用户名: 密码: 验证码:
肝癌化疗栓塞术前后血清蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经导管动脉化疗栓塞术(TACE)是目前公认的非手术治疗肝癌和肝转移癌的首选方法。目前在TACE术后评判肝癌转移、复发的手段主要是综合运用影像学和血清学相结合的方法,要求肝癌患者TACE术后定期复查B超、CT、MR等,对AFP阳性的病人则定期复查血清AFP值。甲胎蛋白(AFP)多年来被作为初筛诊断肝癌的首选指标,但有20%~40%的肝癌患者AFP阴性或低值。
     新兴的蛋白组学,是对基因组所编码的所有蛋白质进行研究的学科。通过蛋白质组学使我们对肿瘤的发生、发展有了更详尽的理解,并能够通过发现特异的分子标志物来预测患者预后和治疗效果。
     ClinProt技术(液体芯片-飞行时间质谱技术)磁珠分离系统、质谱系统、分析软件和可选的体液样品自动处理系统组成,是蛋白质组学新兴运用的技术,已有众多的研究组利用该技术在患者体液中发现了能够早期诊断肿瘤的标志物。本课题研究目的就是希望在该技术的基础上寻找介入治疗预后与疗效判断相关的分子标记物,并对对有意义的差异蛋白进行鉴定。
     第一部分ClinProt技术平台的建立及肝癌门静脉癌栓血清标记物的初步研究
     目的建立稳定的ClinProt液体蛋白质芯片技术平台,选择最优化的条件,评价该平台的重复性,进而借此平台研究肝癌门静脉癌栓(PVTT)形成相关标志物并建立预测模型。
     材料和方法选取健康体检者血清,采用磁珠分离系统纯化,基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)测定其血清多肽谱,摸索适合血清的最佳技术参数评估该技术的稳定性和可靠性。采取无PVTT和有PVTT肝癌患者血清各20例及体检健康者血清,采用该技术平台建立其血清多肽谱,通过神经网络算法(SNN)建立肝癌门静脉癌栓诊断模型并进行验证。
     结果我们总结出最佳点样体积比例是样品:基质=1:5(u1)、温度和湿度控制在20℃-25℃和30%-50%时,结晶效果最佳,质谱出峰情况最好。该平台日内重复性和日间重复性均小于23%,达到蛋白质组学实验的标准。通过对无PVTT和有PVTT患者血清多肽谱的检测,发现蛋白质峰质荷比(M/Z)主要集中在2000~30000范围内,经数据对比分析找到39个有显著性差异的质荷比峰(P<0.05),通过神经网络算法(SNN)建立图谱诊断模型,筛选出建立模型选用的特征峰:1466.52 m/z、5823.1 m/z、8933.09 m/z、5353.95 m/z、4055.19 m/z、4420.43 m/z,5337.19 m/z,和4091.46m/z。模型训练集的判断准确性对于无门静脉癌栓组为92.86%,PVTT组为92.86%。模型测试集的判断准确性对门静脉癌栓组为83.3%,无PVTT组为100%。
     结论磁珠分离结合MALDI-TOF-MS的ClinProt蛋白质组学研究平台有良好的可操作性和重复性、特异的判别模型,为肝癌基础研究提供了新的手段。诊断模型可能对预测门静脉癌栓的形成具有重要临床意义。
     第二部分肝癌介入前后的血清差异蛋白组学初步研究
     目的对一组肝癌患者介入治疗前后血清蛋白谱进行比对,寻找肝癌介入治疗相关的血清标记物。
     材料和方法选取TNM分期为Ⅰ、Ⅱ期肝癌患者20例,分别在首次介入前一天(t0)、介入治疗后45天(t1)清晨于肘静脉采集空腹静脉血5ml,其中8例患者行第二次介入TACE术治疗,于第二次介入术后45天(t2)第三次采集静脉血。采用采用磁珠分离系统纯化,基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)测定其血清多肽谱,并进行前后比较,寻找蛋白峰差异。
     结果本组20例患者共行TACE术62次,平均9.9个月行介入治疗3.1次,患者全部存活,3例行外科根治性切除治疗,1例行肝移植治疗,3例PD,11例SD,2例PR。1例患者出现肝内动门脉瘘,无患者出现门静脉癌栓和远处转移。血清蛋白质谱建立后(图),在质荷比(M/z)800Da-10000Da范围内,共检测出107个蛋白峰,其中有统计学意义(P<0.05)的共有7个蛋白峰3883、5634、6072、4645、8934、6091、6112m/z。8例患者在首次介入45天后行第二次介入,利用3883、5634m/z进一步验证,该蛋白峰有一定区分价值。
     结论介入前后患者血清蛋白质谱对比,3883、5634、6072、4645、8934、6091、6112m/z蛋白峰差异显著,可能有其潜在的临床应用价值。我们拟在下一步实验中对3883Da峰进行鉴定。
     第三部分介入治疗相关的差异蛋白鉴定
     目的对所发现的3883Da的蛋白进行鉴定,并初步推测其在肝癌及肝癌介入治疗前后的临床意义。
     材料和方法:选取上一部分研究中3883Da蛋白波峰值最明显者血清为待鉴定目标,选取3883蛋白峰高表达的10例肝癌患者血清,每个病人取100μl先进行磁珠富集,然后采用液相色谱-串联质谱法(liquid chromatography tandem mass spectrometry, LC-MS/MS进行氨基酸序列测定,然后进行数据库检索比对从而定性。使用数据分析软件BioworksBrowser 3.3.1 SP1进行SequestTM检索。检索数据库为International Protein Index (IPI human v3.45 fasta with 71983 entries)。母离子误差设定为50ppm,碎片离子误差设为1Da,酶切方式为非酶切,可变修饰为M(Methionine)甲硫氨酸氧化。
     结果经过液相色谱-串联质谱法鉴定,其氨基酸序列为"R.SARLNSQRLVFNRPFLMFIVDNNILFLGKVNRP.-",通过搜库证明其为SERPINA5. "Plasma serine protease inhibitor",即“丝氨酸蛋白酶抑制剂”、又称“蛋白C抑制剂”、“纤溶酶原激活物抑制剂3(PAI-3)”的肽片段。
     结论
     我们采用超高效液相色谱-串联质谱联用的方法成功鉴定前一部分介入治疗前后差异明显的3883Da蛋白峰为PAI-3(纤溶酶原激活物抑制剂3)的肽段。复习文献结合本研究推测PAI-3在肝癌的发生、发展中起一定作用,进一步的对PAI-3的功能的探讨和验证有助于深入肝癌TACE治疗的认识,指导提高TACE治疗的效果。
Transcatheter arterial chemoembolization (TACE) is widely recognized as the preferred method of non-surgical treatment of hepatic carcinoma and metastatic liver tumor. Evaluation of metastasis and recurrence after TACE for hepatic carcinoma currently is the integrated use of the means of imaging and serological methods such as periodic review of ultrasound, CT, MR, ECT, etc. serum AFP value is regularly reviewed for the AFP-positive patients. For many years Alpha-fetoprotein (AFP) has been a target of choice for screening diagnosis of hepatic carcinoma, but 20% to 40% of liver cancer patients with negative or low AFP.
