 1 (2):117-124.
    [145] Wu SL, Kim J, Hancock WS, et al. Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications-comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). J Proteome Res, 2005, 4(4):1155-1170.
    [146] Zappacosta F, Huddleston MJ, Karcher RL, et al. Improved sensitivity for phosphopeptide mapping using capillary column HPLC and microionspray mass spectrometry: comparative phosphorylation site mapping from gel-derived proteins Anal Chem, 2002, 74: 3221-3231.
    [147]范保星,陈良安,刘又宁.蛋白质芯片-飞行质谱技术.生物技术通讯, 2003, 14 (2):159-161.
    [148] Sloane AJ, Varnum SM, Auberry KJ, et al. High-throughput peptide mass fingerprinting and protein microarray analysis using chemical printing strategies. J Mol Cell Proteomics, 2002, 1(7):490-499.
    [149] Pirola L, Johnston AM, Van Obberghen E. Modulation of insulin action. Diabetologia, 2004, 47(2): 170-184.
    [150] Ararat JA, Jeffrey HT, Kyonghee K, et al. Probing the Catalytic Mechanism of the Insulin Receptor Kinase with a Tetrafluorotyrosine-containingn Peptide Substrate. J Biol Chem,2000,275:30394-30398.
    [151] Olcott AP, Tocco G, Tian J, et al. A salen-manganese catalytic free radical scavenger inhibits type 1 diabetes and islet allograft rejection. Diabetes, 2004, 53(10): 2574-2580.
    [152] Anand P, Boylan JM, Ou Y, et al. Insulin signaling during perinatal liver development in the rat. Am J Physiol Endocrinol Metab, 2002, 283: E844-E852.
    [153] Mondoro TH, Shafer BC, Vostal JG. Peroxynitrite-induced tyrosine nitration and phosphorylation in human platelets. Free Radical Bio Med, 1997, 22(6): 1055-1063.
    [154] Marshak DR, Kadonaga JT, Burgess RR, et al.蛋白质纯化与鉴定实验指南(第一版).朱厚础译.北京:科学出版社, 1997, P193-239.
    [155]汪家政,明范.蛋白质技术手册.北京:科学出版社, 2000, P111-119.
    [156] Desrois M, Sidell RJ, Gauguier D, et al. Initial Steps of Insulin Signaling and Glucose Transport are Defective in the Type 2 Diabetic Rat Heart. Cardiovasc Res, 2004, 61: 288-296.
    [157] Luo XC, Zhao NM, Zhang RQ. Interaction of Divalent Metal Ions with the Adenosine Triphosphate Measured Using Nuclear Magnetic Resonance. Tsinghua Sci Technol, 2000, 5:443-445.
    [158] Huang H, Liu ML, Mao XA. ATP complex of Al3+ as studied by PFG NMR. Spectrochim Acta A, 1998, 54: 999–1005.
    [159] Wiedermann D, Schneider J, Fromme A, et al. Creatine loading and resting skeletalmuscle phosphocreatine flux: a saturation-transfer NMR study. Magn Reson Mater Phy, 2001, 3:118-126.
    [160] Kernec F, Tallec NL, Nadal L, et al. Phosphocreatine Synthesis by Isolated Rat Skeletal Muscle Mitochondria Is Not Dependent upon External ADP: A 31P NMR Study. J Biol Chem, 1996, 225: 819-825.
    [161]庄华梅,何德.核磁共振技术及其在生命科学中的应用.生物磁学,2005,4.
    [162]赵玉芬,赵国辉.元素有机化学(第一版).北京:清华大学出版社,1998,P177-179.
    [163]赵南明,周海梦.生物物理学(第一版).北京:高等教育和施普林格出版社,2000.
    [164] Salerno C, Iotti S, Lodi R, et al. An in vivo study by phosphorus NMR spectroscopy. Biochimica et Biophysica Acta, 1997, 1360: 271-276.
    [165]张振中,杜泽涵.生物医学中的磁共振.北京:科学出版社,2003,P416-420.
    [166] Flores-Riveros JR, Sibley E, Kastelic T, et al. Substrate Phosphorylation Catalyzed by the Insulin Receptor Tyrosine Kinase. J Biol Chem, 1989, 264: 21557-21572.