     Emerging proteomics, is a subject studying all the proteins encoded by the genome. Through the help of Proteomics we can have a more detailed understanding of occurrence and development of tumor and able to find specific molecular markers to predict prognosis and treatment result.
     ClinProt technology (liquid-chip-time of flight mass spectrometry) is a promising new approach to proteome profiling of human serum based on magnetic bead separation and MALDI-TOF MS. It consists of bead separation system, MS system, analysis software and automatic processing system for fluid samples. It is a new application of proteomics technologies, a large number of groups have been using the technology in the study body fluids of patients and biomarkers for early diagnosis of cancer have been found. Purpose of this research is to search for molecular markers of the prognosis and efficacy of intervention therapy of hepatic carcinoma using the ClinProt technology and establish a model for diagnosis the disease and prediction of the efficacy, and identify the protein which has significant meaning for the therapy.
     Part One
     The establishment of the ClinProt platform and the preliminary study of serum markers for hepatic carcinoma with portal vein tumor thrombus
     Purpose To establish a stable ClinProt liquid platform for protein chip technology, choose the most optimal conditions, to evaluate the repeatability of the platform, then set up a screen potential protein biomarkers associated with portal vein thrombi (PVTT) formation in hepatocellular carcinorma(HCC) and build a predictive model.
     Materials and Methods Serum sample from healthy people was selected and purified by magnetic bead separation system, detected by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) system. Serum peptide spectrum was evaluated and explore the best technical parameters for assessment of serum sample and stability and reliability of the technology. The serum samples from 40 HCC patients (20 with PVTT and 20 free of PVTT) were enriched by the magnetic bead and analyze by MALDI-TOF-MS. Diagnostic model was established using genetic arithmetic (GA) combined with statistical neural networks (SNN).
     Result We summarize the best ratio of the sample injection volume: substrate= 1:5 (ul).When the temperature and humidity are controlled at 20℃-25℃and 30%-50% the crystallization effect is the best and the MS peaks are optimal. The replication of within-run and between-run tests were less than 23% and reaches the standard of proteomics experiments.39 peaks with mass charge ratio (m/z) were found (P<0.05). Among them, 8 protein peaks with them/z value of 1466.52,5823.1、8933.09、5353.95、4055.19、4420.43、5337.19 and 4091.46m/z were selected to establish predictive model of PVTT. Specificity and accuracy of this model and 92.86% and 92.86 in predicting PVTT. Negative predictive value is 100%, and positive predictive value is 83.3%.
     Conclusion Serum proteomic profiling using the ClinProt system is a promising good approach for proteomics study, ClinProt system has good operability and repeatability, the specificity of the discriminant model provides a new means for liver cancer research. The eight protein peaks may be potential biomarkers of PVTT in HCC patients and the predictive model may have great clinical significance in predicting the formation of PVTT.
     Part Two Preliminary study of serum markers for hepatic carcinoma patients before and after TACE
     Purpose Compare the serum proteomic patterns of a group of patients of hepatocellular carcinoma before and after TACE treatment. To explore the serum markers related to interventional radiolody.
     Materials and Methods Select 20 cases of hepatocellular carcinoma patients which the TNM stage wasⅠ,Ⅱ. Patients were all in the early morning fasting state, and we got 5ml sera from them before TACE(t0). Then we performed TACE by selectively introducing a microcatheter into the right or the left hepatic artery or a segmental branch of the hepatic artery and injecting a mixture of iodized oil (Lipiodol; Andre Guerbet, Aulnaysous-Bois,France) and epirubicin hydrochloride (30~50mg per body surface). This was followed by the introduction of a gelatin sponge (lmm*lmm*lmm). And after 45days (t1)we got another 5ml sera. And among them 8 patients got the third blood drawings 45 days after they were treated with TACE for the second time(t2). Clinical parameters (etiology, tumor grading, AFP levels) were recorded. The choice of TACE as treatment was based on the AASLD-EASL guidelines. The serum samples were purified using magnetic bead separation system and then tested with matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS), and differences protein peak before and after the therapy were studied.
     Result The total of 20 patients in this group had undergone a total of 62times of TACE, an average of 3.1 times interventional therapy in 9.9 months, all patients survived, and 3 patients went for radical surgical resection,1 patient accepted liver transplantation,3 cases of PD,11 cases SD,2 cases of PR. One patients had arterioportal fistula, no patients had portal vein tumor thrombus or metastasis. After the establishment of serum protein spectrum, During m/z 800Da-10000Da range, a total of 107 protein peaks were detected,7 of which were statistically significant (P<0.05,3883,5634,6072,4645,8934,6091,6112 m/z).8 patients had a second TACE, use of 3883,5634 m/z further verification, the protein peaks have value of a certain distinction.
     Conclusion Comparing the serum proteomic patterns of patients of hepatocellular carcinoma before and after TACE treatment,3883, 5634,6072,4645,8934,6091,6112 m/z protein peaks were statistically significant and may have potential clinical value. We intend to identify the 3883Da peak in the next part.
     Part Three Identification of different protein concerning TACE
     Purpose To identify of the most significantly different protein peak(3883Da) in previous part of study and speculate the role it plays in liver cancer and its meaning before and after TACE.
     Materials and Methods Identification of the most significantly different protein peak 3883Da in previous part of study. Select ten high 3883Da peak expression cases for protein enrichment. Serum proteins were enriched and purified from the mixture of the sera of above ten using Clinprot magnetic beads.The purified protein was analyzed by using a LC-MS/MS system. Use data analysis software BioworksBrowser 3.3.1 SP1 for Sequest TM search. Database searching was performed with the program IPI Human (3.45). Parent ion error is set to 50ppm, fragment ion error set 1Da, non-endonuclease digestion, variable modification for the methionine oxidation.
     Result Through the identification of LC-MS/MS system, the amino acid sequence of 3883Da peak is "R.SARLNSQRLVFNRPFLMFIVDNNILFLGKVNRP.-".Searching the database, we confirm it as the peptide fragment of SERPINA5 (Plasma serine protease inhibitor) also Protein C inhibitor or Plasminogen activator inhibitor 3.
     Conclusion We identify the most significantly different protein peak (3883Da) using LC-MS/MS system successfully. The protein peak is Plasminogen activator inhibitor 3(PAI-3). Review related articles and concern with our study, we speculate PAI-3 plays important role in the occurrence and development liver cancer. Further investigation and validation the PAI-3 may help to in-depth the understanding of TACE for liver cancer will help to improve the effect of TACE treatment.
引文
1 Tang ZY, e SL, Liu YK, et al. A decade's studies on metastasis of hepatocellular carcinoma [J]. J Cancer Res Clin Oncol, 2004,130(4):187-196.
    2 Motola-Kuba D, Zamora-Valdes D, Uribe M, et al. Hepatocellular carcinoma. An overview [J]. Ann Hepatol,2006; 5(1):16-24.
    3 El-Serag HB. Hepatocellular carcinoma:recent trends in the United States [J]. Gastroenterology,2004,127(5 Suppl.1), S27-S34.
    4 El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis [J]. Gastroenterology,2007, 132(7),2557-2576
    5 Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma [J]. Lancet 2003; 362(9399):1907-1917.
    6 Llovet JM, Fuster J, Bruix J. Intention-to-treat analysis of surgical treatment for early hepatocellular carcinoma:resection versus transplantation [J]. Hepatology 1999; 30(6):1434-1440.
    7 Camma C, Schepis F, Orlando A, et al. Transarterial chemoembolization for unresectable hepatocellular carcinoma:meta-analysis of randomized controlled trials [J]. Radiology.2002; 224:47-54.
    8 Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma:Chemoembolization improves survival [J]. Hepatology.2003; 37:429-442.
    9 Farinati F, De Maria N, Maraf in C, et al. Unresectable hepatocellular carcinoma in cirrhosis:Survival, prognostic factors, and unexpected side effects after transcatheter arterial chemoembolization[J]. Dig Dis Sci 1996; 41:2332-9.
    10 Bolondi L, Sofia S,Siringo S, et al. Surveillance programme of cirrhotic patients for early diagnosis and treatment of Hepatocellular carcinoma:a cost effective analysis [J].Gut,2001, 48:251-259
    11 Godovac-Zimmermann,8th Siena Meeting. From Genome to Proteome: Integration and Proteome Completion [J]. Expert Rev. Proteomics, 2008,5:769-773.
    12 Tainsky, M. A. Genomic and proteomic biomarkers for cancer:A multitude of opportunities [J]. Biochim Biophys Acta,2009,1796(2):176-193.
    13 Wong SCC, Charles MLC, Brigette BYM, et al. Advanced proteomic technologies for cancer biomarker discovery[J]. Expert Rev. Proteomics,2009,6:123-134.
    14 Bouamrani A, Ternier J, Ratel D, et al. Direct-tissue SELDI-TOF mass spectrometry analysis:a new application for clinical proteomics [J]. Clin Chem.2006; 52(11):2103-2106.
    15 Villanueva J, Philip J, Entenberg D, et al., Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry [J], Anal Chem 2004,76,1560-1570.
    1. El-Aneed A, Banoub J.Proteomics in the diagnosis of hepatocellular carcinoma:focus on high risk hepatitis Band Cpatients[J]. Anticancer Res,2006;26(5A):3293-3300.
    2. Ludwig JA, Weinstein JN. Biomarkers in Cancer Staging, Prognosis and Treatment Selection [J]. Nat Rev Cancer.2005; 5(11):845-856.
    3. Bons JA, Wodzig WK, van Dieijen-Visser MP. Protein profiling as a diagnostic tool in clinical chemistry:a review[J]. Clin Chem Lab Med 2005; 43:1281-90.
    4. Devarajan, P, Ross GF, et al. SELDI Technology for Identification of Protein Biomarkers [M]. Biomarker Methods in Drug Discovery and Development,2008:251-271.
    5. Bons JAP, Wodzig WKWH, De Boer D, et al. Application of SELDI-TOF-MS in protein profiling:promises and Pitfalls [J]. Jugoslov Med Biohem, 2006; 25(3):201-10.
    6. Diamandis EP. Mass Spectrometry as a Diagnostic and a Cancer Biomarker Discovery Tool Opportunities and Potential Limitations. Mol Cell Proteomics [J].2004,3:367-378.
    7. Ketterlinus R, Hsieh SY, Teng SH, et al. Fishing for biomarkers: analyzing mass spectrometry data with the new ClinProtoolsTM software [J]. Bio techniques,2005, Suppl:37-40.