    [167] Chi Q, Wang TL, Huang KX. Effect of insulin nitration by peroxynitrite on its biological activity. Biochem Biophy Res Co, 2005, 330: 791-796.
    [168] Kiss L, SzabóC. The pathogenesis of diabetic complications: the role of DNA injury and poly (ADP-ribose) polymerase activation in peroxynitrite -mediated cytotoxicity. Mem I Oswaldo Cruz, 2005, 100(Suppl. I): 29-37.
    [169] Ablooglu AJ, Till JH, Kim K, et al. Probing the Catalytic Mechanism of the Insulin Receptor Kinase with a Tetrafluorotyrosine -containing Peptide Substrate. J Biol Chem, 2000, 275: 30394-30398.
    [170] Klotz LO, Schroeder P, Sies H. Peroxynitrite signaling: receptor tyrosine kinases and activation of stress-responsive pathways. Free Radical Bio Med, 2002, 33: 737 - 743.
    [171] Cole PA, Courtney AD, Shen K, et al. Chemical Approaches to Reversible Protein Phosphorylation. Acc Chem Res, 2003, 36: 444-452.
    [172] McLachlin DT, Chait BT. Analysis of phosphorylated proteins and peptides bymass spectrometry. Curr Opin Chem Biol, 2001, 5:591-602.
    [173] Virkam?ki A, Ueki K, Kahn CR. Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest, 1999, 103: 931-943.
    [174] Rees DA, Alcolado JC. Animal models of diabetes mellitus. Diabetic Med, 2005, 22: 359-370.
    [175] Ugochukwu NH, Babady NE. Antihyperglycemic effect of aqueous and ethanolic extracts of Gongronema latifolium leaves on glucose and glycogen metabolism in livers of normal and streptozotocin-induced diabetic rats. Life Sci, 2003, 73:1925–1938.
    [176] Yan JX, Packer NH, Gooley AA. Protein phosphorylation: technologies for the identification of phosphoamino acids. Journal of Chromatogr A, 1998, 808: 23-41.
    [177] Metz KR, Lam MM, Webb AG. Reference deconvolution: A simple and effective method for resolution enhancement in nuclear magnetic resonance spectroscopy. Concept Magnetic Res, 2000, 12: 21-42.
    [178] Ge YL, Peng H, Huang KX. 31P NMR study on the autophosphorylation of insulin receptors in the plasma membrane. Anal Bioanal Chem, 2006, 385(5): 834-839.
    [179] Wiedermann D, Schneider J, Fromme A, et al. Creatine loading and resting skeletal muscle phosphocreatine flux: a saturation - transfer NMR study. MAGMA, 2001, 13(2):118-126.
    [180] Zhang JZ, Du ZH. Magnetic resonance in biological medicine. China: Science Press, 2003.
    [181] Rojas FA, Hirata AE, Saad MJA. Regulation of IRS-2 tyrosine phosphorylation in fasting and diabetes. Mol Cell Endocrinol, 2001, 183: 63-69.
    [182] Hirashima Y, Tsuruzoe K, Kodama S, et al. Insulin down-regulates insulin receptor substrate-2 expression through the phosphatidylinositol 3-kinase/Akt pathway. J Endocrinol, 2003, 179: 253-266.
    [183]祝炼,袁莉.胰岛素信号传导与肝胰岛素抵抗.世界华人消化杂志, 2004,12(10):2420-2423.
    [184] Cederberg A, Gr?nning LM, Ahren B, et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell, 2001, 106: 563-573.
    [185] Dieffenbach Carl W,Dveksler Gabriela S著,PCR技术实验指南,俞炜源,陈添弥,黄培堂译.北京:科学出版社,1998.
    [186] Zhang, ZX, Huang KX. Mechanism of apoptosis induced by a polysaccharide, from the loach Misgurnus anguillicaudatus (MAP) in human hepatocellular carcinoma cells. Toxicol Appl Pharmacol, 2006. 210: 236-245.
    [187] Cederberg A, Gr?nning LM, Ahren B, et al. FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell, 2001, 106: 563-573.
    [188] Zhang XZ, Ying C, Liu L, et al. Influence of alcohol on insulin sensitivity and insulin receptor substrate1 mRNA expression in rat skeletal muscle. Chin J Prev Med, 2004, 38, 335-338.