    8. Villanueva J, Philip J, Entenberg D, et al. Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry, Anal Chem,2004,76,1560-1570.
    9. Elssner T, Kostrzewa M. CLINPROT-a MALDI-TOF MS based system for biomarker discovery and analysis. Clin Prot.2006,8:167-178.
    10. Kubo S, Tanaka H, Shuto T, et al. Clinicopathologic features and outcome after liver resection for hepatocellular carcinoma in patients with concurrent versus previous chronic hepatitis B. Surg Today,2005,35 (3):216-222.
    11. Lee HS, Kim JS, Choi IJ, Chung JW, Park JH, Kim CY. The safety and efficacy of transcatheter arterial chemoembolization in the treatment of patients with hepatocellular carcinoma and main portal vein obstruction:a prospective controlled study. Cancer 1997;79: 2087-94.
    12. Yamamoto K, Masuzawa M, Kato M, et al. Analysis of prognostic factors in patients with hepatocellular carcinoma treated by transcatheter embolization[J]. Cancer Chemother Pharmocol,1992,31 (Suppl):77-81.
    13.林贵,王建华,顾正明.肝动脉化疗栓塞治疗中晚期肝癌的疗效和影响因素[J].中华放射学杂志,1992,26(5):311—315.
    14. Wulfkuhle JD, Liotta LA, Petricoin EF. Proteomic applications for the early detection of cancer. Nat Rev Cancer,2003;3(4):267-75.
    15. Paradis V, Degos F, Dargere D, et al. Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases. Hepatology,2005;41(1):40-7.
    16.中国抗癌协会肝癌专业委员会.原发性肝癌诊断标准[J].中华肝脏病杂志,2000,8(3):135.
    17. Hartwell L, Mankoff D, Paulovich A, et al. Cancer biomarkers:a systems approach. Nat Biotechnol,2006;24 (8):905-8.
    18. Albrethsen J. Reproducibility in protein profiling by MALDI-TOF mass spectrometry.Clin Chem 2007;53 (5):852-8.
    19. Cho WC, Cheng CH. Oncoproteomics:current trends and future perspectives. Expert Rev Proteomics 2007; 4:401-410.
    20.许洋.蛋白质指纹图谱技术在实验诊断与临床医学中的研究进展.基础医学与临床2007:27:134-142.
    21.布和巴特尔.磁珠技术在生命科学领域的应用及其制备[J].化学工程师,2004,6(7):57-58.
    22.王胜林,王强斌,古宏晨,等.磁性微球的生物医学应用研究进展磁性微球简介[J].化学世界,2001,7(4):384-387.
    23. Schuerenberg M, Luebbert C, Eickhoff H, et al. Prestructured MALDI-MS sample supports[J]. Anal Chem,2000,72:3436-3442.
    24. Gobom J, Schuerenberg M, Mueller M, et al. α-Cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Anal Chem 2001;73:434-438.
    25. Zhang X, Leung SM, Morris CR, et al. Evaluation of a novel, integrated approach using functionalized magnetic beads, benchtop MALDITOFMS with prestructured sample supports, and pattern recognition software for profiling potential biomarkers in human plasma[J].J Biomol Tech,2004,15:167-175.
    26. Hortin GL. The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome [J]. Clin Chem 2006; 52:1223-1237.
    27. Baumann S, Ceglarek U, Fiedler GM, et al. Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem 2005; 51:973-980.
    28. Cedrone A, Rapaccini GL, Pompili M, et al. Portal vein thrombosis complicating hepatocellular carcinoma. Value of ultrasound-guided fine-needle biopsy of the thrombus in the therapeutic management. Liver 1996; 16:94-98.
    29. Arii S, Tanaka J, Yamazoe Y, Minematsu S, Morino T, Fujita K, Maetani S, Tobe T. Predictive factors for intrahepatic recurrence of hepatocellular carcinoma after partial hepatectomy. Cancer 1992; 69: 913-919.
    30. Ando E, Yamashita F, Tanaka M, Tanikawa K. A novel chemotherapy for advanced hepatocellular carcinoma with tumor thrombosis of the main trunk of the portal vein. Cancer 1997; 79:1890-1896.
    31. Chung JW, Park JH, Han JK, et al. Hepatocellular Carcinoma and portal vein invasion:results of treatment with transcatheter oily chemoembolization[J]. Am J Radiol,1995,165(2):315-321.
    32. Yen FS, Wu JC, Kuo BI, et al. Transcatheter arterial embolization for hepatocellular carcinoma with portal vein thrombosis[J]. J Gastroenterol Hepatol,1995,10(3):237-240.
    33. Mathurin P, Raynard B, Dharancy S,et al.Meta-analysis:evaluation of adjunvant therapy after curative liver resection for hepatocellular carcinoma. Aliment Phaimacol Ther,2003,17:1247-1261.
    34. Asaki Y, Imaoka S, Kasugai H, et al. A new approach to chemoembolization therapy for hepatoma using ethiodized oil, cisplatin, and gelatin sponge[J]. Cancer,1987,60(6):1194-1203.
    35. Qiu JG, Fan J, Liu YK, et al. Screening and detection of portal vein tumor thrombi-associated serum low molecular weight protein biomarkers in human hepatocellular carcinoma. J Cancer Res Clin Oncol.2008,134:299-305.
    36.刘建栋,李永哲,李宁,郦卫星,许洋.血液蛋白质组与质谱仪检测流程标准化初探.基础医学与临床2007;27: 193-197.
    1. Llovet JM, Real MI, Montana X, et al. Aterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma:a randomised controlled trial. Lancet2002;359:1734-1739.
    2. Bolondi L, Sofia S, Siringo S, et al. Surveillance programme of cirrhotic patients for early diagnosis and treatment of Hepatocellular carcinoma:a cost effective analysis [J].Gut,2001,48:251-259.