    [189] Shao L, Huang Q, Miao ZC, et al. Regulation effect of insulin on metabolic dysfunction of diabetic rats. Chinese J Zool, 2003, 38: 23-27.
    [190] Ong KC, Khoo HE, Effects of myricetin on glycemia and glycogen metabolism in diabetic rats. Life Sci. 2000, 67: 1695-1705.
    [191]刘箭,生物化学实验教程.北京:科学出版社. 2004, P64-65.
    [192] Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell, 2000, 6: 87–97.
    [193] Webster, N.J.G., Evans, L.G., Caples, M., Erker1, L., Chew, S. L., 2004. Assembly of splicing complexes on exon 11 of the human insulin receptor gene does not correlate with splicing efficiency in-vitro. BMC Mol Biol, 2004, 5:7.
    [194] Tseng CH. The potential biological mechanisms of arsenic-induced diabetes mellitus.Toxicol Appl Pharm, 2004, 197: 67-83.
    [195] Müller G, Frick W. Signalling via caveolin: involvement in the cross-talk between phosphoinositolglycans and insulin. Cell Mol Life Sci, 1999, 56: 945-970.
    [196] American Diabetes Association.Diagnosis and classification of diabetes mellitus. Diabetes Care, 2005, 28: 537-542.
    [197] Fisher SJ, Kahn CR. Insulin signaling is required for insulin’s direct and indirect action on hepatic glucose production. J Clin Invest, 2003, 11: 463-468.
    [198] Rojas FA, Hirata AE, Saad MJA. Regulation of IRS-2 tyrosine phosphorylation in fasting and diabetes.Mol Cell Endocrinol, 2001, 183: 63-69.
    [199]黄冬梅,陆付耳.胰岛素信号传导障碍与胰岛素抵抗的形成.生理科学进展, 2003, 34(3):212-216.
    [200] Cho H. Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKBb). Science, 2001, 292: 1728-1731.
    [201] Van den Berghe G. How does blood glucose control with insulin save lives in intensive care? J Clin Invest, 2004, 114: 1187-1195.
    [202] Elsner M, Tiedge M, Guldbakke B, et al. Importance of the GLUT2 glucose transporter for pancreatic beta cell toxicity of alloxan. Diabetologia, 2002, 45: 1542-1549.
    [203] Ugochukwu NH, Babady NE. Antihyperglycemic effect of aqueous and ethanolic extracts of Gongronema latifolium leaves on glucose and glycogen metabolism in livers of normal and streptozotocin-induced diabetic rats. Life Sci, 2003, 73: 1925-1938.
    [204] Plougmann S, Hejlesen O, Turner B, et al. The effect of alcohol on blood glucose in Type 1 diabetes/metabolic modelling and integration in a decision support system. Int J Med Inform, 2003, 70:337-344.
    [205] Ader M, Richey JM, Bergman RN. Evidence for direct action of alloxan to induce insulin resistance at the cellular level. Diabetologia, 1998, 41: 1327-1336.
    [206] Thirone1 ACP, Huang C, Klip A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrin Met, 2006, 17 (2): 70-76.
    [207] Virkam?ki A, Ueki K, Kahn CR. Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest, 1999, 103(7):931-943.
    [208]黄留玉. PCR最新技术原理、方法及应用.北京:化学工业出版社, 2005, P174-176.
    [209]杨凤秋,朱正歌.实时定量PCR技术及应用.生物学杂志, 2006, 23(3):44-46.
    [210]完强,高聆,刘毅等.乙醇对大鼠骨骼肌胰岛素信号传导分子表达的影响.毒理学杂志, 2005: 19(1):35-38.
    [211] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods, 2001, 25:402-408.
    [212] Horita M, Yano K, Ya KT. PCR - based specific detection of Ralstonia solanacearum race 4 strains. J Gen Plant Pathol, 2004, 70:278-283.
    [213] Maier VH, Gould G W. Long-term insulin treatment of 3T3-L1 adipocytes results in mis-targeting of GlUT4: implications for insulin-stimulated glucose transport. Diabetologia, 2000, 43:1273.
    [214]高璐,于德民. GLUT4的调节因素及与临床的关系.辽宁实用糖尿病杂志, 2003, 11(1):51-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700