    3. Therasse P, Arbuck SG, Eisenhauer ET,et al. New guidelines to evaluate the response to treament in solid tumors [J].J Nat Cancer lnst,2000,92(3):205-216.
    4. 曹然,朱彬.微创临床介入放射治疗学[M].军事医学科学出版社.2006:69-71.
    5. Aldred S, Grant MM, Griffiths HR. The use ofproteomics for the assessment of clinical samples in research[J]. Clin Biochem,2004(11), 37:943-952.
    6. Pusch W, FloccoMT, Leung SM, et al.Mass spectrometry based clinical proteomics[J]. Pharmacogenomics,2003,4(4):463-476.
    7. Oh JH, Nandi A, Gurnani P, et al. Proteomic biomarker identification for diagnosis of early relapse in ovarian cancer[J]. J Bioinform Comput Biol,2006,4(6):1159-1179.
    8. Kojima K, Asmellash S, Klug CA, et al. Applying proteomic-based biomarker tools for the accurate diagnosis of pancreatic cancer[J]. J Gastrointest Surg,2008,12(10):1683-1690.
    9. Nagalla SR, Canick JA, Jacob T, et al. Proteomic analysis of maternal serum in Down syndrome:identification of novel protein biomarkers[J]. J Proteome Res,2007,6(4):1245-1257.
    10. Villanueva J, Martorella AJ, Lawlor K, et al. Serum peptidome patterns that distinguish metastatic thyroid carcinoma from cancer-free controls are unbiased by gender and age [J]. Mol Cell Proteomics,2006, 5(10):1840-1852.
    11. Mazzaferro V, Chun YS, Poon RT, Schwartz ME, Yao FY, Marsh JW, Bhoori S, Lee SG. Liver transplantation for hepatocellular carcinoma [J]. Ann Surg Oncol 2008; 15:1001-1007.
    12.杨秉辉,夏景林,黄力文,等.我国肝癌“临床相”30年的变迁-原发性肝癌3250例的对比研究[J].中华医学杂志,2003,83(12):1053-1057.
    13. Qian J, Feng GS, Vogl T. Combined interventional therapies of hepatocellular carcinoma[J]. World J Gastroenterol 2003:9:1885-1891.
    14. Barone M, Ettorre GC, Ladisa R, et al. Transcatheter arterial chemoembolization (TACE) in treatment of hepatocellular carcinoma[J]. Hepatogastroenterology,2003:50:183-187.
    15. Grieco A, Marcoccia S,Miele L, et al. Transarterial chemoembolization (TACE) for unresectable hepatocellular carcinoma in cirrhotics: functional hepatic reserve and survival [J]. Hepatogastroenterology 2003:50:207-212.
    16. Paye F, Jagot P, Vilgrain V, et al. Preoperative chemoembolization of hepatocellular carcinoma:a comparative study [J]. Arch. Surg.1998,133(7):767-772.
    17. Tan LL, Li YB, Chen DJ, Li SX, Jiang JD, Li ZM. Helical dual-phase CT scan in evaluating blood supply of primary heptocellular carcinoma after transcatheter hepatic artery chemoembolization with lipiodol[J]. Zhonghua Zhongliu Zazhi,2003:25:82-84.
    18. Katyal S,Oliver JH, Peterson MS, Chang PJ, Baron RL, Carr BI. Prognostic significance of arterial phase CT for prediction of response to transcatheter arterial chemoembolization in unresectable hepatocellular carcinoma:a retrospective analysis[J]. Am J Roentgenol 2000;175:1665-1672.
    19.张志伟,陈孝平.TACE在肝癌治疗中的价值[J].中华肝胆外科杂志2003;9:638-640
    20. Fan J, Tang ZY, Yu YQ, Wu ZQ, Ma ZC, Zhou XD, Zhou J, Qiu SJ, Lu JZ. Improved survival with resection after transcatheter arterial chemoembolization (TACE) for unresectable hepatocellular carcinoma [J]. Dig Surg 1998; 15:674-678.
    21. Terayama N, Miyayama S, Aatsu H, et al. Subsegmental transcatheter arterial embolization for hepatocellular carcinoma in the caudate lobe [J]. J Vase Interv Radiol,1998,9(2):501-508.
    1. He F. Human liver proteome project:plan, progress, and perspectives. Mol Cell Proteomics,2005,4 (12):1841-1848.
    2. Wise MJ, Littlejohn TG, Humphery SI. Peptide-mass fingerprinting and the ideal covering set for protein characterization [J].Electrophoresis,1997,18(1):1399-1409.
    3. Olsen, J. V., Ong, S. E., Mann, M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol. Cell. Proteomics 3, 608-614 (2004).
    4. Steen H, Mann M. The ABC' s(and XYZ's) of peptide sequencing [J]. Nat Rev Mol Cell Biol,2004,5:699-711.
    5. Demirev P A, Ramirez J, Fenselau C. Tandem mass spectrometry of intact proteins for characterization of biomarkers from bacillus cereus T spores [J]. Anal Chem,2001,73 (23):5725-5731.
    6. Perkins D N, Pappin D J, Creasy D M, et al. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis,1999,20 (18):3551-3567.
    7. Eng J K, McCormack A L, Yates III J R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a proteins database. J Am Soc Mass Spectrom,1994,5 (11):976-989.
    8. Craig R, Beavis R C. TANDEM:matching proteins with tandem mass spectra. Bioinformatics,2004,20 (9):1466-1467.
    9. Sandra K, Devreese B, van Beeumen J, et al. The Q-Trap mass spectrometer, a novel tool in the study of protein glycosylation [J]. J Am Soc Mass Spectrom,2004,15(3):413-423.
    10. Yates III J R. Mass spectral analysis in proteomics. Annu Rev Biophys Biomol Struct,2004,33:297-316.
    11. Wu CC, MacCoss MJ. Shotgun proteomics:Tools for the analysis of complex biological systems. Curr Opin Mol Ther,2002,4(3):242-250.
    12. Baldwin, M. and F. McLafferty, Liquid chromatography-mass spectrometry interface I:the direct introduction of liquid solutions into a chemical ionization mass spectrometer. Org Mass Spectrom 1973.7:111-117.
    13. Fernandez M, Jarvis J, Parker R, et al. C-terminal sequencing by mass spectrometry:Application to gelatine-derived proline-rich peptides[J]. Proteomics,2005,5(5):1209-1216.
    14. Hu, Q. Z., Noll, R. J., et al. The Orbitrap:a new mass spectrometer. J. Mass Spectrom.2005,40,430-443.
    15. McAlister, G. C., Phanstiel, D., Good, D. M., Berggren, W. T., and Coon, J. J. Implementation of electron transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer. Anal. Chem.2007, 79,3525-3534.
    16. Scigelova M, Makarov A. Orbitrap mass analyzer-overview and applications in proteomics. Proteomics.2006;6(Suppl 2):16-21.
    17.袁孝兵,李成发,胡兴龙,等.肝癌TACE术后复发探究及应对策略.实用肿瘤学,2007,21(6):570-571.
    18. Von-Marschall Z, Cramer T, Hocker M, et al. Dual mechanism of vascular endothelial growth factor upregulation by hypoxia in human hepatocellular carcinoma[J]. Gut 2001;48:87
    19. Song B C, Chung Y H, Kim J A, et al. Association between Insulin-like Growth Factor-2 and Metastases after Transcatheter Arterial Chemoembolization in Patients with Hepatocellular Carcinoma[J]. Cancer,2001,91 (12):2386-2393.
    20. Bolondi L, Sofia S,Siringo S, et al. Surveillance programme of cirrhotic patients for early diagnosis and treatment of Hepatocellular carcinoma:a cost effective analysis [J].Gut,2001, 48:251-259.
    21. Tarachand U, Pawse AR. Enhauced expression of urokinase-type plasminogen activator in the endometrium following induction of decidualization[J]. Indian J Exp Biol,1994,32(5):304-306.
    22. Astedt B, Holimberg L. Immunological identify of urokinase and ovarian carcinoma plaminogen activator released in tissue culture[J]. Nature,1976,261(5561):595.
    23. Marlar RA, Griffin JH. Deficiency of protein C inhibitor in combined factor V/VIII deficiency disease. J Clin Invest 1980; 66:1186-9.
    24. Suzuki K, Nishioka J, Hashimoto S. Protein C inhibitor. Purification from human plasma and characterization. J Biol Chem 1983; 258:163-8.
    25. Suzuki K, Nishioka J, Kusumoto H, Hashimoto S. Mechanism of inhibition of activated protein C by protein C inhibitor. J Biochem (Tokyo) 1984; 95:187-95.
    26. Suzuki K, Hayashi T. Protein C and its inhibitor in malignancy. Semin Thromb Hemost.2007;33:667-672.
    27. Palmieri D, Lee J W, Juliano R L, et al. Plasminogen activator inhibitor-1 and-3 increase cell adhesion and motility of MDA-MB-435 breast cancer cells [J]. J Biol Chem,2002,277 (43):40950-40957.
    28. Stief TW, Radtke KP, Heimburger N. Inhibition of urokinase by protein C-inhibitor (PCI). Evidence for identity of PCI and plasminogen activator inhibitor 3[J]. Biol Chem Hoppe Seyler 1987;368:1427-1433.
    29. Mazzieri R, Masiero L, Zanetta L, Monea S, Onisto M, Garbisa S, Mignatti P. Control of type IV collagenase activity by components of the urokinase-plasmin system:a regulatory mechanism with cell-bound reactants[J]. EMBO J 1997;16:2319-2332
    30. Itoh T, Hayashi Y, Kanatnant T, et al. Clinical significance of urokinase-type plasminogen activator activity in hepatocellular carcinoma [J]. J Gastroenterol Hepatol,2000,15 (4):422-430.
    31.竹奇英一.血浆尿激酶型血浆素原激活物作为肝细胞癌肿瘤标记物的临床探讨[J].国外医学肿瘤学分册,1995,22(1):55-56.
    32. NIETO RODRIGUEZ A, HERNANDEZ PANDO R, KER-SHENOBICH D, et al. Expression of urokinase-type plasminogen activator in an experimental model of hepatocarcinoma [J].Toxicology,2001,161 (1.2):13-23.
    33. TIAN J, TANG Z Y, YE S L, et al.New human hepatocellu-lar carcinoma (HCC) cell line with highly metastaticpotential (MHCC97) and its expressions of the factors associated with-metastasis[J]. Br J Cancer, 1999,81 (5):814.821.
    34. ZHENG Q, TANG Z Y, XUE Q, et al. Invasion and metastasis of hepatocellular carcinoma in relation to urokinase-type plasminogen activator, its receptor and inhibitor [J].J Cancer Res Clin Oncol,2000,126 (11):641.646.
    35. Psaila B, Lyden D. The metastatic niche:adapting the foreign soil. Nat Rev Cancer 2009; 9:285-293.
    36. Zhou L, Hayashi Y, Itoh T, et al. Expression of urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor, and plasminogen activator inhibitor-1 and-2 in hepatxellular carcinoma [J]. Pathol Int.2000,50(5):392-397.
    37. Zheng Q, Tang ZY, Xue Q, et al. Invasion and metastasis of hepatocellular carcinoma in relation to urkinase-type plasminogen activator, ils receptor and inhibitor [J].J Cancer Res Clin Oncol,2000,126 (11):641-646.
    38. Sieben NL, Oosting J, Flanagan AM, et al. Differential gene expression in ovarian tumors reveals Dusp 4 and Serpina 5 as key regulators for benign behavior of serous borderline tumors[J]. J Clin Oncol 2005:23:7257-7264.
    39. Cao Y, Becker C, Lundwall A, et al. Expression of protein C inhibitor (PCI) in benign and malignant prostate tissues[J]. Prostate 2003:57:196-204.
    40. Palmieri D, Lee JW, Juliano RL, Church FC. Plasminogen activator inhibitor-1 and-3 increase cell adhesion and motility of MDA-MB-435 breast cancer cells[J]. J Biol Chem 2002;277:40950-40957.
    [1]Mahajan VS, Chauhan SS. The human genome Project and its implications [J]. Tro Gastroenterol,2001;22(4):177-9
    [2]Jin J. An evaluation of the Ethical,Legal and Social implications program of the U.S. Human Genome Project. Princet J Bioeth,2000,3(1):35-50.
    [3]Lander ES, Linton M, Bitten B, et al. Initial sequencing and analysis of the human genome[J]. Nature,2001,409(6822):860-921.
    [4]Simpson, RJ, Dorow, D.S. Cancer proteomics:from signaling networks to tumor markers[J]. Trends Biotechnol,2001,19, S40-S48.
    [5]Abbott A. And now for the proteome[J]. Nature,2001,409 (6822):747.
    [6]Fields S, Proteomics. Proteomics in genome land [J]. Science,2001,291 (5507) 1221.
    [7]Marc R. Wilkins, Christian Pasquali, Ron D, et al. From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Arnino Acid Analysis [J]. Nature Biotechnology,1996;14 (1):61-65.
    [8]Anderson NI, Anderson NG Proteome and proteomics:new technologies, new concepts, and new words [J]. Electrophoresis,1998,19 (11):1853-1861.
    [9]Kumar S, Mohan A, Guleria R. Biomarkers in cancer screening,research and detection:present and future:a review [J]. Biomarkers,2006,11 (5):385-405.
    [10]Godovac-Zimmermann J, Brown LR. Perspectives for mass spectrometry and functional proteomics [J]. Mass Spectrom Rev,2001,20 (1):1-57.
    [11]钱小红,贺福初.蛋白质组学:理论与方法[M].北京:2003,13-16.
    [12]Bichsel VE, Liotta LA, Petricoin EF 3rd. Cancer proteomics:from biomarker discovery to signal pathway profiling. Cancer J.2001,7(l):69-78.
    [13]O'Farrell PH. High resolution two-dimensional electrophoresis of proteins[J]. The Journal of Biological Chemistry,1975,250 (10):4007-4021.
    [14]Klose J. Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues [J]. Human genetic,1975,26 (3):231-243.
    [15]Gorg A, Weiss W, Dunn M J.Current two-dimensional electrophoresis technology for proteomics[J].Proteomics,2004,4(12):3665—3685.
    [16]Molloy MP. Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients [J].Anal Biochem,2000,280(1):1-10.
    [17]Klose J, Kobalz U. Two-dimensional electrophoresis of proteins:An updated protocol and implications for a functional analysis of the genome [J]. Electrophoresis,1995,16(1):1034-1059.
    [18]Gygi SP, Corthals GL, Zhang Y, et al. Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology [J]. Proc. Natl. Acad. Sci., 2000,97(17):9390-9395.
    [19]Oguri T, Takahata I. Katsuta K, et al. Proteome analysis of rat hippocampal neuronsbymultiple large gel two-dimensional electrophoresis[J].Proteomics, 2002,2(6):666-672.
    [20]Rachel A. Craven, Rosamonde E. Banks. Laser capture microdissection and proteomics:Possibilities and limitation.Proteomics.2001,1(10):1200-1204.
    [21]Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis. A single gel method for detecting changes in protein extracts [J]. Electrophoresis,1997,18(11): 2071-2077.
    [22]Ana M, Laura GG, Willy RG, et al. Derivatization of biomolecules for chemiluminescent detection in capillary electrophoresis [J]. J CHROMATOGR B,2003,793(1):49-74.
    [23]冯楠,路勇,吴颖,等.超高效液相色谱串联质谱法(UPLCMS/MS)测定多种食品中三聚氰胺的残留量[J].中国卫生检验杂志,2009,19(2):248—250.
    [24]Smyth WF, Brooks P. A critical evaluation of high performance liquid chromatography-electrospray ionisation-mass spectrometry and capillary electrophoresis-electrospray-mass spectrometry for the detection and determination of small molecules of significance in clinical and forensic science [J]. Electrophoresis,2004,5:1413-1446.
    [25]Gygi SP, Rist B, Gerber SA, et al. Quantitative analysis of protein mixture using isotope coded affinity tags[J]. Nature Biotechnology,1999,17:994-999.
    [26]Smolka MB, zhou H, Purkayastha S, et al. Optimization of the isotope-coded affinity tag-labeling procedure for quantitative proteome analysis [J]. Anal Biochem,2001,297 (1):25-31.
    [27]Lemaire R, Stauber J, Wisztorski M, Tag-Mass:Specific Molecular Imaging of Transcriptome and Proteome by Mass Spectrometry Based on Photocleavable Tag [J]. J. Proteome Res,2007,6 (6):2057-2067.
    [28]Feng B, Smith RD. A simple nanoelectrospray arrangement with controllable flow rate for mass analysis of submicroliter protein samples [J]. J Am Soc Mass Spectrom,2000,11 (1):94-99.
    [29]Yates JR. Database searching using mass spectrometry data[J]. ELECTROPHORESIS.1998,19(6),893-900.
    [30]Larsen MR, Roepstorf P. Mass spectrometric identification of proteins and characterization of their post-translational modifications in proteome analysis. Fresenius'J Anal Chem.2000,366(6-7):677-690.
    [31]Menard C, Johann D, Lowenthal M, et al. Discovering clinical biomarkers of ionizing radiation exposure with serum proteomic analysis [J]. Cancer Res,2006,66:1844-1850.
    [32]钟春英,彭蓉,彭建新,等。蛋白质芯片技术[J]。生物技术通报,2004,2:34-37
    [33]Devarajan, P, Ross GF, et al. SELDI Technology for Identification of Protein Biomarkers [M]. Biomarker Methods in Drug Discovery and Development,2008: 251-271.
    [34]J. Villanueva, J. Philip and D. Entenberg et al., Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry, Anal Chem 76 (2004), pp.1560-1570.
    [35]MS Boguski, MW McIntosh. Biomedical informatics for proteomics [J]. Nature, 2003,422 (6928),233-237.
    [36]Vihinen M. Bioinformatics in proteomics [J]..Biomol Eng.2001,18(5):241-248.
    [37]E Marshall. Bioinformatics:Hot Property:Biologists who compute[J].Science,1996,272:1730-1732.
    [38]Bosch FX, Ribes J, Diaz M, Cleries R. Primary liver cancer:worldwide incidence and trends [J]. Gastroenterology.2004,127,S5-S15.
    [39]El-Serag HB, Rudolph KL. Hepatocellular carcinoma:epidemiology and molecular carcinogenesis [J]. Gastroenterology.2007,132(7),2557-2576
    [40]E Zeindl-Eberhart, S Haraida, S Liebmann, et al.Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas [J]. Hepatology,2004,39(2):540—9.
    [41]C Li, YX Tan, H Zhou, et al. Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma:Identification of potential tumor markers [J]. Proteomics.2005,5(4):1125-39.
    [42]MA Feitelson, B Sun, TNL Satiroglu, et al. Genetic mechanisms of hepatocarcinogenesis [J]. Oncogene,2002,21(16):2593-604.
    [43]Cheng Wu, Z W, Lijie Liu, et al, Surface enhanced laser desorption/ionization profiling:New diagnostic method of HBV-related hepatocellular carcinoma[J]. J GASTROEN HEPATOL,2009,24(1):55-62.
    [44]TK Seow, RCMY Liang, CK Leow, et al. Hepatocellular carcinoma:From bedside to proteomics[J]. Proteomics.2001,1(10):1249-1263.
    [45]Cui J F,Liu Y K, Pan B S, et al. Differential proteomic analysis of human hepatocellular carcinoma cell line metasatasis-associated proteins[J]. J Pathol, 2004,130 (10):615-622.
    [46]Fujii K, Kondo T, Yokoo H,et al. Proteomic study of human hepatocellular carcinoma using two-dimensional difference gel electrophoresis with saturation cysteine dye. Proteomics,2005,5(5),1411-1422.
    [47]Fujii K, Kondo T, Yokoo H, Okano T, Yamada M, Yamada T, Iwatsuki K, Hirohashi S. Database of two-dimensional polyacrylamide gel electrophoresis of proteins labeled with CyDye DIGE Fluor saturation dye. Proteomics 2006; 6[5]: 1640-1653
    [48]Tong A,Wu L, Lin Q, et al. Proteomic analysis of cellular protein alterations using a hepatitis B virus-producing cellular model[J].Proteomics,2008,8 (10) 2012-2023.
    [49]刘博.黄志强,周宁新,等.肝癌细胞系SMMC7721蛋白质组学初步分析[J].中华实验外科杂志,2004,21(12):1439—1440.
    [50]Ding SJ, Li Y, Shao XX, et al. Proteome analysis of hepatocellular carcinoma cell strains,MHCC97-H and MHCC97-L,with different metastasis potentials[J]. Proteomics,2004,4(4):982-994.
    [51]Ding SJ, Li Y, Tan YX, et al. From proteomic analysis to clinical significance: overcxpression of cytokeratin 19 correlates with hepatocellular carcinoma metastasis[J]. Mol Cell Proteomics,2004,3(1):73-81.
    [52]Li C, Yi-Hong, Tan YX, et al. Analysis of micro-dissected cells by two-dimensional LC-MS approaches [J]. MethodsMol Biol,2008,428:193-208.
    [53]Kim J, Kim S H, Lee S U, et al. Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and identification of disease-related proteins [J]. Electrophoresis,2002,23(24):4142-4156.
    [54]宋海燕,刘银坤,崔杰峰,等.人肝细胞性肝癌组织转移相关分子的比较蛋白质组学研究[J].中华肝脏病杂志,2005,13(5):331-334.
    [55]Yi X,Luk JM,Lee NP,et al. Association ofmortalin (HSPA9)with liver cancer metastasis and prediction for early tumor recurrence [J]. Mol Cell Proteomics, 2008,7 (2):315-325.
    [56]Orimo T, Ojima H, Hiraoka N, et al. Proteomic profiling reveals the prognostic value of adenomatous polyposis coli-end-binding protein 1 in hepatocellular carcinoma[J]. Hepatology,2008,48 (6):1851-1863.
    [57]Steel LF, Shumpert D, Trotte M,A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma[J].PROTEOMICS,2003,3(5):601-609.
    [58]Paradis V,Degos F,Dargere D, et al. Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases [J]. Hepatology,2005,41(1):40-47.
    [59]Poon TC, Yip TT, Chan AT, et al. Comp rehensive proteomic profiling identifies serum proteomic signatures for detection of hepatocellular carcinoma and its subtypes [J]. Clin Chem,2003,49(5):752-760.
    [60]Huang C, Fan J, Zhou J, et al. Study of serum proteome biomarkers with relation to the formation of portal vein tumor thrombi in hepatocellular carcinoma patients[J]. Zhonghua Yi Xue Za Zhi,2005,85(11):781-785.
    [61]Looi KS,Nakayasu ES,Diaz RA, et al. Using proteomic approach to identify tumor-associated antigens as markers in hepatocellular carcinoma[J]. J Proteome Res,2008,7(9):4004-4012.
    [62]Mas VR, Maluf DG, Archer KJ, et al. Proteomic analysis of HCV cirrhosis and HCV-induced HCC:identifying biomarkers for monitoring HCV-cirrhotic patients awaiting liver transplantation [J].Transp lantation,2009,87(1):143-152.
    [63]Ransohoff D.Bias as a threat to the validity of cancer molecular-marker research [J].Nature Reviews Cancer,2005,5(2),142-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700